Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars
Abstract
:1. Introduction
1.1. Sewage Sludge Management
1.2. Torrefaction
1.3. Sewage Sludge Torrefaction
1.4. Objectives
2. Materials and Methods
2.1. Sewage Sludge
2.2. Experimental Apparatus
2.3. Torrefaction
2.4. Sewage Sludge and Biochar Analyses
2.5. Data Analyses
3. Results and Discussion
3.1. Sewage Sludge Mass Loss during Torrefaction
3.2. Sewage Sludge Torrefaction Kinetics
3.3. Torrefied Sewage Sludge Fuel Properties
5. Conclusions
- The activation energy (12 kJ·mol−1) of sewage sludge with high ash content in the torrefaction process was ~6-fold lower than reported for sewage sludge with 3~4-fold lower ash content. Further investigation on the influence of ash content of sewage sludge kinetics should be continued;
- Torrefaction temperature above 260 °C resulted in rapid organic matter loss, decreased HHV and LHV to values >6.5 and 6.1 MJ·kg−1, respectively, and increased ash content >64%. SS with high initial ash content is not suitable for the production of quality fuel when torrefaction temperatures are >240 °C.
- Low-temperature torrefaction (< 240 °C) might still be useful for further sewage sludge (with high ash content) stabilization (e.g., dewatering and hygienization), and consideration for energy recovery from resulting biochar.
Author Contributions
Funding
Conflicts of Interest
References
- Piecuch, T.; Dąbrowski, J. Conceptual project of construction of waste incineration plant for Połczyn Zdrój municipality. Annu. Set Environ. Prot. 2014, 16, 196–222. [Google Scholar]
- Bianchini, A.; Bonfiglioli, L.; Pellegrini, M.; Saccani, C. Sewage sludge management in Europe: A critical analysis of data quality. Int. J. Environ. Waste Manag. 2016, 18, 226–238. [Google Scholar] [CrossRef]
- Kelessidis, A.; Stasinakis, A.S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag. 2012, 32, 1186–1195. [Google Scholar] [CrossRef] [PubMed]
- Herzel, H.; Krüger, O.; Hermann, L.; Adam, C. Sewage sludge ash—A promising secondary phosphorus source for fertilizer production. Sci. Total Environ. 2015, 542, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Environment. Central Statistical Office of Poland. 2018. Available online: https://stat.gov.pl/en/topics/environment-energy/environment/environment-2018,1,10.html (accessed on 21 January 2019).
- Alabaster, G.P.; LeBlanc, R.J. Global Atlas of Excreta, Wastewater Sludge, and Biosolids Management; LeBlanc, R.J., Matthews, P., Richard, R.P., Eds.; United Nations Human Settlements Programme: Nairobi, Kenya, 2008; pp. 307–352. ISBN 978-92-1-132009-1. [Google Scholar]
- Atienza-Martínez, M.; Fonts, I.; Ábrego, J.; Ceamanos, J.; Gea, G. Sewage sludge torrefaction in a fluidized bed reactor. Chem. Eng. J. 2013, 222, 534–545. [Google Scholar] [CrossRef]
- Mimmo, T.; Panzacchi, P.; Baratieri, M.; Davies, C.A.; Tonon, G. Effect of pyrolysis temperature on miscanthus (Miscanthus × giganteus) biochar physical, chemical and functional properties. Biomass Bioenergy 2014, 62, 149–157. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Bergman, P.C.A.; Kiel, J.H.A. Torrefaction for biomass upgrading. In Proceedings of the 14th European Biomass Conference & Exhibition, Paris, France, 17–21 October 2005. [Google Scholar]
- Ciolkosz, D.; Wallace, R. A review of torrefaction for bioenergy feedstock production. Biofuels Bioprod. Biorefin. 2011, 5, 317–329. [Google Scholar] [CrossRef]
- Lipinsky, E.S.; Arcate, J.R.; Reed, T.B. Enhanced wood fuels via torrefaction. Fuel Chem. Div. Prepr. 2002, 4, 408–410. [Google Scholar]
- Bergman, P.C.A. Combined Torrefaction and Pelletisation—The TOP Process; ECN Report, ECN-C-05-073; ECN: Petten, The Netherlands, 2005. [Google Scholar]
- Prins, M.J. Thermodynamic Analysis of Biomass Gasification and Torrefaction. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2005. [Google Scholar]
- Bridgeman, T.G.; Jones, J.M.; Williams, A.; Waldron, D.J. An investigation of the grindability of two torrefied energy crops. Fuel 2010, 89, 3911–3918. [Google Scholar] [CrossRef] [Green Version]
- Phanphanich, M.; Mani, S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour. Technol. 2011, 102, 1246–1253. [Google Scholar] [CrossRef] [PubMed]
- Bridgeman, T.G.; Jones, J.M.; Shield, I.; Williams, P.T. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008, 87, 844–856. [Google Scholar] [CrossRef]
- Białowiec, A.; Micuda, M.; Koziel, J.A. Waste to carbon: Densification of torrefied refuse-derived fuels. Energies 2018, 11, 3233. [Google Scholar] [CrossRef]
- Wannapeera, J.; Fungtammasan, B.; Worasuwannarak, N. Effects of temperature and holding time during torrefaction on the pyrolysis behaviors of woody biomass. J. Anal. Appl. Pyrol. 2011, 92, 99–105. [Google Scholar] [CrossRef]
- Eseltine, D.; Sankar Thanapal, S.; Annamalai, K.; Ranjan, D. Torrefaction of woody biomass (Juniper and Mesquite) using inert and non-inert gases. Fuel 2013, 113, 379–388. [Google Scholar] [CrossRef]
- Verhoeff, F.; Arnuelos, A.A.; Boersma, R.; Pels, J.R.; Lensselink, J.; Kiel, J.H.A.; Schukken, H. Torrefaction Technology for the Production of Solid Bioenergy Carriers from Biomass and Waste; ECN-E-11-039; ECN: Petten, The Netherlands, 2011. [Google Scholar]
- Ratte, J.; Fardet, E.; Mateos, D.; Héry, J.S. Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYD column. Biomass Bioenergy 2011, 35, 3481–3495. [Google Scholar] [CrossRef]
- Montross, M.; Crofcheck, C. Energy Crops for the Production of Biofuels; in Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals. RSC Energy Environ. Ser. 2010. [Google Scholar] [CrossRef]
- Sohi, S.; Lopez-Capel, E.; Krull, E.; Bol, R. Biochar, climate change and soil: A review to guide future research. CSIRO Land Water Sci. Rep. Ser. 2009, 5, 17–31. [Google Scholar]
- Dhungana, A. Torrefaction of Biomass. Master’s Thesis, Dalhousie University, Halifax, NS, Canada, 2011. [Google Scholar]
- Poudel, J.; Ohm, T.; Lee, S.H.; Oh, S.C. A study on torrefaction of sewage sludge to enhance solid fuel qualities. Waste Manag. 2015, 40, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, D.; Gołaszewski, J. Thermal treatment of dewatered digestate for energy use. In Proceedings of the International Anaerobic Digestion Symposium at Biogas World 2013, Berlin, Germany, 23–25 April 2013. [Google Scholar]
- Białowiec, A.; Pulka, J.; Gołaszewski, J.; Manczarski, P.; Stępień, P. The RDF torrefaction: An effect of temperature on characterization of the product - Carbonized Derived Fuel. Waste Manag. 2017, 70, 91–100. [Google Scholar] [CrossRef]
- Poudel, J.; Ohm, T.; Oh, S.C. A study on torrefaction of food waste. Fuel 2015, 40, 275–281. [Google Scholar] [CrossRef]
- Karki, S.; Poudel, J.; Oh, S.C. Thermal pre-treatment of sewage sludge in a lab-scale fluidized bed for enhancing its solid fuel properties. Appl. Sci. 2018, 8, 183. [Google Scholar] [CrossRef]
- Hernandez, A.B.; Okonta, F.; Freeman, N. Sewage sludge charcoal production by N2- and CO2-torrefaction. J. Environ. Chem. Eng. 2017, 5, 4406–4414. [Google Scholar] [CrossRef]
- Atienza-Martínez, M.; Mastral, J.F.; Ábrego, J.; Ceamanos, J.; Gea, G. Sewage sludge torrefaction in an auger reactor. Energy Fuels 2014, 29, 160–170. [Google Scholar] [CrossRef]
- Huang, Y.F.; Sung, H.T.; Chiueh, P.T.; Lo, S.L. Co-torrefaction of sewage sludge and leucaena by using microwave heating. Energy 2016, 116, 1–7. [Google Scholar] [CrossRef]
- Bates, R.; Ghoniem, A. Biomass Torrefaction: Modeling of volatile and solid product evolution kinetics. Bioresour. Technol. 2012, 124, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Soria-Verdugo, A.; Goos, E.; García-Hernando, N. Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the Distributed Activation Energy Model. Fuel Process. Technol. 2015, 134, 360–371. [Google Scholar] [CrossRef] [Green Version]
- Sonobe, T.; Worasuwannarak, N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 2008, 87, 414–421. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, S.; Wang, J.; Ko, J.H. Pyrolysis kinetics of sewage sludge and its biochar characteristics. Process Saf. Environ. Prot. 2018, 115, 49–56. [Google Scholar] [CrossRef]
- Tang, S.; Zheng, C.; Zhang, Z. Effect of inherent minerals on sewage sludge pyrolysis: Product characteristics, kinetics and thermodynamics. Waste Manag. 2018, 80, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Stępień, P.; Pulka, J.; Serowik, M.; Białowiec, A. Thermogravimetric and calorimetric characteristics of alternative fuel in terms of its use in low-temperature pyrolysis. Waste Biomass Valor. 2018, 1–9. [Google Scholar] [CrossRef]
- Pulka, J.; Wiśniewski, D.; Gołaszewski, J.; Białowiec, A. Is the biochar produced from sewage sludge a good quality solid fuel? Arch. Environ. Prot. 2016, 42, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Van der Stelt, M.J.C.; Gerhauser, H.; Kiel, J.H.A.; Ptasinski, K.J. Biomass upgrading by torrefaction for the production of biofuels: A review. Biomass Bioenergy 2011, 35, 3748–3762. [Google Scholar] [CrossRef]
- Lim, D.-W.; Poudel, J.; Oh, S.C. A study on torrefaction characteristics of sewage sludge. Appl. Chem. Eng. 2014, 25, 510–514. [Google Scholar] [CrossRef]
- Bach, Q.V.; Tran, K.Q. Dry and wet torrefaction of woody biomass—A comparative study on combustion kinetics. Energy Procedia 2015, 75, 150–155. [Google Scholar] [CrossRef]
- Sarvaramini, A.; Assima, G.P.; Larachi, F. Dry torrefaction of biomass—Torrefied products and torrefaction kinetics using the distributed activation energy model. Chem. Eng. J. 2013, 229, 498–507. [Google Scholar] [CrossRef]
- Gašparovič, L.; Hrablay, I.; Vojteková, Z.; Jelemenský, L. Kinetic study of pyrolysis of waste water treatment plant sludge. Chem. Pap. 2011, 65, 139–146. [Google Scholar] [CrossRef]
- Jin, W.; Singh, K.; Zondlo, J. Pyrolysis kinetics of physical components of wood and wood-polymers using isoconversion method. Agriculture 2013, 3, 12–32. [Google Scholar] [CrossRef]
- Chen, W.H.; Kuo, P.C.; Liu, S.H.; Wu, W. Thermal characterization of oil palm fiber and eucalyptus in torrefaction. Energy 2014, 71, 40–48. [Google Scholar] [CrossRef]
- Peng, J.H.; Bi, X.T.; Lim, J.; Sokgansanj, S. Development of torrefaction kinetics for British Columbia softwoods. Int. J. Chem. React Eng. 2012, 10, 1542–6580. [Google Scholar] [CrossRef]
- Wilson, C.A.; Novak, J.T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009, 43, 4489–4498. [Google Scholar] [CrossRef] [PubMed]
- Magdziarz, A.; Werle, S. Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS. Waste Manag. 2014, 34, 174–179. [Google Scholar] [CrossRef] [PubMed]
Sewage Sludge Parameter | February | April | June | August | October | December | Mean ± SD |
---|---|---|---|---|---|---|---|
Ash content, % d.m. | 45.60 | 44.00 | 42.00 | 43.00 | 44.00 | 40.00 | 43.10 ± 1.93 |
pH | 8.50 | 8.70 | 8.70 | 8.30 | 8.30 | 8.30 | 8.47 ± 0.20 |
Dry mass, % | 18.40 | 19.00 | 19.00 | 19.00 | 19.00 | 16.00 | 18.40 ± 1.20 |
Organic matter, % d.m. | 54.40 | 56.00 | 58.00 | 53.00 | 56.00 | 60.00 | 56.23 ± 2.50 |
Ammonium nitrogen, % d.m. | 0.20 | 0.77 | 0.27 | 0.37 | 0.34 | 0.37 | 0.39 ± 0.20 |
Total nitrogen, % d.m. | 3.73 | 4.10 | 4.20 | 4.20 | 3.90 | 4.30 | 4.07 ± 0.22 |
Total phosphorus, % d.m. | 1.64 | 3.10 | 2.20 | 3.40 | 3.30 | 2.80 | 2.74 ± 0.69 |
Lead (Pb), mg·kg d.m. | 20.00 | 23.00 | 18.00 | 18.00 | 17.00 | 17.00 | 18.83 ± 2.32 |
Cadmium, (Cd) mg·kg−1 d.m. | 1.20 | 1.40 | 1.10 | 1.20 | 1.10 | 0.99 | 1.17 ± 0.14 |
Copper (Cu), mg·/kg−1 d.m. | 104.00 | 116.00 | 117.00 | 124.00 | 127.00 | 121.00 | 118.17 ± 8.08 |
Nickel (Ni), mg·kg−1 d.m. | 14.70 | 16.00 | 14.00 | 15.00 | 17.00 | 15.00 | 15.28 ± 1.06 |
Mercury (Hg), mg·kg−1 d.m. | 0.93 | 0.86 | 2.20 | 1.20 | 0.59 | 0.78 | 1.09 ± 0.58 |
Zinc (Zn), mg·kg−1 d.m. | 559.00 | 653.00 | 632.00 | 583.00 | 624.00 | 567.00 | 603.00 ± 38.51 |
Torrefaction Temperature, °C | Mass after Torrefaction, g | Mass Loss, % |
---|---|---|
200 | 2.03 ± 0.010 | 10% ± 0.44 |
220 | 2.05 ± 0.018 | 9% ± 0.81 |
240 | 2.01 ± 0.017 | 11% ± 0.77 |
260 | 1.98 ± 0.018 | 12% ± 0.79 |
280 | 1.95 ± 0.023 | 13% ± 1.02 |
300 | 1.81 ± 0.040 | 20% ± 1.79 |
Temperature, °C | Torrefaction Constant Rate (k) Mean ± SD, s−1 | Determination Coefficient (R2) | 1/T (K−1) | ln(k) | Activation Energy, J·mol−1 |
---|---|---|---|---|---|
200 | 4.02·10−5 ± 3.00·10−6 | 0.921 | 0.002114 | −10.122 | 12,007.91 |
220 | 2.82·10−5 ± 6.26·10−6 | 0.918 | 0.002028 | −10.475 | |
240 | 4.50·10−5 ± 4.76·10−6 | 0.863 | 0.001949 | −10.008 | |
260 | 4.57·10−5 ± 2.99·10−6 | 0.873 | 0.001876 | −9.993 | |
280 | 4.29·10−5 ± 6.46·10−6 | 0.845 | 0.001808 | −10.056 | |
300 | 6.71·10−5 ± 8.20·10−6 | 0.912 | 0.001745 | −9.610 |
Raw SS/SS Biochar | C% | H% | N% | S% | O% | H/C | O/C |
---|---|---|---|---|---|---|---|
Raw SS | 29.7 | 4.81 | 4.02 | 0.12 | 21.08 | 1.94 | 0.53 |
SS biochar 200 °C | 28.4 | 2.43 | 4.03 | 0.24 | 21.31 | 1.03 | 0.56 |
SS biochar 220 °C | 31.7 | 3.47 | 4.21 | 0.32 | 16.54 | 1.31 | 0.39 |
SS biochar 240 °C | 29.5 | 2.76 | 4.03 | 0.41 | 19.23 | 1.12 | 0.49 |
SS biochar 260 °C | 17.1 | 1.43 | 3.24 | 1.41 | 13.13 | 1.00 | 0.57 |
SS biochar 280 °C | 11.3 | 1.27 | 2.63 | 1.50 | 11.01 | 1.35 | 0.73 |
SS biochar 300 °C | 12.7 | 0.71 | 2.68 | 1.46 | 9.02 | 0.67 | 0.53 |
Raw SS/SS Biochar | Moisture, % | Volatiles, % | Ash, % | HHV, MJ·kg−1 | LHV, MJ·kg−1 |
---|---|---|---|---|---|
Raw (dry) SS | 7.1 | 59.7 | 40.3 | 13.503 | 12.279 |
SS biochar 200 °C | 2.2 | 56.4 | 43.6 | 12.950 | 12.366 |
SS biochar 220 °C | 3.0 | 56.2 | 43.8 | 13.204 | 12.373 |
SS biochar 240 °C | 2.0 | 55.9 | 44.1 | 13.403 | 12.752 |
SS biochar 260 °C | 3.9 | 36.3 | 63.7 | 6.503 | 6.095 |
SS biochar 280 °C | 2.0 | 27.7 | 72.3 | 4.088 | 3.762 |
SS biochar 300 °C | 2.6 | 26.6 | 73.4 | 3.881 | 3.663 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulka, J.; Manczarski, P.; Koziel, J.A.; Białowiec, A. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies 2019, 12, 565. https://doi.org/10.3390/en12030565
Pulka J, Manczarski P, Koziel JA, Białowiec A. Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies. 2019; 12(3):565. https://doi.org/10.3390/en12030565
Chicago/Turabian StylePulka, Jakub, Piotr Manczarski, Jacek A. Koziel, and Andrzej Białowiec. 2019. "Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars" Energies 12, no. 3: 565. https://doi.org/10.3390/en12030565
APA StylePulka, J., Manczarski, P., Koziel, J. A., & Białowiec, A. (2019). Torrefaction of Sewage Sludge: Kinetics and Fuel Properties of Biochars. Energies, 12(3), 565. https://doi.org/10.3390/en12030565