A Neural Network for Monitoring and Characterization of Buildings with Environmental Quality Management, Part 1: Verification under Steady State Conditions
Abstract
:1. Introduction
2. Methods
2.1. Requirements for Building Automatics Control System (BACS)
2.2. Finding the Best Number of Neurons in the Hidden Layer
2.3. Data Preparation
- Measured time in decimal notation every 20 min
- Degree of opening valve for interior earth–air heat exchanger (%)
- Degree of opening valve for exterior earth–air heat exchanger (%)
- Exterior air temperature (mean of both earth–air heat exchangers)
- Relative humidity of exterior air measured on the inlet to earth–air heat exchangers (EAHXs)
- Irradiation, W/m2, measured on north elevation
- Irradiation, W/m2, measured on east elevation
- Irradiation, W/m2, measured on south elevation
- Exterior air temperature (measured on the roof of the building)
- Temperature of the cooling water in the tank
- Temperature of the cooling water on return from the tested room
- Efficiency of the cooling exchanger (%)
- Steering of the floor cooling valve (%)
- Temperature in the adjacent room on side 1 (it is used instead of wall surface temperature and we are dealing with a steady state evaluation)
- Temperature in the adjacent room on side 2 (it is used instead of wall surface temperature)
- Temperature in the room below (it is used instead of floor surface temperature)
- Temperature in the room above (it is used instead of ceiling surface temperature)
- Steering of the cooling valve for the floor system
- Efficiency of ventilator in climate-convector (%)
- Angle of setting in the solar shutters
2.4. Pre- and Post-Processing, Learning Parameters, and General Equation of the ANN’s Architecture for a Given Approach
3. Results
3.1. Robustness Study of the Examined Neural Network Structures
3.2. Overfitting and Underfitting Study of the Examined Neural Network Structures
3.3. Identification of the Best Possible Mathematical Relationship of
3.3.1. The Best Relation Obtained
4. Discussion
- (a)
- statistical analysis of data;
- (b)
- increased performance as higher precision means larger savings of energy;
- (c)
- the best model of the analyzed room.
5. Future Research Program
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bomberg, M.; Romanska-Zapala, A.; Yarbrough, D. Journey of American Building Physics: Steps leading to the current scientific revolution. Energies 2020, 13, 1027. [Google Scholar] [CrossRef] [Green Version]
- Romanska-Zapala, A.; Bomberg, M.; Fedorczak-Cisak, M.; Furtak, M.; Yarbrough, D.; Dechnik, M. Buildings with environmental quality management, part 2: Integration of hydronic heating/cooling with thermal mass. J. Build. Phys. 2018, 41, 397–417. [Google Scholar] [CrossRef]
- Yarbrough, D.; Bomberg, M.; Romanska-Zapala, A. Buildings with environmental quality management, part 3: From log houses to environmental quality management zero-energy buildings. J. Build. Phys. 2019, 42, 672–691. [Google Scholar] [CrossRef]
- Romanska-Zapala, A.; Bomberg, M.; Yarbrough, D. Buildings with environmental quality management: Part 4: A path to the future NZEB. J. Build. Phys. 2018, 43, 3–21. [Google Scholar] [CrossRef]
- Romanska-Zapala, A.; Dudek, P.; Górny, M.; Dudzik, M. Modular Statistical System for an Integrated Environmental Control. In Proceedings of the NSB 2020 Conference Proceed, Tallinn, Estonia, 6–9 September 2020. [Google Scholar]
- Romanska-Zapala, A.; Bomberg, M. Can Artificial Neuron Networks be used for Control of HVAC in Environmental Quality Management Systems? In Proceedings of the CESBE Conference, Prague, Czech Republic, 3 July 2019. [Google Scholar]
- Yarbrough, D.; Bomberg, M.; Romanska-Zapala, A. On the Next Generation of Low Energy Buildings, Advances in Building Energy Research. In Building Energy Research; Taylor and Francis Publishers: Abington on Thames, UK, 2019. [Google Scholar] [CrossRef]
- Fadiejev, J.; Simonson, R.; Kurnitski, J.; Bomberg, M. Thermal mass and energy recovery utilization for peak load reduction. Energy Proc. 2017, 132, 38–42. [Google Scholar] [CrossRef]
- Bomberg, M.; Romanska-Zapala, A.; Yarbrough, D. Toward affordable retrofitting methods to reduce impact of residential buildings on the climate change. J. Sustain. 2020, in press. [Google Scholar]
- Piasecki, M.; Fedorczak-Cisak, M.; Furtak, M.; Biskupski, J. Experimental Confirmation of the Reliability of Fanger's Thermal Comfort Model Case Study of a Near-Zero Energy Building (NZEB) Office Building. Sustainability 2019, 11, 2461. [Google Scholar] [CrossRef] [Green Version]
- Fedorczak-Cisak, M.; Knap, K.; Kowalska-Koczwara, A.; Pachla, F.; Pekarchuk, O. Energy and Cost Analysis of Adapting an Existing Building to 2017 Technical Requirements and Requirements for NZEB, 3RD World Multidisciplinary Civil Engineering, Architecture. In Proceedings of the Urban Planning Symposium (WMCAUS 2018), Prague, Czech Republic, 18–22 June 2018; IOP Conference Series-Materials Science and Engineering. Volume 471. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Furtak, M.; Gintowt, J.; Kowalska-Koczwara, A.; Pachla, F.; Stypula, K.; Tatara, T. Thermal and Vibration Comfort Analysis of a Nearly Zero-Energy Building in Poland. Sustainability 2018, 10, 3774. [Google Scholar] [CrossRef] [Green Version]
- Fedorczak-Cisak, M.; Furtak, M. Multicriteria and Multilevel Optimization Tasks Application to Choose Building Energy Standard. In Proceedings of the CESB 10 Conference: Central Europe Towards Sustainable Building—From Theory to Practice, Prague, Czech Republic, 30 June–2 July 2010; pp. 251–254. [Google Scholar]
- Radziszewska-Zielina, E.; Kania, E.; Śladowski, G. Problems of the Selection of Construction Technology for Structures of Urban Agglomeration’s. Archiv. Civil. Eng. 2018, 64, 55–71. [Google Scholar] [CrossRef]
- Sun, Y.; Haghighat, F.; Fung, B.C. Fung, A review of the-state-of-the-art in data-driven approaches for building energy prediction. Energy Build. 2020, 221, 110022. [Google Scholar] [CrossRef]
- Mohamed Sahari, K.S.; Abdul Jalal, M.F.; Homod, R.Z.; Eng, Y.K. Dynamic Indoor Thermal Comfort Model Identification Based on Neural Computing PMV Index. In Proceedings of the 4th International Conference on Energy and Environment 2013 (ICEE2013), Putrajaya, Malaysia, 5–6 March 2013. [Google Scholar]
- Kim, J.; Zhou, Y.; Schiavon, S.; Raftery, P.; Brager, G. Personal comfort models: Predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning. Build. Environ. 2018, 129, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Von Grabe, J. Potential of artificial neural networks to predict thermal sensation votes. Appl. Energy 2016, 161, 412–424. [Google Scholar] [CrossRef]
- Zocca, V.; Spacagna, G.; Slater, D.; Roelants, P. Python Deep Learning; Packt Publishing: Birmingham, UK, 2017; ISBN1 1786464454. ISBN2 978-1786464453. [Google Scholar]
- Buratti, C.; Vergoni, M.; Palladino, D. Thermal Comfort Evaluation within Non-Residential Environments: Development of Artificial Neural Network by Using the Adaptive Approach Data, 6th Intertional Building Physics Conference, IBPC 2015. Energy Proc. 2015, 78, 2875–2880. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, P.M.; Silva, S.M.; Ruano, A.E.; Negrier, A.T.; Conceicao, E.Z. Neural Network PMV Estimation for Model-Based Predictive Control of HVAC Systems. In Proceedings of the 2012 International Joint Conference on Neural Networks, Brisbane, Australia, 10–15 June 2012; pp. 15–22. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Lian, Z.; Zhao, B. A neural network evaluation model for individual thermal comfort. Energy Build. 2007, 39, 1115–1122. [Google Scholar] [CrossRef]
- Latka, D.; Matysek, P. The Estimation of Compressive Stress Level in Brick Masonry Using the Flat-jack Method. In Proceedings of the Intertional Conference on Analytical Models and New Concepts in Concrete and Masonry Structures, Gliwice, Poland, 5–7 June 2017; pp. 266–272. [Google Scholar] [CrossRef]
- Sikorski, A. Bezpośrednia Regulacja Momentu i Strumienia Maszyny Indukcyjnej; Politechniki Białostockiej: Bialystok, Poland, 2009; Volume 19, ISBN1 8360200742. ISBN2 9788360200742. [Google Scholar]
- Fedorczak-Cisak, M.; Kwasnowski, P.; Furtak, M.; Hayduk, G. Design, Specification and Construction of Specialized Measurement System in the Experimental Building. In Proceedings of the 2th World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS 2017), Prague, Czech Republic, 12–16 June 2017; IOP Conference Series-Materials Science and Engineering. Volume 245. Article Number: UNSP 072042. [Google Scholar] [CrossRef]
- Romańska-Zapała, A.; Bomberg, M.; Dechnik, M.; Fedorczak-Cisak, M.; Furtak, M. On Preheating of the Outdoor Ventilation Air. Energies 2020, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Romańska-Zapała, A.; Furtak, M.; Dechnik, M.; Grzywocz, K. Multi-source cooling System Control in the MLBE Building—A Pilot Experimental Study. In Proceedings of the 4th World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS 2019), Prague, Czech Republic, 17–21 June 2019; IOP Conference Series: Materials Science and Engineering. Volume 603. [Google Scholar] [CrossRef]
- Romańska-Zapała, A.; Furtak, M.; Fedorczak-Cisak, M.; Dechnik, M.; Grzywocz, K. Possibilities of Energy Efficiency Experimental Research Using MLBE Building's Automation and Control System. In Proceedings of the 4th World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS 2019), Prague, Czech Republic, 17–21 June 2019; IOP Conference Series: Materials Science and Engineering. Volume 603. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Nowak, K.; Furtak, M. Analysis of the effect of using external venetian blinds on the thermal comfort of users of highly glazed office rooms in a transition season of temperate climate—Case study. Energies 2020, 13, 81. [Google Scholar] [CrossRef] [Green Version]
- Dudzik, M.; Dechnik, M.; Furtak, M. Application of Neural Networks to Lighting Systems. In Proceedings of the CESBE Conference, Prague, Czech Republic, 3 July 2019. [Google Scholar]
- Romanska-Zapala, A.; Furtak, M.; Fedorczak-Cisak, M.; Dechnik, M. Cooperation of a Horizontal Ground Heat Exchanger with a Ventilation Unit During Winter: A Case Study on Improving Building Energy Efficiency. In Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium (WMCAUS 2018), Prague, Czech Republic, 18–22 June 2018; IOP Conference Serie Materials Science and Engineering. p. 471. [Google Scholar] [CrossRef]
- Dechnik, M.; Grzywocz, K.; Romańska-Zapała, A. Współpraca Centrali Wentylacyjnej z Regulatorami Zmiennego Przepływu Powietrza VAV. Napędy i Sterowanie 2017, 19, 70–75. [Google Scholar]
- Romanska-Zapala, A. Experiment Results of Building Integrated Control System—Case Study. In Proceedings of the Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP), Krakow, Poland, 13–15 June 2016; ISBN 978-1-5090-4196-1. [Google Scholar]
- Piasecki, M.; Kostyrko, K.; Fedorczak-Cisak, M.; Nowak, K. Air Enthalpy as an IAQ Indicator in Hot and Humid Environment-experimental Evaluation. Energies 2020, 13, 1481. [Google Scholar] [CrossRef] [Green Version]
- Radziszewska-Zielina, E.; Rumin, R. Analysis of investment profitability in renewable energy sources as exemplified by a semi-detached house. In Proceedings of the International Conference on the Sustainable Energy and Environment Development (SEED 2016), Krakow, Poland, 17–19 May 2016. [Google Scholar]
- Radziszewska-Zielina, E.; Kania, E. Problems in Carrying Out Construction Projects in Large Urban Agglomerations on the Example of the Construction of the Axis and High5ive Office Buildings in Krakow. In Proceedings of the XXVI Russian-Slovak-Polish Seminar 2017 Theoretical Foundation of Civil Engineering, Matec Web of Conferences, Warsaw, Poland, 21–25 August 2017. [Google Scholar]
- Fedorczak-Cisak, M.; Furtak, M.; Hayduk, G.; Kwasnowski, P. Energy Analysis and Cost Efficiency of External Partitions in Low Energy Buildings. In Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium (Wmcaus 2018), Prague, Czech Republic, 18–22 June 2018. [Google Scholar]
- Kwasnowski, P.; Fedorczak-Cisak, M.; Knap, K. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings. Proceedings of 2nd World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium (WMCAUS 2017), Prague, Czech Republic, 12–16 June 2017. [Google Scholar]
- Schönenberger, P. eu.bac System. Energy Build. 2015, 100, 16–19. [Google Scholar] [CrossRef]
- Liu, P.; Lin, B.; Wu, X.; Zhou, H. Bridging energy performance gaps of green office buildings via more targeted opns management: A system dynamics approach. J. Environ. Manag. 2019, 238, 64–71. [Google Scholar] [CrossRef]
- Mancini, F.; Lo Basso, G.; de Santoli, L. Energy Use in Residential Buildings: Impact of Building Automation Control Systems on Energy performance and Flexibility. Energies 2019, 12, 2896. [Google Scholar] [CrossRef] [Green Version]
- Dudzik, M.; Stręk, A.M. ANN Architecture Specifications for Modelling of Open-Cell Aluminum under Compression. Mat. Probl. Eng. 2020, 2020, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, K. Special signals in the Calibration of Systems for Measuring Dynamic Quantities. Measurement 2014, 49, 148–152. [Google Scholar] [CrossRef]
- Layer, E.; Tomczyk, K. Determination of Non-Standard Input Signal Maximizing the Absolute Error. Metrol. Meas. Syst. 2009, 17, 199–208. [Google Scholar]
- Dudzik, M.; Stręk, A.M. ANN model of stress-strain relationship for aluminum sponge in uniaxial compression. J. Theor. Appl. Mech. 2020, 58, 385–390. [Google Scholar] [CrossRef]
- Tomczyk, K.; Piekarczyk, M.; Sokal, G. Radial Basis Functions Intended to Determine the Upper Bound of Absolute Dynamic Error at the Output of Voltage-Mode Accelerometers. Sensors 2019, 19, 4154. [Google Scholar] [CrossRef] [Green Version]
- Szymenderski, J.; Machczynski, W.; Budnik, K. Modeling Effects of Stochastic Stray Currents from DC Traction on Corrosion Hazard of Buried Pipelines. Energies 2019, 12, 4570. [Google Scholar] [CrossRef] [Green Version]
- Krol, K.; Machczynski, W.; Budnik, K.; Szymenderski, J. Optimization of Electric Field Intensities Produced by Power Lines Using Particle Swarm Algorithms. In Proceedings of the Computer Applications in Electrical, Engineering (Zkwe'2019), Poznań, Poland, 5 April 2019. [Google Scholar]
- Gierz, L.; Wojcieszak, D.; Szymenderski, J.; Staszak, Z.; Marcinkiewicz, J. A Method and a Station for Measurement of the Aerodynamic Properties of Crop Seeds. In Proceedings of the 24th Scientific Conference on Computer Applications in Electrical Engineering (ZKwE'2019), Svratka, Czech Republic, 14–17 May 2018. [Google Scholar]
- Tomczyk, K. Levenberg-Marquardt Algorithm for Optimization of Mathematical Models according to Minimax Objective Function of Meas. Systems. Metrol. Meas. Syst. 2009, 16, 599–606. [Google Scholar]
- Tomczyk, K. Impact of Uncertainties in Accelerometer Modeling on the Maximum Values of Absolute Dynamic Error. Measurement 2019, 80, 71–78. [Google Scholar] [CrossRef]
- Madsen, K.; Nielsen, H.B.; Tingleff, O. Methods for Non-Linear Least Squares Problems. In Informatics and Mathematical Modelling Tech. Uni. Denmark, 2nd ed.; April 2004; Available online: http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/imm3215.pdf (accessed on 15 October 2018).
- Hagan, M.T.; Demuth, H.B.; Beale, M.H.; De Jesus, O. Neural Network Design, 2nd ed.; Oklahoma State University: Stillwater, OK, USA, 2014; ISBN 978-0971732117. [Google Scholar]
- Dudzik, M.; Drapik, S.; Jagiello, A.; Prusak, J. The Selected Real Tramway Substation Overload Analysis Using the Optimal Structure of an Artificial Neural Network. In Proceedings of the Intertional Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018. WOS:000445031300069. [Google Scholar]
- Dudzik, M. Współczesne Metody Projektowania, Weryfikacji Poprawności i Modelowania Zjawisk Trakcji Elektrycznej; PK publishing house: Cracow, Poland, 2018; Monograph, Cracow Univesity of Technology, Inżynieria Elektryczna i Komputerowa; ISBN 978-83-65991-28-7. [Google Scholar]
- Famili, A.; Shen, W.-M.; Weber, R.; Simoudis, E. Data preprocessing and intelligent data analysis. Intell. Data Anal. 1997, 1, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Szymenderski, J.; Gierz, L.; Wojcieszak, D.; Koszela, K. Testing of Electrical Signals from Piezoelectric Sensors in Application for Counting Grains in Seeding Machine. In Proceedings of the 19th International Conference Computational Problems of Electrical Engineering (CPEE), Banska Stavnica, Slovakia, 9–12 September 2018. [Google Scholar]
- Dudzik, M.; Mielnik, R.; Wrobel, Z. Preliminary Analysis of the Effectiveness of the Use of Artificial Neural Networks for Modelling Time-voltage and Time-current Signals of the Combination Wave Generator. In Proceedings of the 2018 International symposium on power electronics, electrical drives, automation and motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018. WOS:000445031300179. [Google Scholar]
- Jagiełło, A.S.; Chrabąszcz, I.; Drapik, S.; Dudzik, M.; Kobielski, A.; Prusak, J. System do Aktywnej Regulacji Obciążenia Zespołów Prostownikowych Kolejowej Podstacji Trakcyjnej i Sposób Aktywnej Regulacji Obciążenia Zespołów Prostownikowych Kolejowej Podstacji Trakcyjnej. Patent numer patentu PL229681 B1, 31 August 2018. Numer zgłoszenia 411511. [Google Scholar]
Learning Parameter | Value |
---|---|
performance function goal | 0 |
minimum performance gradient | 10−10 |
maximum validation failures | 12 |
maximum number of epochs to train | 100,000 |
learning rate | 0.01 |
momentum | 0.9 |
8 | 13 | 14 | |
---|---|---|---|
0.0164 | 0.0105 | 0.0228 | |
0.0192 | 0.0300 | 0.0280 | |
0.0224 | 0.0242 | 0.0191 | |
0.0401 | 0.0145 | 0.0290 | |
0.0159 | 0.0194 | 0.0194 |
R2 | Value |
---|---|
Training stage | 0.99818 |
Validation stage | 0.99718 |
Testing stage | 0.99740 |
All data | 0.99782 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dudzik, M.; Romanska-Zapala, A.; Bomberg, M. A Neural Network for Monitoring and Characterization of Buildings with Environmental Quality Management, Part 1: Verification under Steady State Conditions. Energies 2020, 13, 3469. https://doi.org/10.3390/en13133469
Dudzik M, Romanska-Zapala A, Bomberg M. A Neural Network for Monitoring and Characterization of Buildings with Environmental Quality Management, Part 1: Verification under Steady State Conditions. Energies. 2020; 13(13):3469. https://doi.org/10.3390/en13133469
Chicago/Turabian StyleDudzik, Marek, Anna Romanska-Zapala, and Mark Bomberg. 2020. "A Neural Network for Monitoring and Characterization of Buildings with Environmental Quality Management, Part 1: Verification under Steady State Conditions" Energies 13, no. 13: 3469. https://doi.org/10.3390/en13133469
APA StyleDudzik, M., Romanska-Zapala, A., & Bomberg, M. (2020). A Neural Network for Monitoring and Characterization of Buildings with Environmental Quality Management, Part 1: Verification under Steady State Conditions. Energies, 13(13), 3469. https://doi.org/10.3390/en13133469