Microgrids Literature Review through a Layers Structure
Abstract
:1. Introduction
2. The Microgrid Concept
2.1. Definitions
2.2. Microgrid Functional Structures
3. Microgrid Layers
3.1. Policies and Standards Layer
3.2. Business Layer
3.3. Climate Conditions Layer
3.4. Infrastructure Layer
3.5. Operation and Control Layer
3.5.1. Control
3.5.2. Operation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Energy Information Administration. Energy Information Administration. International Energy Outlook 2016; U.S. Energy Information Administration: Washington, DC, USA, 2016; Volume 484, ISBN 2025866135.
- International Energy Agency. World Energy Investment Outlook; International Energy Agency: Paris, France, 2014; Volume 23, p. 329. [Google Scholar]
- REN21. Renewables 2018 Global Status Report; REN21 Publications: Paris, France, 2018; ISBN 9783981891133. [Google Scholar]
- Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D’haeseleer, W. Distributed generation: Definition, benefits and issues. Energy Policy 2005, 33, 787–798. [Google Scholar] [CrossRef]
- Driesen, J.; Katiraei, F. Design for distributed energy resources. IEEE Power Energy Mag. 2008, 6, 30–40. [Google Scholar]
- US Department of Energy. DOE Microgrid Workshop Report; Office of Electricity Delivery and Energy Reliability: California, CA, USA, 2011.
- IEEE Power and Energy Society. IEEE Standard for the Specification of Microgrid Controllers in IEEE Std. 2030.7; The institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2017; pp. 1–43. [Google Scholar]
- CIGRÉ 635—Microgrids 1 Engineering, Economics, & Experience; WG C6.22; CIGRÉ: Paris, France, 2015; ISBN 9782858733385.
- Soshinskaya, M.; Crijns-Graus, W.H.J.; Guerrero, J.M.; Vasquez, J.C. Microgrids: Experiences, barriers and success factors. Renew. Sustain. Energy Rev. 2014, 40, 659–672. [Google Scholar] [CrossRef]
- Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Comodi, G.; Giantomassi, A.; Severini, M.; Squartini, S.; Ferracuti, F.; Fonti, A.; Nardi Cesarini, D.; Morodo, M.; Polonara, F. Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies. Appl. Energy 2015, 137, 854–866. [Google Scholar] [CrossRef]
- Hatziargyriou, N. Microgrids: Architectures and Control; Wiley: Sussex, UK, 2013; ISBN 9781118720677. [Google Scholar]
- Khodaei, A.; Bahramirad, S.; Shahidehpour, M. Microgrid Planning Under Uncertainty. IEEE Trans. Power Syst. 2014, 30, 2417–2425. [Google Scholar] [CrossRef]
- Ton, D.; Reilly, J. Microgrid Controller Initiatives: An Overview of R D by the U.S. Department of Energy. IEEE Power Energy Mag. 2017, 15, 24–31. [Google Scholar] [CrossRef]
- Kitchenham, B.; Charters, S. Guidelines for performing Systematic Literature reviews in Software Engineering Version 2.3. Engineering 2007, 45, 1051. [Google Scholar]
- Siemens. Microgrids White Paper; Siemens AG: Erlangen, Germany, 2011. [Google Scholar]
- Kondoleon, D.; Ten-Hope, L.; Surles, T.; Therkelsen, R.L. The CERTS MicroGrid Concept. In Integration of Distributed Energy Resources; CERTS Program Office: Berkeley, CA, USA, 2003; p. 32. [Google Scholar]
- Dimeas, A.L.; Hatziargyriou, N.D. Operation of a multiagent system for microgrid control. IEEE Trans. Power Syst. 2005, 20, 1447–1455. [Google Scholar] [CrossRef]
- Hayden, E. Introduction To Microgrids; Securicon: Alexandria, VA, USA, 2013. [Google Scholar]
- IEEE Smartgrid. Utility and Other Energy Company Business Case Issues Related to Microgrids and Distributed Generation (DG), Especially Rooftop Photovoltaics. Presentation to the U.S. Department of Energy by the IEEE Joint Task Force on QER, PISCATAWAY, NJ, USA, 6 October 2014; IEEE Power & Energy Society: Piscataway, NJ, USA, 2014. [Google Scholar]
- Lidula, N.W.A.; Rajapakse, A.D. Microgrids research: A review of experimental microgrids and test systems. Renew. Sustain. Energy Rev. 2011, 15, 186–202. [Google Scholar] [CrossRef]
- Lopes, J.A.P.; Moreira, C.L.; Madureira, A.G. Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 2006, 21, 916–924. [Google Scholar] [CrossRef]
- Lo Prete, C.; Hobbs, B.F.; Norman, C.S.; Cano-Andrade, S.; Fuentes, A.; von Spakovsky, M.R.; Mili, L. Sustainability and reliability assessment of microgrids in a regional electricity market. Energy 2012, 41, 192–202. [Google Scholar] [CrossRef]
- Martin-Martínez, F.; Sánchez-Miralles, A.; Rivier, M. A literature review of Microgrids: A functional layer based classification. Renew. Sustain. Energy Rev. 2016, 62, 1133–1153. [Google Scholar] [CrossRef]
- Palizban, O.; Kauhaniemi, K.; Guerrero, J.M. Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation. Renew. Sustain. Energy Rev. 2014, 36, 428–439. [Google Scholar] [CrossRef]
- Pudjianto, D.; Pudjianto, D.; Ramsay, C.; Ramsay, C.; Strbac, G.; Strbac, G. Virtual power plant and system integration of distributed energy resources. Renew. Power Gener. IET 2007, 1, 10–16. [Google Scholar] [CrossRef]
- Wild, J.; Boutin, V.; Barton, P.; Haines, L. Microgrid Benefits and Example Projects; Schneider Electric: Paris, France, 2016. [Google Scholar]
- Pacheco, F.E.; Foreman, J.C. Microgrid Reference Methodology for Understanding Utility and Customer Interactions in Microgrid Projects. Electr. J. 2017, 30, 44–50. [Google Scholar] [CrossRef]
- Navigant Consulting. Microgrids Research Assessment—Phase 2; Navigant Consulting: Chicago, IL, USA, 2009. [Google Scholar]
- Agrawal, P. Overview of DOE Microgrid Activities. In Proceedings of the Montréal 2006 Symposium on Microgrids, Québec, QC, Canada, 23 June 2006. [Google Scholar]
- Schwaegerl, C.; Tao, L.; PeÇas Lopes, J.; Madureira, A.; Mancarella, P.; Anastasiadis, A.; Hatziargyriou, N.; Krkoleva, A. Report on the Technical, Social, Economic, and Environmental Benefits Provided by Microgrids on Power System Operation; Siemens AG: Erlangen, Germany, 2009. [Google Scholar]
- Vaahedi, E.; Nodehi, K.; Heim, D.; Rahimi, F.; Ipakchi, A. The emerging transactive microgrid controller. IEEE Power Energy Mag. 2017, 15, 80–87. [Google Scholar] [CrossRef]
- Basu, A.K.; Chowdhury, S.P.; Chowdhury, S.; Paul, S. Microgrids: Energy management by strategic deployment of DERs—A comprehensive survey. Renew. Sustain. Energy Rev. 2011, 15, 4348–4356. [Google Scholar] [CrossRef]
- Stadler, M.; Cardoso, G.; Mashayekh, S.; Forget, T.; DeForest, N.; Agarwal, A.; Schönbein, A. Value streams in microgrids: A literature review. Appl. Energy 2016, 162, 980–989. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers. IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces; IEEE Std 1547-2018 (Revision IEEE Std 1547-2003); The Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2018; pp. 1–138. [Google Scholar]
- Palizban, O.; Kauhaniemi, K.; Guerrero, J.M. Microgrids in active network management—Part II: System operation, power quality and protection. Renew. Sustain. Energy Rev. 2014, 36, 440–451. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, P.; Zheng, C.; Zhang, Y.; Peng, J.; Zeng, Z. Analysis on the organization and Development of multi-microgrids. Renew. Sustain. Energy Rev. 2018, 81, 2204–2216. [Google Scholar] [CrossRef]
- Li, Y.; He, B.L.; Yu, Q.Z.; Ji, Y.; Yu, H.; Wu, M.; Liu, H.T. Study and application of microgrid energy management system based on the four-dimensional energy management space. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014; pp. 3084–3089. [Google Scholar]
- Vaccaro, B.A.; Popov, M.; Villacci, D.; Terzija, V. An Integrated Framework for Smart Microgrids Modeling, Communication, and Verification. Proc. IEEE 2011, 99, 119–132. [Google Scholar] [CrossRef]
- CEN-CENELEC-ETSI Smart Grid Coordination Group. Sustainable Processes; SG-CG/M490/E; European Commission: Brussels, Belgium, 2012; pp. 1–101. [Google Scholar]
- Maitra, A.; Simmins, J. Grid Interactive Microgrid Controllers and the Management of Aggregated Distributed Energy Resources (DER); EPRI: Palo Alto, CA, USA, 2015. [Google Scholar]
- Stakeholders, B. Project Management in a Dynamic Environment Balancing Stakeholders. In Proceedings of the 2017 IEEE European Technology and Engineering Management Summit (E-TEMS), Munich, Germany, 17–19 October 2017; pp. 1–6. [Google Scholar]
- Sauser, B.J.; Reilly, R.R.; Shenhar, A.J. Why projects fail? How contingency theory can provide new insights—A comparative analysis of NASA’s Mars Climate Orbiter loss. Int. J. Project Manag. 2009, 27, 665–679. [Google Scholar] [CrossRef]
- Aaltonen, K. Project stakeholder analysis as an environmental interpretation process. Int. J. Proj. Manag. 2011, 29, 165–183. [Google Scholar] [CrossRef]
- Metelitsa, C.U.S. Microgrids 2017: Market Drivers, Analysis and Forecast Detailed Segmentation and Ownership Trends; GTM Research: Boston, MA, USA, 2017. [Google Scholar]
- Burger, S.P.; Luke, M. Business models for distributed energy resources: A review and empirical analysis. Energy Policy 2017, 109, 230–248. [Google Scholar] [CrossRef]
- Zachar, M.; Trifkovic, M.; Daoutidis, P. Policy effects on microgrid economics, technology selection, and environmental impact. Comput. Chem. Eng. 2014, 81, 364–375. [Google Scholar] [CrossRef]
- Hanna, R.; Ghonima, M.; Kleissl, J.; Tynan, G.; Victor, D.G. Evaluating business models for microgrids: Interactions of technology and policy. Energy Policy 2017, 103, 47–61. [Google Scholar] [CrossRef]
- Milis, K.; Peremans, H.; Van Passel, S. The impact of policy on microgrid economics: A review. Renew. Sustain. Energy Rev. 2018, 81, 3111–3119. [Google Scholar] [CrossRef]
- Sanz, J.F.; Matute, G.; Fernández, G.; Alonso, M.A.; Sanz, M. Analysis of European policies and incentives for microgrids. Renew. Energy Power Qual. J. 2014, 8, 874–879. [Google Scholar] [CrossRef]
- Mariam, L.; Basu, M.; Conlon, M.F. Microgrid: Architecture, policy and future trends. Renew. Sustain. Energy Rev. 2016, 64, 477–489. [Google Scholar] [CrossRef]
- Van Hende, K.; Wouters, C. The regulation of microgrids in liberalized electricity markets in the EU and East Asia. Eur. Netw. Law Regul. 2014, 2014, 190–206. [Google Scholar]
- Baležentis, T.; Štreimikiene, D. Sustainability in the electricity sector through advanced technologies: Energy mix transition and smart grid technology in China. Energies 2019, 12, 1142. [Google Scholar] [CrossRef]
- Feng, W.; Jin, M.; Liu, X.; Bao, Y.; Marnay, C.; Yao, C.; Yu, J. A review of microgrid development in the United States—A decade of progress on policies, demonstrations, controls, and software tools. Appl. Energy 2018, 228, 1656–1668. [Google Scholar] [CrossRef]
- IEEE Power and Energy Society. IEEE Standard for the Specification of Microgrid Controllers 2030.8; The Institute of Electrical and Electronics Engineers: New York, NY, USA, 2018; ISBN 9781504446082. [Google Scholar]
- International Electrotechnical Commission. IEC TS 62898-1 Microgrids—Part1:Guidelines for Microgrid Projects Planning and Specification; IEC Publications: Geneva, Switzerland, 2017; ISBN 9782832243602. [Google Scholar]
- International Electrotechnical Commission. IEC TS 62898-2 Microgrids—Part 2: Guidelines for Operation; IEC Publications: Geneva, Switzerland, 2018; ISBN 9782832260425. [Google Scholar]
- IEEE STANDARDS Coordinating Committee. 21 IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems—IEEE Std. 1547.4; The Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2011; ISBN 9780738166889. [Google Scholar]
- Henderson, M. Microgrid Controllers. IEEE Power Energy. 2017, 15, 4–5. [Google Scholar]
- Tayal, D.; Rauland, V. Future business models for Western Australian electricity utilities. Sustain. Energy Technol. Assess. 2017, 19, 59–69. [Google Scholar] [CrossRef]
- Corum, L. The Future of Microgrid Markets. Bus. Energy 2015, 13, 36–41. [Google Scholar]
- Costa, P.M.; Matos, M.A. Economic analysis of microgrids including reliability aspects. In Proceedings of the 2006 International Conference on Probabilistic Methods Applied to Power Systems, Stockholm, Sweden, 11–15 June 2006; pp. 1–8. [Google Scholar]
- Rusitschka, S.; Sturm, M.; Lehofer, M. Disruptive potential and business model innovation through elastic microgrid-as-a-service (MAAS) platforms. In Proceedings of the CIRED Workshop 2016, Helsinki, Finland, 14–15 June 2016. [Google Scholar]
- Quashie, M.; Bouffard, F.; Joós, G. Business cases for isolated and grid connected microgrids: Methodology and applications. Appl. Energy 2017, 205, 105–115. [Google Scholar] [CrossRef]
- Tao, L.; Schwaegerl, C.; Narayanan, S.; Zhang, J.H. From Laboratory Microgrids to Real Markets-Challenges & Opportunities. In Proceedings of the 8th International Conference on Power Electronics—ECCE Asia, Jeju, Korea, 30 May–3 June 2011. [Google Scholar]
- Ortmeyer, T.; Wu, L.; Li, J. Planning and design goals for resilient microgrids. In Proceedings of the 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Minneapolis, MN, USA, 6–9 September 2016. [Google Scholar]
- Ubilla, K.; Jiménez-Estévez, G.A.; Hernádez, R.; Reyes-Chamorro, L.; Irigoyen, C.H.; Severino, B.; Palma-Behnke, R. Smart microgrids as a solution for rural electrification: Ensuring long-term sustainability through cadastre and business models. IEEE Trans. Sustain. Energy 2014, 5, 1310–1318. [Google Scholar] [CrossRef]
- Joos, G.; Reilly, J.; Bower, W.; Neal, R. The Need for Standardization: The Benefits to the Core Functions of the Microgrid Control System. IEEE Power Energy Mag. 2017, 15, 32–40. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Dohn, R.L. The Business Case for Microgrids; Siemens AG: Erlangen, Germany, 2011; pp. 1–9. [Google Scholar]
- Gabriel, C.A.; Kirkwood, J. Business models for model businesses: Lessons from renewable energy entrepreneurs in developing countries. Energy Policy 2016, 95, 336–349. [Google Scholar] [CrossRef]
- Meisel, M.; Fotiadis, L.; Wilker, S.; Treytl, A.; Sauter, T. Blockchain Applications In Microgrids. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6153–6158. [Google Scholar]
- Imbault, F.; Swiatek, M.; De Beaufort, R.; Plana, R. The green blockchain: Managing decentralized energy production and consumption. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6–9 June 2017; pp. 1–5. [Google Scholar]
- Di Silvestre, M.L.; Gallo, P.; Ippolito, M.G.; Sanseverino, E.R.; Zizzo, G. A technical approach to the energy blockchain in microgrids. IEEE Trans. Ind. Inform. 2018, 14, 4792–4803. [Google Scholar] [CrossRef]
- Munsing, E.; Mather, J.; Moura, S. Blockchains for decentralized optimization of energy resources in microgrid networks. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Mauna Lani, HI, USA, 27–30 August 2017; pp. 2164–2171. [Google Scholar]
- Wang, N.; Xu, W.; Xu, Z.; Shao, W. Peer-to-peer energy trading among microgrids with multidimensional willingness. Energies 2018, 11, 3312. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Q.; Zhou, N.; Chi, Y. A novel electricity transaction mode of microgrids based on blockchain and continuous double auction. Energies 2017, 10, 1971. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Khan, R. Multiple authorities attribute-based verification mechanism for Blockchain mircogrid transactions. Energies 2018, 11, 1154. [Google Scholar] [CrossRef] [Green Version]
- Niknam, T.; Golestaneh, F.; Malekpour, A. Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm. Energy 2012, 43, 427–437. [Google Scholar] [CrossRef]
- Chakraborty, S.; Weiss, M.D.; Simões, M.G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid. IEEE Trans. Ind. Electron. 2007, 54, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.H.; Yamashiro, S. Novel distributed power generating system of PV-ECaSS using solar energy estimation. IEEE Trans. Energy Convers. 2007, 22, 358–367. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Chen, J.; Wang, C.; Guo, L. Operation optimization of standalone microgrids considering lifetime characteristics of battery energy storage system. IEEE Trans. Sustain. Energy 2013, 4, 934–943. [Google Scholar] [CrossRef]
- Su, W.; Wang, J.; Roh, J. Stochastic energy scheduling in microgrids with intermittent renewable energy resources. IEEE Trans. Smart Grid 2014, 5, 1876–1883. [Google Scholar] [CrossRef]
- Chaouachi, A.; Kamel, R.M.; Andoulsi, R.; Nagasaka, K. Multiobjective Intelligent Energy Management for a Microgrid—Aymen Chaouachi—Academia. IEEE Trans. Ind. Electron. 2013, 60, 1688–1699. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Wang, J.; Begovic, M.M.; Chen, C. Coordinated energy management of networked microgrids in distribution systems. IEEE Trans. Smart Grid 2015, 6, 45–53. [Google Scholar] [CrossRef]
- Chen, C.; Duan, S.; Cai, T.; Liu, B.; Hu, G. Smart energy management system for optimal microgrid economic operation. IET Renew. Power Gener. 2011, 5, 258–267. [Google Scholar] [CrossRef]
- Fusheng, L.; Ruisheng, L.; Fengquan, Z. Microgrid Technology and Engineering Application; Academic Press: London, UK, 2014; ISBN 978-0-12-803598-6. [Google Scholar]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Fregosi, D.; Ravula, S.; Brhlik, D.; Saussele, J.; Bosch Llc, R.; Frank, S.; Bonnema, E.; Scheib, J.; Wilson, E. A Comparative Study of DC and AC Microgrids in Commercial Buildings Across Different Climates and Operating Profiles. In Proceedings of the 2015 IEEE First International Conference on DC Microgrids (ICDCM), Atlanta, GA, USA, 7–10 June 2015; pp. 159–164. [Google Scholar]
- Sechilariu, M.; Locment, F.; Wang, B. Photovoltaic electricity for sustainable building. Efficiency and energy cost reduction for isolated DC microgrid. Energies 2015, 8, 7945–7967. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, P.; Loh, P.C. A hybrid AC/DC microgrid and its coordination control. IEEE Trans. Smart Grid 2011, 2, 278–286. [Google Scholar]
- Gabbar, H.A. Smart Energy Grid Engineering; Academic Press: London, UK, 2017; ISBN 9780128053430. [Google Scholar]
- Karki, N.R.; Karki, R.; Verma, A.K.; Jaeseok, C. (Eds.) Sustainable Power Systems: Modelling, Simulation and Analysis; Springer: Singapore, 2017; ISBN 9789811022296. [Google Scholar]
- Mariam, L.; Basu, M.; Conlon, M.F. A Review of Existing Microgrid Architectures. J. Eng. 2013, 2013, 937614. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, J.; Guo, L. Using microgrids to enhance energy security and resilience. Electr. J. 2016, 29, 8–15. [Google Scholar] [CrossRef]
- Wasilewski, J. Optimisation of multicarrier microgrid layout using selected metaheuristics. Int. J. Electr. Power Energy Syst. 2018, 99, 246–260. [Google Scholar] [CrossRef]
- Katiraei, F.; Iravani, R.; Hatziargyriou, N.; Dimeas, A. Microgrid Management. IEEE Power Energy Mag. 2008, 6, 54–65. [Google Scholar] [CrossRef]
- Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt, O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in microgrid control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [Google Scholar] [CrossRef]
- Meng, L.; Sanseverino, E.R.; Luna, A.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Microgrid supervisory controllers and energy management systems: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 1263–1273. [Google Scholar] [CrossRef]
- Bidram, A.; Davoudi, A. Hierarchical structure of microgrids control system. IEEE Trans. Smart Grid 2012, 3, 1963–1976. [Google Scholar] [CrossRef]
- Shahidehpour, M.; Li, Z.; Bahramirad, S.; Li, Z.; Tian, W. Networked Microgrids: Exploring the Possibilities of the IIT-Bronzeville Grid. IEEE Power Energy Mag. 2017, 15, 63–71. [Google Scholar] [CrossRef]
- Rojas, A.; Rousan, T. Microgrid control strategy: Derived from stakeholder requirements analysis. IEEE Power Energy Mag. 2017, 15, 72–79. [Google Scholar] [CrossRef]
- Mahmoud, M.S.; Azher Hussain, S.; Abido, M.A. Modeling and control of microgrid: An overview. J. Franklin Inst. 2014, 351, 2822–2859. [Google Scholar] [CrossRef]
- Shuai, Z.; Sun, Y.; Shen, Z.J.; Tian, W.; Tu, C.; Li, Y.; Yin, X. Microgrid stability: Classification and a review. Renew. Sustain. Energy Rev. 2016, 58, 167–179. [Google Scholar] [CrossRef]
- Jimeno, J.; Anduaga, J.; Oyarzabal, J.; Gil de Muro, A. Architecture of a microgrid energy management system. Eur. Trans. Eelectr. Power 2010, 21, 1142–1158. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Li, X.; Guo, L.; Qiao, L.; Lu, H. Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system. Energy 2016, 97, 90–104. [Google Scholar] [CrossRef]
- Maitra, A.; Pratt, A.; Hubert, T.; Weng, D.; Prabakar, K.; Handa, R.; Baggu, M.; McGranaghan, M. Microgrid controllers: Expanding Their Role and Evaluating Their Performance. IEEE Power Energy Mag. 2017, 15, 41–49. [Google Scholar] [CrossRef]
- Ahmad Khan, A.; Naeem, M.; Iqbal, M.; Qaisar, S.; Anpalagan, A. A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids. Renew. Sustain. Energy Rev. 2016, 58, 1664–1683. [Google Scholar] [CrossRef]
- Fathima, A.H.; Palanisamy, K. Optimization in microgrids with hybrid energy systems—A review. Renew. Sustain. Energy Rev. 2015, 45, 431–446. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning: A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Tsikalakis, A.G.; Hatziargyriou, N.D. Centralized Control for Optimizing Microgrids Operation Central Controller Strategy to Optimize Microgrids Operation. In 2011 IEEE Power and Energy Society General Meeting; IEEE: Detroit, MI, USA, 2011; pp. 1–8. [Google Scholar]
- Chen, Y.-K.; Wu, Y.-C.; Song, C.-C.; Chen, Y.-S. Design and Implementation of Energy Management System With Fuzzy Control for DC Microgrid Systems. IEEE Trans. Power Electron. 2013, 28, 1563–1570. [Google Scholar] [CrossRef]
- Jiang, Q.; Xue, M.; Geng, G. Energy management of microgrid in grid-connected and stand-alone modes. IEEE Trans. Power Syst. 2013, 28, 3380–3389. [Google Scholar] [CrossRef]
- Parisio, A.; Rikos, E.; Glielmo, L. A model predictive control approach to microgrid operation optimization. IEEE Trans. Control Syst. Technol. 2014, 22, 1813–1827. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Wang, J.; Kim, J. Decentralized Energy Management System for Networked Microgrids in Grid-Connected and Islanded Modes. IEEE Trans. Smart Grid 2016, 7, 1097–1105. [Google Scholar] [CrossRef]
- Teleke, S.; Baran, M.E.; Bhattacharya, S.; Huang, A.Q. Rule-based control of battery energy storage for dispatching intermittent renewable sources. IEEE Trans. Sustain. Energy 2010, 1, 117–124. [Google Scholar] [CrossRef]
- Palma-Behnke, R.; Benavides, C.; Lanas, F.; Severino, B.; Reyes, L.; Llanos, J.; Saez, D. A microgrid energy management system based on the rolling horizon strategy. IEEE Trans. Smart Grid 2013, 4, 996–1006. [Google Scholar] [CrossRef]
- Olivares, D.E.; Cañizares, C.A.; Kazerani, M. A Centralized Energy Management System for Isolated Microgrids. IEEE Trans. Smart Grid 2014, 5, 1864–1875. [Google Scholar] [CrossRef]
Non-Isolated MGs | Isolated MGs | ||
---|---|---|---|
Grid Connected | Islanded | ||
IEC 62898-2 | Monitoring, information exchange, and control used to optimise loads and DER operation between the MG and the utility grid. DER along other connected components may comply the connection requirements determined by the utility grid. Regardless the topology, DER must comply with the operating ranges specified in IEC/TS 62786. Reactive power control schemes can be applied to the MG to provide static voltage support. | Frequency and voltage among other conditions should be monitored all time for the reconnection back with the utility grid. EMS mayor function is to balance the loads, generation and manage storage capacity. At least one DER shall operate U/f mode to maintain voltage and frequency and other DER shall operate in PQ mode. DER should be enough to maintain voltage and frequency stability along phase angle conditions during isolation. Voltage control using proper auxiliary equipment. Frequency regulation by DER active power output adjustment through frequency droop control, ESSs and load shedding schemes. | Ensure safe, secure and steady state operation of the system. EMS mayor function is to balance the loads, generation and manage storage capacity. At least one DER shall operate U/f mode to maintain voltage and frequency and other DER shall operate in PQ mode. Active and reactive power should be balanced. Voltage and frequency adjusted between permitted ranges. Load tracking, management and shedding. Dynamic response of DERs. DER should have active and reactive power generation capabilities to maintain quality levels. Black start capacity. The ratio of electrical energy storage capacity to the total of other DER shall be much larger the non-isolated islanded MGs |
IEEE 2030.7 | Control capacity of Individual or a group of DERs. Load management with curtailable loads. Dispatch Control Use of operation breaker, switches, and other switching and control devices, where needed Voltage regulation using adequate equipment Implementation of power exchange levels (P, Q) at the point of common coupling | Control capacity of Individual or a group of DERs. Load management with curtailable loads. Dispatch Control setting the net (P, Q) and the point of common coupling to zero. Use of operation breaker, switches, and other switching and control devices, where needed. Voltage regulation using adequate equipment Frequency control using a reference microgrid generator or storage resource Maintaining and monitoring power quality levels taking appropriate remedial actions when needed |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carpintero-Rentería, M.; Santos-Martín, D.; Guerrero, J.M. Microgrids Literature Review through a Layers Structure. Energies 2019, 12, 4381. https://doi.org/10.3390/en12224381
Carpintero-Rentería M, Santos-Martín D, Guerrero JM. Microgrids Literature Review through a Layers Structure. Energies. 2019; 12(22):4381. https://doi.org/10.3390/en12224381
Chicago/Turabian StyleCarpintero-Rentería, Miguel, David Santos-Martín, and Josep M. Guerrero. 2019. "Microgrids Literature Review through a Layers Structure" Energies 12, no. 22: 4381. https://doi.org/10.3390/en12224381
APA StyleCarpintero-Rentería, M., Santos-Martín, D., & Guerrero, J. M. (2019). Microgrids Literature Review through a Layers Structure. Energies, 12(22), 4381. https://doi.org/10.3390/en12224381