Evaluation of New Harvesting Methods to Reduce Weeds on Arable Fields and Collect a New Feedstock
Abstract
:1. Introduction
- Concept 1: Heat treatment of weed seeds during harvesting.
- Concept 2: Use of the total harvest
- Concept 3: Partial harvest
2. Materials and Methods
2.1. Weed Species
2.2. Estimation of Harvestable Weed Seeds
2.3. Field Tests with Wheat Chaff
2.4. Thermal Treatment of Seeds
2.4.1. Simulation of Heat Transfer to Model Seeds
2.4.2. Heating Chaff Containing Seeds of Centaurea cyanus L. with Exhaust Gas
3. Results
3.1. Estimation of Harvestable Weed Seeds
3.2. Field Experiment with Wheat Chaff
3.2.1. Sieving of Chaff (2016)
3.2.2. Chaff Deposition on the Straw Swath (2017)
3.3. Simulation Study
3.4. Heating Chaff Containing Seeds of Centaurea Cyanus with Exhaust Gas
4. Discussion
4.1. Estimation of Harvestable Weed Seeds
4.2. Field Experiment with Wheat Chaff
4.3. Thermal Treatment of Seeds
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peterson, M.; Collavo, A.; Ovejero, R.; Shivrain, V.; Walsh, M. The challenge of herbicide resistance around the world: A current summary. Pest Manag. Sci. 2018, 74, 2246–2259. [Google Scholar] [CrossRef]
- Heap, I. The International Survey of Herbicide Resistant Weeds, Online, Internet, Tuesday. 16 January 2018. Available online: www.weedscience.org (accessed on 20 December 2018).
- Andreasen, C.; Streibig, J.C. Evaluation of changes in weed flora in arable fields of Nordic countries—Based on Danish long-term surveys. Weed Res. 2010, 51, 214–226. [Google Scholar] [CrossRef]
- Duke, S.O. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef]
- Anon. European Parliament Resolution of 13 September 2018 on the Implementation of the Plant Protection Products Regulation (EC) No 1107/2009 (2017/2128(INI)). Available online: http://www.europarl.europa.eu/doceo/document/TA-8-2018-0356_EN.html?redirect (accessed on 2 May 2019).
- Andreasen, C.; Stryhn, H. Increasing weed flora in Danish beet, pea and winter barley fields. Crop Prot. 2012, 36, 11–17. [Google Scholar] [CrossRef]
- Andreasen, C.; Stryhn, H. Increasing weed flora on Danish arable fields and its importance for biodiversity. Weed Res. 2008, 48, 1–9. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change (ICCP). Special Report, Global Warming at 5 °C. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 20 December 2018).
- Weiser, C.; Zeller, V.; Reinicke, F.; Wagner, B.; Majer, S.; Vetter, A.; Thraen, D. Integrated assessment of sustainable cereal straw potential and different straw-based energy applications in Germany. Appl. Energy 2014, 114, 749–762. [Google Scholar] [CrossRef]
- McCartney, D.; Block, H.; Dubeski, P.; Ohama, A. Review: The composition and availability of straw and chaff from small grain cereals for beef cattle in western Canada. Can. J. Anim. Sci. 2006, 8, 443–455. [Google Scholar] [CrossRef]
- EUROSTAT. Wheat and Spelt by Area, Production and Humidity. 2018. Available online: http://ec.europa.eu/eurostat/tgm/refreshTableAction.do;jsessionid=eH4_MMw5my4ZJsLm9XGH-vHfBwdwl57X2k8Dc6MFqgjMIlC62ouD!1614172686?tab=table&plugin=1&pcode=tag00047&language=en (accessed on 21 December 2018).
- Kiš, D.; Jovičić, N.; Matin, A.; Kalmbura, S.; Vila, S.; Guerac, S. Energy value of agricultural spelt residue (Triticum spelta L.)—Forgotten cultures. Tech. Gaz. 2017, 24, 369–373. [Google Scholar]
- Wiwart, W.; Bytner, M.; Graban, L.; Lajszner, W.; Suchowilska, E. Spelt (Triticum spelta) and Emmer (T. dicoccon) Chaff Used as Renewable Source of Energy. BioResources 2017, 12, 3744–3750. [Google Scholar] [CrossRef]
- Grube, J.; Böckelmann, M. The harvest home and dry—Key figures for grain drying. Landtechnik 2011, 66, 276–281. [Google Scholar]
- Walsh, A.; Harrington, R.; Powles, S. Harrington Seed Destructor: A new nonchemical weed control tool for global grain crops. Crop Sci. 2012, 52, 1343–1347. [Google Scholar] [CrossRef]
- Walsh, M.; Newman, P. Burning narrow windrows for weed seed destruction. Field Crops Res. 2007, 104, 24–30. [Google Scholar] [CrossRef]
- Walsh, M.; Ouzman, J.; Newman, P.; Powles, S.; Llewellyn, R. High levels of adoption indicate that harvest weed seed control is now an established weed control practice in Australian cropping. Weed Technol. 2017, 31, 341–347. [Google Scholar] [CrossRef]
- McLeod, R. Harvesting System and Method. Patent CA2180691C, 8 July 1996. [Google Scholar]
- Rumpler, J. Method and Device for Harvesting Threshed Crops. Patent US8961286B2, 19 March 2010. [Google Scholar]
- Clayton, W.D.; Vorontsova, M.; Harman, K.T.; Williamson, H.; Bromus Hordeaceus. GrassBase—The Online World Grass Flora. 2018. Available online: https://www.kew.org/data/grasses-db/www/imp01633.htm (accessed on 21 December 2018).
- Moore, R.J. The biology of Canadian weeds. 13. Cirsium arvense (L.) Scop. Can. J. Bot. 1975, 55, 1033–1048. [Google Scholar] [CrossRef]
- Malik, N.; Vandenborn, W.H. The biology of Canadian weeds. 86. Galium aparine L. and Galium spurium L. Can. J. Plant Sci. 1988, 68, 481–499. [Google Scholar] [CrossRef]
- SAS Institute 2019. Available online: http://support.sas.com/software/94/index.html (accessed on 10 January 2018).
- Kwon, Y.M.; Bang, H. The Finite Element Method Using Matlab, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2000; p. 624. ISBN 978-1-42-004188-0. [Google Scholar]
- Baker, K.F. Principles of heat treatment of soil and planting material. J. Aust. Inst. Agric. Sci. 1962, 28, 118–126. [Google Scholar]
- Van Loenen, M.C.A.; Turbett, Y.; Mullins, C.E.; Wilson, M.J.; Feilden, N.; Seel, W.E. Low Temperature/Short Duration Steaming as a Sustainable Method of Soil Disinfection. In Proceedings of the UK Organic Research 2002 Conference, Aberystwyth, UK, 26–28 March 2002; pp. 211–214. [Google Scholar]
- Andreasen, C.; Bitarafan, Z.; Fenselau, J.; Glasner, C. Exploiting waste heat from combine harvesters to damage harvested weed seeds and reduce weed Infestation. Agriculture 2018, 8, 42. [Google Scholar] [CrossRef]
- Holm-Nielsen, C. Frø Fra Det Dyrkede Land. Forskningscenter Flakkebjerg; Ministeriet for Fødevare, Landbrug or Fiskeri: Frederiksberg, Denmark, 1998. [Google Scholar]
- DMI, Vejrarkiv 2018. Available online: https://www.dmi.dk/vejr/arkiver/ (accessed on 2 May 2019).
- Bitarafan, Z.; Andreasen, C. Seed production and shedding of Alopecurus myosuroides (blackgrass) and Apera spica-venti (windgrass) and its importance for weed seed harvest control. Weed Sci. 2019. submitted. [Google Scholar]
- Walsh, M.J.; Powles, S.B. Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol. 2007, 21, 331–338. [Google Scholar] [CrossRef]
- Blanco-Moreno, J.M.; Chamorro, L.; Masalles, R.M.; Recasens, J.; Sans, F.-X. Spatial distribution of Lolium rigidum seedling following seed dispersal by combine harvesters. Weed Res. 2004, 44, 375–387. [Google Scholar] [CrossRef]
- Barroso, J.; Navarrete, L.; Sanchez Del Arco, M.J.; Fernandez-Quintanilla, C.; Lutman, P.J.W.; Perry, N.H.; Hull, R.I. Dispersal of Avena fatua and Avena sterilis patches by natural dissemination, soil tillage and combine harvesters. Weed Res. 2006, 46, 118–128. [Google Scholar] [CrossRef]
- Shirtliffe, S.J.; Entz, M.H.; Van Acker, R.C. Avena fatua development and seed shatter as related to thermal time. Weed Sci. 2000, 48, 555–560. [Google Scholar] [CrossRef]
- Feldman, M.; Reed, W.B. Distribution of wild oat seeds during cereal crop swathing and combining. In Proceedings of the Annual meeting of the Canadian Society of Agricultural Engineering, Quebec City, QC, Canada, 4–8 August 1974; pp. 1–10. [Google Scholar]
- Balsari, P.; Finassi, A.; Airoldi, G. Development of a device to separate weed seeds harvested by a combine and reduce their degree of germination. In Proceedings of the 12th World Congress of the International Commission of Agricultural Engineers, Milano, Italy, 28 August–1 September 1994; pp. 562–573. [Google Scholar]
- Weiß, B.; Glasner, C. Evaluation of the process steps of pretreatment, pellet production and combustion for an energetic utilization of wheat chaff. Front. Environ. Sci. Agroecol. Land Use Syst. 2018. [Google Scholar] [CrossRef]
- Lee, K.E.; Pankhurst, C.E. Soil organisms and sustainable productivity. Aust. J. Soil Res. 1992, 30, 855–892. [Google Scholar] [CrossRef]
- Jakobsen, K.; Jensen, J.A.; Bitarafan, Z.; Andreasen, C. Killing weed seeds with exhaust gas from a combine harvester. Crop Prot. 2019. Submitted. [Google Scholar]
Cut-off | <1.0 mm | <1.4 mm | <2.0 mm | <4.0 mm | >4.0 mm |
---|---|---|---|---|---|
w/w | 41% | 12% | 14% | 33% | 0% |
Sieving of Sample | Sieving of mmedium | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | |||||||||
Replica | Sample | mfine | mmedium | mcoarse | mA | mB | nB | mC | nC | mD | nD | Number of A. myosuroides seeds |
[g] | [g] | [g] | [g] | [g] | - | [g] | - | [g] | - | - | ||
1 | Chaff | 4.2 | 217 | 1203 | 36.1 | 0.3 | 74 | 1.0 | 284 | 1.0 | 70 | 428 |
Straw | 52 | 238 | 5380 | |||||||||
Material under swath | 4.3 | 64 | 570 | 38.8 | 0.2 | 64 | 0.5 | 82 | 0.5 | 27 | 173 | |
2 | Chaff | 4.8 | 208 | 1150 | 37.3 | 0.6 | 144 | 0.8 | 188 | 0.7 | 52 | 384 |
Straw | 36 | 110 | 5792 | 35.3 | 0.8 | 165 | 1.6 | 203 | 1.0 | 368 | ||
Material under swath | 2.8 | 46 | 375 | 38.9 | 0.2 | 70 | 0.7 | 99 | 0.4 | 19 | 188 | |
3 | Chaff | 7.1 | 288 | 1478 | 33.9 | 0.3 | 79 | 1.3 | 377 | 1.1 | 77 | 533 |
Straw | 56 | 171 | 4927 | 36.6 | 0.6 | 118 | 1.3 | 163 | 0.6 | 281 | ||
Material under swath | 4.2 | 87.3 | 502 | 36.8 | 0.2 | 52 | 0.8 | 118 | 0.5 | 28 | 198 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glasner, C.; Vieregge, C.; Robert, J.; Fenselau, J.; Bitarafan, Z.; Andreasen, C. Evaluation of New Harvesting Methods to Reduce Weeds on Arable Fields and Collect a New Feedstock. Energies 2019, 12, 1688. https://doi.org/10.3390/en12091688
Glasner C, Vieregge C, Robert J, Fenselau J, Bitarafan Z, Andreasen C. Evaluation of New Harvesting Methods to Reduce Weeds on Arable Fields and Collect a New Feedstock. Energies. 2019; 12(9):1688. https://doi.org/10.3390/en12091688
Chicago/Turabian StyleGlasner, Christoph, Christopher Vieregge, Josef Robert, Johanna Fenselau, Zahra Bitarafan, and Christian Andreasen. 2019. "Evaluation of New Harvesting Methods to Reduce Weeds on Arable Fields and Collect a New Feedstock" Energies 12, no. 9: 1688. https://doi.org/10.3390/en12091688