# Tidal Current Energy Resource Distribution in Korea

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Area

#### 2.1. Bathymetry

#### 2.2. Study Area

#### 2.3. Division of Study Area

^{2}grids and the sea area of each region was estimated according to the division, as shown in Table 1.

## 3. Tidal Current Data

#### 3.1. Observational Data

#### 3.2. Numerical Simulation of Water Circulation

#### 3.2.1. Study Site

#### 3.2.2. Environmental Fluid Dynamics Code (EFDC) Model

_{x}and m

_{y}are the square roots of the diagonal elements of the metric tensor; m is the Jacobian or square root of the metric tensor determinant; H is the total depth; −h is the water depth and ζ is the physical vertical coordinates of the free surface.

_{0}is the reference density; f is the Coriolis parameter; A

_{v}is the vertical turbulent viscosity; Q

_{u}and Q

_{v}are momentum source-sink terms and b is buoyancy.

_{S}and Q

_{T}are the source and sink terms and A

_{b}is the vertical turbulent diffusivity. Mellor and Yamada developed the second momentum turbulence closure, which was modified by Galperin et al., and it was used to provide the vertical turbulent viscosity and diffusivity [19,20]. On the other hand, the horizontal turbulent diffusion and the horizontal diffusion coefficient are determined as suggested by Smagorinsky [21].

#### 3.2.3. Results

## 4. Tidal Current Data

#### 4.1. Average Power Intercepted

_{swept}) of a tidal turbine is used to calculate the kinetic energy passing through the turbine. When a turbine diameter is D, the swept area is given by:

_{occupied}) was determined according to the recent research [25,26]. The optimum lateral space was set to 2D and downstream distance was 10D, as shown in Figure 9. Therefore, each turbine occupies 15D

^{2}(10D∙1.5D) area.

#### 4.2. Evaluation Method

_{u}is the utilization factor.

## 5. Results

^{2}and theoretical tidal current potential was calculated as installed generating capacity of 430 GW and annual energy production of 3766 TWh/y. The results show that region 1 and region 4 are promising areas for tidal current power in Korea. Region 1 has the highest tidal energy density with a large tidal range of about 10 m, and region 4 has the second highest tidal energy density with an acceleration among islands and also between the islands and the mainland.

^{2}, and technical tidal current potential was calculated as installed generating capacity of 109 GW and annual energy production of 957 TWh/y.

## 6. Discussion

^{2}, with the highest tidal range up to 10 m in Korea. Although the tidal range of region 4 is about half of region 1, region 4 has the second highest theoretical tidal energy density of 6.6 MW/km

^{2}due to the topographic advantage with many islands. Therefore, the theoretical tidal energy density of region 4 is about 59% of that of region 1. When it comes to technical potential, the tidal energy density of region 1 is decreased by 65% compared to the theoretical potential, while that of region 4 is decreased by 42%. Hence, the technical tidal energy density of region 4 is 97% of that of region 1.

## 7. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Funke, S.W.; Farrell, P.E.; Piggott, M.D. Tidal turbine array optimisation using the adjoint approach. Renew. Energy
**2014**, 63, 658–673. [Google Scholar] [CrossRef] - Jo, C.H.; Lee, K.H.; Rho, Y.H. Recent TCP (tidal current power) projects in Korea. Sci. China Technol. Sci.
**2010**, 53, 57–61. [Google Scholar] [CrossRef] - Tidal Current Energy Resource Assessment Technique and Procedure Applied in Western Coastal Region. Available online: https://www.researchgate.net/publication/283162009_Tidal_Current_Energy_Resource_Assessment_Technique_and_Procedure_Applied_in_Western_Coastal_Region_South_Korea (accessed on 15 September 2019).
- Kim, G.W.; Lee, M.E.; Lee, K.S.; Park, J.S.; Jeong, W.M.; Kang, S.K.; Soh, J.G.; Kim, H.N. An overview of ocean renewable energy resources in Korea. Renew. Sustain. Energy Rev.
**2012**, 16, 2278–2288. [Google Scholar] [CrossRef] - Byun, D.S.; Hart, D.E.; Jeong, W.J. Tidal current energy resources off the South and West coasts of Korea: Preliminary observation-derived estimates. Energies
**2013**, 6, 566–578. [Google Scholar] [CrossRef] - Kim, G.W.; Jeong, W.M.; Lee, K.S.; Jun, K.C.; Lee, M.E. Offshore and nearshore wave energy assessment around the Korean Peninsula. Energy
**2012**, 36, 1460–1469. [Google Scholar] [CrossRef] - Lewis, M.; Neill, S.P.; Robins, P.E.; Hashemi, M.R. Resource assessment for future generations of tidal-stream energy arrays. Energy
**2015**, 83, 403–415. [Google Scholar] [CrossRef] - Guillou, N.; Neill, S.P.; Robins, P.E. Characterising the tidal stream power resource around France using a high-resolution harmonic database. Renew. Energy
**2018**, 123, 706–718. [Google Scholar] [CrossRef] - Neill, S.P.; Vögler, A.; Goward-Brown, A.J.; Baston, S.; Lewis, M.J.; Gillibrand, P.A.; Waldman, S.; Woolf, D.K. The wave and tidal resource of Scotland. Renew. Energy
**2017**, 114, 3–17. [Google Scholar] [CrossRef] - Guiberteau, K.L.; Liu, Y.; Lee, J.; Kozman, T.A. Investigation of developing wave energy technology in the Gulf of Mexico. Distrib. Gener. Altern. Energy J.
**2012**, 27, 36–52. [Google Scholar] [CrossRef] - Pastor, J.; Liu, Y. Hydrokinetic Energy: Overview and it’s Renewable Energy Potential for the Gulf of Mexico. In Proceedings of the 2012 IEEE Green Technologies Conference, Tulsa, OK, USA, 19–20 April 2012; pp. 1–3. [Google Scholar]
- Melikoglu, M. Current status and future of ocean energy sources: A global review. Ocean Eng.
**2018**, 148, 563–573. [Google Scholar] [CrossRef] - Korea Hydrographic and Oceanographic Agency (KHOA). Available online: http://www.khoa.go.kr/eng/ (accessed on 5 November 2019).
- Korea Hydrographic and Oceanographic Agency (KHOA). Nautical chart code KHOA-DPC103, 104, 166, 170, 171, 172, 173, 174, 175, 177, 178, 179, 204, 204A, 208, 2131, 2153, 2158, 2160, 2161, 2167, 2200, 2300, 2408, 2409, 2414, 2415, 243, 2431, 2432, 2439, 2462, 2467, 2470, 2477, 248, 2480, 2500, 252, 253, 2566, 2571, 2584, 2625, 266, 267, 2714, 2754, 2757, 2804, 3155, 305, 3521, 306, 307, 308, 3100, 311, 3111, 3112, 3113, 3114, 312, 313, 3137, 3139, 314, 315, 3183, 321, 3216, 323, 328, 331, 332, 333, 334, 335, 339, 341, 3411, 3412, 3413, 3418, 342, 3438, 3451, 3466, 3467, Nautical chart code KHOA-DPC103, 104, 166, 170, 171, 172, 173, 174, 175, 177, 178, 179, 204, 204A, 208, 2131, 2153, 2158, 2160, 2161, 2167, 2200, 2300, 2408, 2409, 2414, 2415, 243, 2431, 2432, 2439, 2462, 2467, 2470, 2477, 248, 2480, 2500, 252, 253, 2566, 2571, 2584, 2625, 266, 267, 2714, 2754, 2757, 2804, 3155, 305, 3521, 306, 307, 308, 3100, 311, 3111, 3112, 3113, 3114, 312, 313, 3137, 3139, 314, 315, 3183, 321, 3216, 323, 328, 331, 332, 333, 334, 335, 339, 341, 3411, 3412, 3413, 3418, 342, 3438, 3451, 3466, 3467, 347, 3470, 3471, 349, 3493, 3527, 353, 3531, 3550, 3562, 357, 359, 360, 3612, 3614, 3620, 3636, 3751, 3839, 6430, 732.
- Kim, J.E. Land use management and cultural value of ecosystem services in Southwestern Korean islands. J. Mar. Isl. Cult.
**2013**, 2, 49–55. [Google Scholar] [CrossRef] - O’Donncha, F.; James, S.C.; Ragnoli, E. Modelling study of the effects of suspended aquaculture installations on tidal stream generation in Cobscook Bay. Renew. Energy
**2017**, 102, 65–76. [Google Scholar] [CrossRef] - A Three-dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects. Available online: https://www.semanticscholar.org/paper/A-Three-Dimensional-Environmental-Fluid-Dynamics-%3A-Hamrick/48f57bed9f5450d244e240614ea653f51e7c6a55 (accessed on 15 September 2019).
- Chan, S.N.; Thoe, W.; Lee, J.H. Real-time forecasting of Hong Kong beach water quality by 3D deterministic model. Water Res.
**2013**, 47, 1631–1647. [Google Scholar] [CrossRef] [PubMed] - Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys.
**1982**, 20, 851–875. [Google Scholar] [CrossRef] - Galperin, B.; Kantha, L.H.; Hassid, S.; Rosati, A. A quasi-equilibrium turbulent energy model for geophysical flows. J. Atmos. Sci.
**1988**, 45, 55–62. [Google Scholar] [CrossRef] - Smagorinsky, J. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev.
**1963**, 91, 99–164. [Google Scholar] [CrossRef] - Polagye, B.; Thomson, J. Tidal energy resource characterization: Methodology and field study in Admiralty Inlet, Puget Sound, WA (USA). Proc. Inst. Mech. Eng. Part A J. Power Energy
**2013**, 227, 352–367. [Google Scholar] [CrossRef] - Abu-Bakar, A.; Ahmadian, R.; Falconer, R.A. Modelling the transport and decay processes of microbial tracers in a macro-tidal estuary. Water Res.
**2017**, 123, 802–824. [Google Scholar] [CrossRef] - Elliott, D.L.; Wendell, L.L.; Gower, G.L. An Assessment of the Available Windy Land Area and Wind Energy Potential in the Contiguous United States (No. PNL-7789); Pacific Northwest Lab.: Richland, WA, USA, 1991. [Google Scholar]
- Myers, L.E.; Keogh, B.; Bahaj, A.S. Layout Optimization of 1st-Generation Tidal Energy Arrays. In Proceedings of the EWTEC 2011, Southampton, UK, 5–9 September 2011. [Google Scholar]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effect on marine current turbine behaviour. Part 1: One single turbine. Renew. Energy
**2014**, 66, 729–746. [Google Scholar] [CrossRef] - Zhou, Z.; Benbouzid, M.; Charpentier, J.F.; Scuiller, F.; Tang, T. Developments in large marine current turbine technologies–A review. Renew. Sustain. Energy Rev.
**2017**, 71, 852–858. [Google Scholar] [CrossRef] - Jeffcoate, P.; Starzmann, R.; Elsaesser, B.; Scholl, S.; Bischoff, S. Field measurements of a full scale tidal turbine. Int. J. Mar. Energy
**2015**, 12, 3–20. [Google Scholar] [CrossRef] [Green Version]

Region | Administrative District | Area (km^{2}) |
---|---|---|

Region 1 | Incheon-Gyeonggi | 15,008 |

Region 2 | Chungcheongnam-do | 8811 |

Region 3 | Jeollabuk-do | 4344 |

Region 4 | Jeollanam-do | 28,266 |

Region 5 | Jeju-do | 11,220 |

Region 6 | Gyeongsangnam-do | 7415 |

Region 7 | Busan | 2171 |

Total | 77,219 |

Region | Mean Average Power Intercepted (MW/km^{2}) | Area (km^{2}) | Installed Generating Capacity (GW) | Annual Energy Production (TWh/y) |
---|---|---|---|---|

Region 1 | 11.2 | 15,008 | 167.5 | 1467.6 |

Region 2 | 3.6 | 8811 | 31.3 | 273.9 |

Region 3 | 3.1 | 4344 | 12.9 | 112.7 |

Region 4 | 6.6 | 28,266 | 185.4 | 1624.0 |

Region 5 | 2.2 | 11,220 | 24.2 | 212.1 |

Region 6 | 0.8 | 7415 | 5.8 | 51.1 |

Region 7 | 1.3 | 2171 | 2.8 | 24.5 |

Korea | 5.6 | 77,219 | 430 | 3766 |

Region | Mean Average Power Intercepted (MW/km^{2}) | Area (km^{2}) | Installed Generating Capacity (GW) | Annual Energy Production (TWh/y) |
---|---|---|---|---|

Region 1 | 3.9 | 12,328 | 48.6 | 425.7 |

Region 2 | 2.0 | 3241 | 6.4 | 56.3 |

Region 3 | 1.5 | 1445 | 2.2 | 19.3 |

Region 4 | 3.8 | 12,918 | 49.4 | 432.5 |

Region 5 | 1.9 | 1239 | 2.4 | 21.4 |

Region 6 | 1.7 | 116 | 0.2 | 1.6 |

Region 7 | 4.2 | 24 | 0.1 | 0.5 |

Korea | 3.5 | 31,312 | 109 | 957 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hwang, S.-j.; Jo, C.H.
Tidal Current Energy Resource Distribution in Korea. *Energies* **2019**, *12*, 4380.
https://doi.org/10.3390/en12224380

**AMA Style**

Hwang S-j, Jo CH.
Tidal Current Energy Resource Distribution in Korea. *Energies*. 2019; 12(22):4380.
https://doi.org/10.3390/en12224380

**Chicago/Turabian Style**

Hwang, Su-jin, and Chul H. Jo.
2019. "Tidal Current Energy Resource Distribution in Korea" *Energies* 12, no. 22: 4380.
https://doi.org/10.3390/en12224380