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Abstract: Networked microgrids are emerging for coordinating distributed energy resources in
distribution networks in the future Energy Internet, for which developing an efficient energy
market model is crucial for facilitating multi-directional trading among microgrids. In this paper,
a peer-to-peer energy trading mechanism is presented using non-cooperative bidding among
microgrids. Multidimensional willingness, including time pressure and counter behavior for
mimicking the personalized behaviors of microgrids, was taken into account in the design of
the bidding strategy. Under a parallel trading framework based on a blockchain, the proposed
multidimensional willingness bidding strategy turns out to be able to make rational decisions with
sufficient flexibility in the bidding process. The simulation results of a realistic case of microgrids
from Guizhou Province, China, validate that the proposed peer-to-peer energy trading mechanism is
capable of raising the microgrids’ profits and renewable energy source utilization.

Keywords: microgrids; distributed energy resource; peer-to-peer energy trading; multidimensional
willingness; bidding strategy

1. Introduction

The third industrial revolution, which is represented by new energy and Internet technology,
promotes the evolution of power systems from the Smart Grid to the Energy Internet (EI). The future
EI will draw on distributed energy resources (DERs) as the main primary energy, including distributed
generation (DG), distributed energy storage (DES), dispatchable load (DL), electric vehicle (EV), etc.
Despite advantages such as less pollution, flexible operation, high energy, and economic efficiency [1],
DERs cause tremendous challenges to the stability and operational safety of a larger power system, as
they are usually ’invisible’ to and ’uncontrollable’ by the power system. Especially when the capacity
of DERs is a high proportion of the distribution network, guaranteeing power balance and power
quality is extremely difficult for power system operators [2].

As a promising solution for coordinating the control of DERs within certain regions, the microgrid
has become a hot research topic in both the energy and academic fields [3]. A microgrid is able to
work in either grid-tied or island mode, and it effectively guarantees an uninterrupted power supply
to important users and reduces line loss [4]. Distributed renewable energy sources (RESs), such
as wind power and solar energy, are installed in microgrids and thereby switch traditional energy
consumers into ’prosumers’. A large number of studies have focused on DER scheduling [5], power
balance [6], operating economy [7], optimal dispatch [8], etc. For instance, Reference [9] proposed an
optimization algorithm to flatten the energy peak and reduce residential payments; Reference [10]
designed a current-sharing controller for island mode low-voltage microgrids. However, owing to the
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inherent fluctuations and uncertainty of RESs and insufficient dispatch ability, renewable generation is
frequently curtailed to maintain system stability, leading to an enormous loss of energy.

Microgrids that are geographically located in a larger area can be networked to further improve
the efficiency, sustainability, safety, reliability, and resilience of energy services in the distribution
network [11]. Cooperative dispatch approaches have been proposed to achieve better economic
performances from networked microgrids. Algorithms and methods have been investigated to solve
the optimization problems. Three kinds of demand response programs, including real-time pricing,
critical peak pricing, and emergency demand response, were investigated for the optimal operation of
a multi-microgrid system. Reference [12] proposed a collaborative strategy to promote the interaction
among microgrids as a Stackelberg game. Reference [13] investigated a three-tiered approach to
maximize the profits of microgrids through a win-win framework. A decentralized bi-level algorithm
was proposed in Reference [14] to dispatch networked microgrids in both grid-connected and islanded
modes. However, the installed DERs in microgrids belong to different owners who are driven
by an interest in profit and market sensitivity, making the direct control and optimization by a
central authority impractical. Although some Nash equilibrium methods have been presented to
achieve a win-win distribution of profit, they still fall short of achieving the flexibility and safety
of microgrid privacy [15]. Reference [16] proposed an optimal bidding strategy in the day-ahead
market of microgrids. However, with the reform of the electricity market, along with the application of
advanced metrology and information and communication technology (ICT), the frequency of energy
trading will obviously increase. Hour-ahead or even real-time energy trading is emerging, and a
corresponding energy trading mechanism should be designed to support free and personalized market
behaviors for the future EI. Peer-to-Peer (P2P) energy trading offers a new option for decentralized
energy market designs.

A peer in P2P energy trading [17] refers to energy traders of different sizes, i.e., residential houses,
neighborhoods, microgrids, and local distribution networks. The traditional trading of energy is
mainly unidirectional: energy is usually transmitted from producers to consumers over long distances,
and the trading market is regulated in a centralized manner by the grid. In contrast, P2P energy trading
encourages multi-directional trading based on the concept of a P2P economy without intermediation
by conventional energy suppliers. Advanced ICTs, such as the smart meter, blockchain [18], and
cryptocurrency, [19] show great potential for enhancing the trials of P2P energy trading across the
globe; among them, blockchain is nowadays emerging for its application in the energy market [20].
Reference [21] addressed a brief experiment on the design of the blockchain-based energy market.
Decentralized demand response management was achieved in Reference [22] on an Ethereum platform,
and related security and privacy issues are discussed in Reference [23]. Reference [24] introduced
a game-theoretic approach for managing distributed energy, together with a practicable energy
trading platform via a blockchain. The Brooklyn Microgrid is a successful case of microgrid energy
market design in real life [25]. Six peers located across three distribution microgrids in Brooklyn are
linked via a blockchain, and renewable energy is traded directly under predefined transaction rules.
The demonstration of blockchain-based energy trading on the campus of Washington State University
is presented in Reference [26]. Another application example of a blockchain is the localized energy
trading among plug-in hybrid electric vehicles in Texas [27]. In the existing literature, the blockchain is
simply used to record energy trading information as a distributed database. However, the introduction
of new ICT has brought both new opportunities and challenges for the design of energy trading
mechanisms in the EI. Taking new features of new technology into account, a top-level design of the
future energy market should be proposed. Inspired by these ideas, a P2P energy market is proposed
in this paper, where multi-directional energy trading among microgrids in a distribution network is
achieved in the form of non-cooperative bidding supported by a private blockchain. The proposed
P2P energy trading mechanism considers the personalized demands of different microgrids and
significantly increases the utilization of DERs in the distribution network.
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The design of a P2P energy trading mechanism boils down to the design of the P2P energy
bidding strategy. In the future energy market, it is no longer a human acting as the decision maker
and executor. The application of new ICT accelerates the frequency of market transactions. Besides,
the uncertainty of RES output and personalized demand lead to a time-varying supply and demand
relationship, so software-based negotiation agents are needed for enabling effective and efficient
negotiation [28]. In general, an agent should be proactive, intelligent, cognitive, and well-behaved
when undertaking automated negotiation tasks, which is quite complicated. The key challenge in
this area is to design effective and efficient strategies that agents can apply to guide their bidding
behaviors. Significant efforts have been devoted to designing various bidding strategies for negotiation
agents. Reference [29] addressed a novel adaptive attitude bidding strategy with soft asks and
soft bids in electronic commerce, setting up an overall framework of an agent-based continuous
double auction (CDA). A market clearing framework of DERs was proposed using a knapsack
approximation algorithm [30]. In [31], a comprehensive set of factors were taken into account during
the bi-directional energy exchange between the utility grid and smart building, including long-time and
short-time eagerness. To reduce the negotiation time and enhance the trading efficiency, Reference [32]
introduced an improved particle swarm optimization method for adaptive attitude bidding. However,
the literature mentioned above is concerned with the bidding strategy between two traders, which
results in the lack of applicability to most of the bidding scenarios in reality. Time pressure on an agent
appears after a fixed deadline in [29], and, in [31,32], the increase in time urgency slows down as time
approaches the deadline; however, both of these time-setting strategies are not reflective enough of real
life. In addition, the short-time eagerness mentioned in [31] may face the problem of non-convergence.

Reference [33] studied the efficiency of a forecast-driven P2P bidding strategy in CDA.
Reference [34] proposed an adaptive aggressiveness strategy in blockchain-based CDA in a microgrid,
putting forward an energy market design from a new perspective. However, different bidding
combinations may have distinct initial conditions, and there is not enough flexibility in adjusting the
bidding quantity during the CDA bidding process. The power flow restriction among microgrids is
another issue to be considered to ensure the safe operation in the distribution network, but it has not
been taken into account in the existing literature.

On this basis, to make up for these limitations and adapt to new characteristics of the P2P
energy market, we propose a parallel multidimensional willingness bidding strategy which mimics
the attitude fluctuation of microgrids in a P2P energy trading environment. Counter behavior, time
pressure, and other important (but usually overlooked) factors are given attention, as they have a
tremendous impact on the microgrids’ pricing strategy in the negotiation process.

The contributions of this paper are as follows. (1) Energy trading among microgrids in
a distribution network is implemented in a peer-to-peer fashion. The system architecture and
non-cooperative trading mechanism were first designed for this weakly centralized energy market.
Unlike the global optimization in the centralized energy market, this structure and bidding mechanism
allows for the personalized behaviors of microgrids. (2) A parallel framework is proposed to perform
concurrent energy bidding among microgrids with diverse initial conditions. Moreover, restrictions
on the resulting power flow are validated by the joint effort of microgrids and the grid using a
hybrid approach. (3) The dynamic attitude change of microgrids is quantified by establishing a
multidimensional willingness based on historical trading records, the supply-demand relationship, and
other factors and can provide reasonable bidding decisions with sufficient flexibility. (4) The counter
behavior of a microgrid was first designed to reduce the impact of abnormal price control behavior
of the bidding opponent. The time pressure was applied based on related work in the literature;
it promotes the transactions to reach a deal. (5) The presented energy trading mechanism and
bidding strategy were validated by a realistic case of 14 microgrids in Guizhou Province, China.
The simulations were carried out on a private Ethereum blockchain. A 61.5% increase in the overall
profits were achieved for the distribution network by applying P2P energy trading compared with the
traditional mechanism.
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The rest of this paper is organized as follows. In Section 2, the overall architecture of the
distribution network is presented, along with the description of the P2P energy trading mechanism.
The parallel multidimensional willingness bidding strategy is introduced in Section 3. A realistic
case study and analysis are demonstrated in Section 4 to verify the advantages and efficiency of the
proposed P2P energy trading mechanism. Conclusions and future work are given in Section 5.

2. Mechanism Design for Peer-to-Peer Energy Trading

2.1. Three-Layer System Architecture for Peer-to-Peer Energy Trading

A three-layer architecture of a typical distribution network is proposed in this paper for P2P
energy trading. Figure 1 presents a conceptual view of this supernetwork which comprises the power
network, information network, and business network.
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Figure 1. The structure of a typical distribution network for peer-to-peer (P2P) energy trading.

The power network is composed of several networked microgrids that are situated in different
geographical locations, in which DGs, DESs, DLs, EVs, and general loads are connected to distributed
connection points. The internal topology of each microgrid is also different. These microgrids can
operate individually or in conjunction with each other. For example, each microgrid can supply its
power demand not only by dispatching distributed energy resources but also by importing power
from neighboring microgrids or the grid.

The information network consists of communication devices, applications, protocols, and
information flow. Smart meters installed in each microgrid record the actual energy flow; the real-time
energy consumption is recorded in the distribution network database (DND) and the microgrid
databases (MGDs). Different control strategies are also defined in this layer for preserving the quality
and reliability of the power supply and controlling the power flow.

The business network is a P2P network enhanced by a blockchain for developing various kinds
of business models that determine the energy trading strategy with peers and the grid. Microgrid
Operators (MGOs) are authorized to participate in P2P energy trading in the local distribution network
under the energy market regulations formulated by the distribution network operator (DNO).
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2.2. Peer-to-Peer Energy Trading Mechanism

In future EI scenarios, microgrid interconnection and P2P energy transactions are highly efficient
and enhanced by advanced ICT. The grid is no longer the monopolist but rather the builder of power
infrastructure and market regulator, which means that the microgrids still need the grid as a centralized
authority to formulate reliable, secure, and efficient smart contracts to ensure a stable, economical, and
environment-friendly operation of the distribution network. Although energy and profit transactions,
data storage, and interaction are carried out in a distributed form, market regulation and policy
guidance are still the results of centralization to a certain degree. In this paper, this new form of energy
market characteristic is described as weakly centralized.

In this weakly centralized distribution network, small-scale distributed energy resources belong
to local DER owners. Their separated grid-connected behaviors will significantly affect the power
quality of the power grid. An MGO works as the aggregator of DER owners and residents within its
region. Besides arranging reasonable dispatch and operation, the MGO is permitted to set the price
for the regional energy. The major motivation for the MGO to join in P2P energy trading is that the
MGO could obtain clean energy from other microgrids at a low cost. Furthermore, surplus energy after
internal coordinated dispatch can also be sold to other microgrids for more earnings instead of selling
to the grid. The energy trading mechanism adopted by an MGO will evidently affect the overall profits
of the microgrid. The DNO is the market regulator in this distribution network to provide a sufficient
back-up energy supply and related ancillary services. The proposed P2P energy trading mechanism
among microgrids in the local distribution network is shown in Figure 2. Detailed descriptions are
given in the following sections.
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Figure 2. The process of the proposed P2P energy trading mechanism.

2.2.1. Scheduling and Bidding Mechanism

The scheduling and bidding period is set before time slot N, during which MGOs implement
internal coordinated dispatch (ICD) and decide which working mode to adopt in the following
time slot. To deal with the stochasticity of DERs and unexpected load consumption, distributed
Monte Carlo simulations are run by DER owners based on forecasted weather conditions and device
status to provide a distributed power prediction to the responsible MGOs. Microgrids work in either
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off-chain or on-chain mode, so different energy trading mechanisms are designed to meet the respective
requirements of the two modes. A microgrid in the off-chain mode is not linked to the P2P energy
trading blockchain and acts as a traditional energy trader in the distribution network who only trades
with the DNO. The operating priority of the MGO is to ensure the power supply of key users and
decrease the cost of purchasing energy from the grid. Meanwhile, a flatter load curve is preferred to
avoid a violent and obvious power fluctuation. Energy transaction commands are sent directly to DER
owners and residents for execution.

However, if MGOs choose to join the P2P energy trading blockchain, they are endowed with more
opportunities to obtain clean energy from other microgrids directly at a lower cost. In consideration
of the particularities and personalized demands of each microgrid, particular market strategies are
adopted by different MGOs: some MGOs might give priority to the nearest microgrid for trading
clean energy to reduce line loss and transaction cost; some MGOs might choose the microgrids that
declare the lowest initial asking price regardless of geographical distance; another cluster of MGOs
might be more concerned about the historical credit records of the target microgrids to assure a
more stable energy transaction experience. Therefore, distinctive trading applications from MGOs
(e.g., the clear-cut power to trade over the following time slot, surplus energy for sale or required
energy for purchase, target trading microgrid) are provided to the P2P energy trading platform to
combine the proposed parallel multidimensional willingness bidding process with the DNO. Energy
trading commands are generated once the bidding results pass the safety check. Detailed explanations
of the parallel multidimensional willingness bidding process in Figure 2 are given in the next section.

Trading commands can be generated, canceled, or modified by the DNO and MGOs only before
the bidding deadline.

2.2.2. Exchange Mechanism

During the energy exchange period of time slot N, energy balancing services and regulations are
provided by the DNO. Actual energy generation and the consumption of each microgrid are recorded
by smart meters. Energy transaction information for the DNO and MGOs are also kept in distributed
databases on the P2P energy trading platform for settlement in the next period. A balanced energy
supply will be guaranteed by the DNO, as the energy exchange schedules might be invalid due to
extreme weather conditions and unexpected microgrid behaviors.

2.2.3. Settlement Mechanism

In the settlement time period, the energy bill of each MGO is cleared according to actual energy
trading information. As some microgrids might fail to generate/consume the promised amount of
energy, they are required to trade with other microgrids at less beneficial (selling or buying) prices
or be charged punitively by the DNO. In this study, no delayed P2P energy trading was set up in the
settlement period, but the DNO will charge for a surplus/insufficient quantity of energy at penalty
prices. The penalty prices for the seller microgrid (pricet

sp) and buyer microgrid (pricet
bp) in time slot t

are defined by the following equations, respectively:

pricet
sp =

{
pricet

grid,purchase × (1− α) if ∆Qt
i ≥ 0

−pricet
grid,sale × (1 + β) Otherwise

(1)

pricet
bp =

{
pricet

grid,sale × (1 + γ) if ∆Qt
i ≥ 0

pricet
grid,sale Otherwise

(2)

where ∆Qt
i is the quantity difference between the actual transaction energy (Qt

i,actual) and the scheduled
trading energy (Qt

i,scheduled). α, β and γ are pre-set penalty coefficients. For a seller microgrid, surplus
clean energy injected into the grid will be paid with a price under the energy purchase price of the
grid in time slot t (pricet

grid,purchase). Meanwhile, an insufficient quantity of energy will be charged by
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the DNO at a price higher than the energy sale price of the grid (pricet
grid,sale) as a penalty. In contrast,

over-consumed energy by a buyer microgrid will be charged at a price higher than pricet
grid,sale, and

the energy that was not consumed as scheduled should be charged at the original sale price of the grid.
The credit records of the microgrids are calculated by the following equation, which will be

referenced by MGOs for determining intended trading targets in the next time slot.

CRt
i =

∣∣∣∣∣ Qt
i,actual

Qt
i,scheduled

∣∣∣∣∣ (3)

Power transmission costs are kept for the DNO, as it provides power infrastructure and ancillary
services for MGOs. Profit distribution is carried out within a microgrid for DER owners, but this is not
the focus of this paper.

3. Parallel Multidimensional Willingness Bidding Strategy

Based on the efforts of the above-mentioned works, we propose a parallel multidimensional
willingness bidding strategy (PMWBS) for P2P energy trading among microgrids. Figure 3 presents a
flowchart of the proposed PMWBS in a given time slot.
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Figure 3. The process of the parallel multidimensional willingness bidding strategy in a time slot.

During this time slot, bidding applications are presented individually by each MGO. A bidding
round (indexed by r) starts when applications are formulated in a list. In each run of a round (indexed
by m), the buyer/seller updates the ask/bid price with multidimensional willingness. If one of an
application results in a deal, all MGOs update their real-time bidding quantities and willingness
parallelly. A bidding round ends when there is no unfinished application in the list or the time
deadline is reached (m = Run_Max). The distributed power flow is calculated by each MGO to reduce
the computational pressure on the DNO. If the bidding result passes the safety check, energy trading
commands are generated and sent to each MGO. Otherwise, a congestion price is calculated by the
DNO to reflect the severity of power line congestion and the extent of each transaction’s impact on
overall congestion, which will obviously affect bidding applications in the next round. A maximum of
Round_Max rounds of bidding is allowed to be performed within a time slot. Detailed variable setups
are presented in the following paper.

3.1. Multidimensional Willingness of Microgrids

Willingness is affected by the MGO’s impression of the last several time slots and the ongoing
bidding rounds. In this paper, the willingness of a microgrid in a bidding run is defined as the
integration of factors in multiple dimensions: historical trading records, counter behavior to the bidding
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price, time pressure, matching degree of the bidding quantity, and the real-time supply-demand
relationship. The proposed multidimensional willingness of microgrid i in bidding run m is defined
by Equation (4).

WNm
i = HTRt

i × CBm
i × (TPm

i + MDm
i )× SDRt

i (4)

Detailed variable definitions are explained in the next subsection.

3.1.1. Historical Trading Records

One microgrid is either the seller or the buyer. Decision-making is mainly dependent on the
previous trading history. The willingness based on historical trading records is determined by the
following equations:

Ht
i =

Qt
i,traded

Qt
i,expected

(5)

It
i =

1
2

Ht−1
i +

1
3

Ht−2
i +

1
6

Ht−3
i (6)

HTRt
i = A + (1− It

i )× δ (7)

where HTRt
i represents the energy trading history of microgrid i in time slot t. Ht

i is the transaction
percentage for microgrid i in time slot t, which is the quotient of the P2P traded energy quantity
(Qt

i,traded) and the expected energy quantity (Qt
i,expected); It

i is the weighted sum of the historical
transaction percentage of the former three rounds. As the closer time slots have the stronger influence
on the current time slot, they are evaluated with a higher weight. δ is a small positive number and A is
a preset positive number to restrict the basic value of round willingness. In an energy bidding market,
a microgrid memorizes useful information of its own from previous time slots. If the seller/buyer has
traded all the energy they want to trade in the last time slot, they would be eager for more profit in
the current round. In this case, the willingness of historical trading records should return a low value,
as the seller/buyer would reduce the step of the bid in a round in the hope of a higher/lower price on
each unit of energy. On the other hand, a high willingness in historical trading records indicates the
seller/buyer is eager to make more concessions and take this deal in the round, as too little energy has
been traded in historical rounds.

The willingness of historical trading records should be maintained during rounds until a new
time slot is approaching.

3.1.2. Counter Behavior to Bidding Price

Counter behavior to the bidding price is designed for a microgrid to mimic an opponent’s
concession behavior and take appropriate countermeasures. If the opponent compromises, the MGO
becomes more cooperative and makes concessions as well. On the contrary, if the opponent has
not conceded in the past few runs, the MGO will also refuse to make significant concessions to
protect its own profit. The willingness of counter behavior to the bidding price is determined by the
following equations:

Counterm
j =

∣∣∣pricem−1
j − pricem−n−1

j

∣∣∣
n

+
µ∣∣∣pricem−1

i − pricem−1
j

∣∣∣ (8)

CBm
i =

{
0.01 if Counterm

j ≤ stept
i,j × λ

1 Otherwise
(9)

where CBm
i represents the willingness of counter behavior of MGO i in the current bidding run m.

Counterm
j is the degree of concession for MGO i’s bidding opponent j. n is the length of the time

window, which can be defined by the trader. µ is a small positive number divided by the gap of the bid
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and asking prices. stept
i,j defines the basic bidding step size in this time slot, and λ is an adjustment

coefficient. In the early stage of bidding, the gap between the ask and bid price is large, and the
latter part of Equation (8) has little impact on the calculation of Counterm

j , but abnormal price control
behavior of MGO j will be detected if there has been no significant change in the past successive runs
of bidding. MGO i will imitate the opponent’s behavior in this scenario. As the bidding step may
decrease naturally when the deadline is approaching, the latter part of Equation (8) boosts the value of
Counterm

j , regardless of the opponent’s bidding behavior, which largely promotes the bidding process
to convergence.

3.1.3. Time Pressure

Time pressure is an important factor in a bidding process. The MGO is willing to close a deal
when the deadline is approaching. This kind of behavior will help MGOs gain more transaction
opportunities and, consequently, enhance their profits. Meanwhile, the historical trading records
have a significant influence on the degree of concession during a round. A microgrid with lower the
willingness of historical trading records prefers to wait for more profit to accrue from each unit of
energy instead of finishing the deal quickly, while a microgrid that seldom makes any transactions will
give ground quickly to reach a deal. On the basis of the prior work of [29,32], the representation of
time pressure is modified and designed by the following equation:

TPm
i = 1−

(
1− m

M

)HTRt
i (10)

where M is the maximum number of runs in a round.
The time pressure exists throughout the whole process of negotiation. At the beginning of

negotiation (m = 1), the time pressure is close to 0 as MGOs are not eager to trade at the initial stage, but
when it comes to the deadline (m = 200), the time pressure of most microgrids is close to 1. The MGO
with a higher willingness of historical trading records is more eager to give ground and reach a deal,
as its time pressure is always higher than that of other MGOs during a round, while the one with
higher historical trading records shows barely an increase in time pressure, as shown in Figure 4b.
Compared to the time strategies proposed in [32], the slope of the time pressure curve increases, just
as the urgency of an MGO will increase naturally in the real-life energy market when the bidding is
approaching the deadline.
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Figure 4. Time pressure of microgrid under (a) different historical trading records and (b) bidding runs.

3.1.4. Matching Degree of Bidding Quantity

As the bidding quantity of traders is affected by energy preference, microgrid credibility, and the
penalty price for power flow congestion and other factors, the matching degree between the bidding
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quantity and the expected trading quantity in the negotiation process will also affect concession
willingness. Here, the willingness for matching the degree of the bidding quantity is introduced in the
following form:

MDm
i = e

1−
∣∣∣∣∣ Qt

i,expected
Qm

i,bidding

∣∣∣∣∣ (11)

where MDm
i represents the matching degree of the bidding quantity for microgrid i in the current

bidding run m. Qt
i,expected represents the expected trading quantity in a round, and Qm

i,bidding represents
the actual bidding quantity in a run. Note that due to the parallel update of the market supply and
demand relationship, Qm

i,bidding can be different within the process of a bidding round.

3.1.5. Real-Time Supply-Demand Relationship

The relationship between real-time supply and demand of the local distribution network has a
significant influence on microgrid traders’ bidding strategies. When the overall market has surplus
clean energy, seller MGOs are willing to make concessions to trade a higher quantity, as the energy
injected into the grid is sold at a very low price. On the contrary, when the demand exceeds the
supply in the real-time market, buyer microgrids are more likely to give ground to obtain clean energy
from other seller microgrids. Although the transaction price might be higher than other that of other
biddings, it is much lower than the price from the DNO. The willingness of a real-time supply-demand
relationship for a seller microgrid (SDRt

seller) and buyer microgrid (SDRt
buyer) are designed by the

following equations, respectively:

SDRt
seller =

{
1 + ω if Qt

demand ≤ Qt
supply

1 Otherwise
(12)

SDRt
buyer =

{
1 if Qt

demand ≤ Qt
supply

1 + ω Otherwise
(13)

where ω is a predefined small positive number.

3.2. Parallel Multidimensional Willingness Bidding Strategy

Given the clear power of all microgrids in the distribution network at one time slot, one buyer
MGO is free to choose at most three seller MGOs based on the following factors: historical trading price,
credit records, power transmission price, and matching degree of trading quantity. The congestion price
πt,r

ij also has a great impact on the selection of bidding opponents and quantity (detailed descriptions

of πt,r
ij are given in Appendix A). Then, the list of intentional trading applications is formed before the

bidding process.
In order to describe the process of the proposed bidding strategy, some basic notions for one

trading application are listed as follows:

• price_hlt is the highest bidding price limitation in the market, which is set as the selling price of
the grid in time slot t.

• price_llt is the lowest bidding price limitation in the market, which is set as the purchasing price
of the grid in time slot t.

• pricet
sr is the reservation price for the seller microgrid. Seeing that the energy from the seller

microgrid is produced by RES, pricet
sr is calculated by the equation below:

pricet
sr,i = pricet

grid,purchase + pricet
mt + pricet

tc,ij (14)
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in which pricet
mt represents the price caused by the daily maintenance of DERs and pricet

tc,ij
represents the power transmission price from microgrid i to j. pricet

sr ensures that the trading
price is no less than the marginal price of generation.

• pricet
br is the reservation price for the buyer microgrid, which is set as the selling price of the grid

in time slot t. It is guaranteed that energy will not be purchased at a price higher than the current
selling price of the grid.

• price_ask/price_bid is the price offer given by the seller/buyer microgrid in the current market.
• step_basic is the basic size of the pricing step and remains unchanged during a round of bidding,

which is calculated at the beginning of a round using:

step_basicr
i,j =

∣∣pricet
sr − pricet

br

∣∣
2×M

(15)

One round is divided into two phases. The first phase is the beginning of parallel bidding: the
seller and buyer MGOs only have access to their own reservation prices and market limitations but
not to the market dynamic information. In the first run of bidding, seller i submits an initial asking
price, computed as follows:

price_askoriginal
i = pricet

sr + (price_hlt − pricet
sr)× rand_ask + πt,r

i (16)

Similar to the seller, buyer j submits an original bid price, computed as follows:

price_bidoriginal
j = pricet

br − (pricet
br − price_llt)× rand_bid + πt,r

j (17)

where rand_ask and rand_bid are random real numbers located in [0.95,1.0] to obtain higher asks/lower bids.
In the second phase, the asking price of the seller is calculated by the function below:

price_askm
i =

 price_askoriginal
i − (max(price_askre f

i , price_bidoriginal
j )− pricet

sr)×WNm
i , m = 1

price_askm−1
i − step_basicr

i,j ×WNm
i , m ≥ 2

(18)

When m = 1, the step size is determined by historical information and the original bid from
the buyer, as no counter price from the market can be used as a reference. price_askre f

i represents the
historical reference price for a seller. If there were successful trades in the last round, the seller would
take the historical average trading price plus a small positive number η as a reference price in the
hopes of obtaining a higher trading price. If there were no trades in the last rounds, the seller would
employ the lowest ask they submitted in the last round minus a small positive number ε as a reference
price to improve the possibility of reaching a deal in this round.

price_askre f
i =

{
price_askt−1

i + η, if there was successful trades
min(price_askt−1

i )− ε, if there was no successful trades
(19)

Similar to the seller, the bid price for the buyer is calculated by the function below:

price_bidm
j =

 price_bidoriginal
j + (pricet

br −min(price_bidre f
j , price_askoriginal

i ))×WNm
j , m = 1

price_bidm−1
i + step_basicr

i,j ×WNm
j , m ≥ 2

(20)

in which price_bidre f
j represents the reference price for a buyer. If there were successful trades in

the last round, the reference price equals the historical average trading price minus a small positive
number ϕ for obtaining a lower trading price. If there were no trades in the last round, the reference
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price equals the highest bid submitted in the last round plus a small positive number τ to improve the
possibility of reaching a deal in this round.

price_bidre f
j =

{
price_bidt−1

j − ϕ, if there was successful trades
max(price_bidt−1

j ) + τ, if there was no successful trades
(21)

A deal is closed when price_askm
i ≤ price_bidm

j before the time deadline is reached. All of the
intended trading applications take place in parallel. When a deal is made, the related supply and
demand energy quantity and willingness are updated simultaneously. The bidding process in a round
ends when there is no intended bidding application in the list.

4. Case Studies and Simulation Results

A realistic case of microgrids in Guizhou Province, China, was used to validate the proposed P2P
energy trading mechanism. As shown in Figure 5, the distribution network consists of 14 microgrids.
The distance matrix is given in Table A1, from which the transmission price for each kWh of energy
between any two microgrids can be calculated. The power of these microgrids after the internal
coordinated dispatch is presented in Figure A1.

The surplus clean energy that is directly injected into the grid is paid at 0.3 CNY/kWh, and
each kWh of energy purchased from the grid is charged according to the peak/flat/valley price
formulated by the Guizhou Grid, which divides a day into three types of time intervals, charging
1.197/0.744/0.356 CNY, respectively (see Table A2).

To highlight the PMWBS proposed in this paper, all 14 microgrids were set to on-chain mode.
In order to simulate the microgrids’ personalized preferences, four strategies for choosing the trading
target are provided in the case studies: (1) choose the nearest microgrids; (2) choose the microgrids with
the cheapest initial asking prices; (3) choose the microgrids with the highest credit records; (4) accept
recommendations from the DNO. The microgrids dispatch the internal entities and join the P2P energy
trading market every ∆t = 0.5 h within a scheduling cycle of 24 h. The simulation starts at 9:00 in the
morning and ends at 21:00 in the next day.

The process of bidding in a single round extracted from a P2P energy trading cycle is presented in
the first case study, and the impact of different dimensions of the overall willingness are examined.
The second case study simulates the behaviors of 14 microgrids over a 24 h trading cycle, and it also
compares profits under two energy trading mechanisms. The formulation presented in Sections 2 and 3
was implemented using MATLAB. All computations are done on an Intel Core i7-4790 CPU, 3.60 GHz.

MG #7

MG #14

MG #12

MG #1

MG #3

MG #2 MG #8

MG #5

MG #4

MG #9

MG #10

MG #6

MG #11

MG #13

Figure 5. A realistic distribution network topology in Guizhou Province.

4.1. Case Study 1: Effectiveness Verification of the Proposed PMWBS

To test the performance of the proposed PMWBS, four rounds under four typical scenarios are
extracted from the proposed P2P energy trading process. The results are illustrated in Figure 6.
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Figure 6. The bidding process of four rounds extracted from the proposed P2P energy trading process:
a trade round between (a) microgrid (MG) 6(bid) and MG 9(ask) in time slot 12; (b) MG 5(bid) and MG
13(ask) in time slot 15; (c) MG 1(bid) and MG 14(ask) in time slot 22; (d) MG 4(bid) and MG 8(ask) in
time slot 37.

As the seller in Figure 6a, MG 9 fails in two of three previous time slots, so the willingness of
historical trading records for MG 9 is markedly increased in this round, which causes the asking
price to drop quickly to reach a deal. On the contrary, in time slot 15, MG 13 has a low willingness,
as it succeeded in all previous three rounds, and it desires to gain more profit from each unit of
clean energy. Pairing with MG 5, who holds a higher bidding willingness, the deal is closed at
0.641 CNY/kWh, as shown in Figure 6b. It can be observed from these two runs that microgrids
with a greater willingness will make more compromises to reach a deal quickly. Figure 6c presents
a well-matched bidding process of MG 1 and MG 14, as they have comparable willingness in this
bidding round. Figure 6d shows the bidding result of microgrids where both the buyer and the seller
have a very low willingness. It can be seen that an agreement cannot be reached before the deadline of
negotiation because neither MG 4 nor MG 8 is willing to make a concession to close the deal.

To illustrate the influences of different dimensions of expressing willingness on the bidding
results, two more simulations were conducted. In Figure 7a, the asking price of MG 10 in the 34th time
slot is maintained during this bidding round to test the influence of a multidimensional willingness
on the bid price. If the willingness of MG 2 is set at a fixed number, the bid price depends greatly
on this predetermined parameter as the slope of the price curve. For the bid price under a low and
high multidimensional willingness, the bidding step can better respond to historical trading records,
time pressure, the real-time supply-demand relationship, and other factors. For example, as time
approaches the deadline in one round, both of the traders are willing to increase the bidding step in
case of a failed round. In the proposed parallel multidimensional willingness bidding process, the
bidding quantity and willingness will be updated if other bidding applications reach a deal and the
relationship between the supply and demand change. In this case, one bid price curve is divided into
several parts, as shown in Figure 7a by the updated points A and B. A bidding round is forced to stop
when no more energy is left to be traded or the deadline is reached.
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Figure 7. The influences of the multidimensional willingness proposed in the paper on bidding results:
(a) trading performance of the bid price under fixed willingness (FW), low multidimensional willingness
(MW-L), high multidimensional willingness (MW-H), updated multidimensional willingness
(MW-Update), and failed multidimensional willingness (MW-Failed); (b) trading performances of
the asking price under multidimensional willingness without counter behavior (MW-NCB) and
multidimensional willingness with counter behavior (MW-CB).

The performance of counter behavior is shown in Figure 7b. The buyer MGO is required to not
make concessions from the 41st to 98th run in one round. It can be observed that a seller MGO without
counter behavior is not able to adjust its bidding step according to its opponent’s changes, leading to a
low deal price of 0.426 CNY/kWh. On the other hand, an MGO with counter behavior successfully
mimics the buyer’s behavior in order to protect its own interests and stops reducing its price from the
46th run. When the opponent starts to make concessions again, the seller MGO with counter behavior
is able to catch this signal and continue bidding. The deal is closed at 0.478 CNY/kWh in this situation,
which means that the seller MGO can increase profit by 12.2% from P2P energy trading in this round
and reduce the impact of abnormal price control on the bidding results.

All the simulation results show the usability and learning ability of the proposed PMWBS in P2P
energy trading among microgrids. It turns out to be effective for making the appropriate bidding
concession decision according to the dynamic intentions of different microgrids in the bidding process.

4.2. Case Study 2: Bidding Performance of P2P Energy Trading

In this case study, the overall performance of P2P energy trading in the distribution network is
simulated. The analysis of the bidding price, quantity, trading target, and profits of the microgrids are
given in the following.

4.2.1. Bidding Results of P2P Energy Trading

The bidding results of three typical microgrids are shown in the figures described in the following
and shown below. MG 4 plays the role of buyer in all time slots, as shown in Figure 8, in which the
bidding quantity is represented by the red bars. MG 4 succeeded in the first 11 time slots; however,
it failed in the 12th time slot, because it has a low bidding willingness in order to pay less for each
unit of clean energy but could not reach a deal with its chosen opponents. For these time slots, MG 4
purchases energy from the grid at a peak/flat/valley price. During the valley interval, the price for
purchasing energy from the DNO is 0.356 CNY/kWh, which is very close to the initial asking price
of the seller microgrids of around 0.3 CNY/kWh. Few deals are made in this interval, as the price of
clean energy from the other microgrids is not competitive in the energy trading market.
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Figure 8. (a) Bidding price and quantity of MG 4; (b) actual trading price of MG 4.

MG 9, which contains a large installed capacity of wind and solar power, has surplus energy
throughout the whole trading cycle, and its bidding quantity is represented by the green bars in
Figure 9. As a clean and cheap energy resource, the surplus energy injected into the market is urgently
needed during specific intervals. From Figure 9, it can be observed that MG 9 reaches deals with other
microgrids in almost all the time slots in peak and flat intervals. This trading result has greatly relieved
the problem of the high energy supply pressure on the grid in peak periods. In the valley period for
energy consumption, surplus energy is discarded or sold to the grid at a very low price.
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Figure 9. (a) Bidding price and quantity of MG 9; (b) actual trading price of MG 9.

The trading performance of MG 12 is shown in Figure 10, as MG 12 plays different roles in
different time slots in a trading cycle. The detailed trading performance of MG 12 between the 9th and
32nd time slot is presented in Figure 10b, in which the buyer and seller intervals are differentiated by
two background colors. When the PMWBS is applied, MG 12 has a good performance in both roles:
it purchases clean energy from MG 8 and MG 13 at the 12th and 22nd time slot, respectively, to reduce
cost; meanwhile, it successfully sells surplus energy to other microgrids to raise its profit. The overall
profit of MG 12 is significantly increased from 421.2 CNY/day to 581.0 CNY/day.
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Figure 10. (a) Actual trading price of MG 12 in a 24 h trading cycle; (b) detailed trading performance
of MG 12 between the 9th and 32rd time slot.

4.2.2. Preference Analysis for Trading Target

The detailed performance of MG 3, MG 4, MG 8, MG 10, and MG 13 in different price intervals
are given in Table 1. The percentage below the price indicates the proportion of the trading quantity
from P2P energy trading. Individual energy trading habits and market sensitivities are reflected in
the results: some microgrids prefer to trade with a certain target because they might be closer in
geographical location, or their willingness to trade with each other is strong. As shown in Table 1,
MG 3 prefers the clean energy of MG 13, though sometimes the trading price is higher than the market
average. MG 4 likes to try different trading targets as long as it can gain more profit. One seller could
be chosen by multiple buyers, but in most of the time slots, it is popular in the market as its clean
energy is always sold out. Combining these results with Figure 5, it can be seen that the proposed P2P
energy trading mechanism contributes to energy transactions in smaller regions, which will evidently
reduce the energy loss caused by long-distance energy transmission. Furthermore, it helps to increase
the utilization of RES inside the distribution network and reduce energy waste.

Table 1. Trading target and price of five microgrids in different price intervals.

Time Slot Item MG 3 MG 4 MG 8 MG 10 MG 13

9th
Target MG 13/Grid MG 10/Grid MG 6 MG 4 MG 3/MG 5/MG 6

Price 0.527/0.744 0.485/0.744 0.490 0.485 0.527/0.500/0.489
(CNY/kWh) (26.9%) (46.0%) (100.0% ) (100.0%) (11.9%/19.7%/68.4%)

22nd
Target MG 13/Grid MG 8 MG 4/MG 5 Grid MG 3

Price 0.696/1.197 0.711 0.711/0.691 0.300 0.696
(CNY/kWh) (99.8%) (100.0%) (84.1%/15.9%) (-) (100.0%)

33rd
Target Grid MG 9 Grid Grid Grid

Price 0.356 0.324 0.300 0.300 0.300
(CNY/kWh) (-) (100.0%) (-) (-) (-)

4.2.3. Quantity Analysis on P2P Energy Trading

Based on the bidding results in this distribution network, the quantity of traded energy from the
proposed P2P energy trading platform in a day can be calculated. As shown in Table 2, almost all
the microgrids can complete successful transactions in the P2P bidding process. Buyer microgrids
are able to obtain different proportions of clean energy from other surplus microgrids and vice versa.
Specifically, the results show that MG 10 can purchase 15.2 kWh of energy (22.6% of the demand)
from other microgrids and sell 608.0 kWh of energy (50.3% of the surplus production) for more profits.
What is important is that all of the energy sources are renewable and clean. In this case, 49.1% of the
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overall energy demand is supplied by clean energy produced within this distribution network, and
52.6% of the surplus energy is sold to neighboring microgrids, which reduces the loss of energy from
long-distance power transmission. This indicates that the proposed P2P energy trading mechanism
enables unrestrained decision making of energy sources in the decentralized energy interaction.

Table 2. Proportion quantity of traded energy from P2P energy trading.

MG 1 MG 2 MG 3 MG 4 MG 5 MG 6 MG 7

Input Before (kWh) 530.0 351.3 1540.7 1747.2 2840.3 6787.7 2167.5

Input From P2P (kWh) 267.7 146.7 617.2 956.6 1703.8 3346.7 957.8
(50.5%) (41.8%) (40.1%) (54.8%) (60.0%) (49.3%) (44.2%)

Output Before (kWh) - - - - - - -

Output from P2P (kWh) - - - - - - -
(-) (-) (-) (-) (-) (-) (-)

MG 8 MG 9 MG 10 MG 11 MG 12 MG 13 MG 14

Input Before (kWh) - - 67.2 395.7 46.6 - 142.1

Input From P2P (kWh) - - 15.2 96.3 0 - 53.17
(-) (-) (22.6%) (24.3%) (0%) (-) (37.4%)

Output Before (kWh) 3754.1 1640.0 1208.2 813.5 1570.3 4427.7 2088.5

Output From P2P (kWh) 2364.0 1297.7 608.0 0 726.9 2545.2 619.5
(63.0%) (79.1%) (50.3%) (0%) (46.3%) (57.5%) (29.7%)

4.2.4. Profit Analysis on Two Energy-Trading Mechanisms

Table 3 shows the profit from the energy-trading mechanism without and with peer-to-peer energy
trading (P2PET). The negative value of the profit indicates the cost paid to the grid and other microgrids
through P2P energy trading platform. A significant increase can be observed for all 14 microgrids.
The buyer microgrids are able to raise their profits by an average of 21.4%. More profit growth can be
achieved by seller microgrids (like MG 8 (49.8%) and MG 9 (64.3%)), as clean energy at a price lower
than the grid is in urgent need in the distribution network, but the trading price has been far higher
than the purchase price of the grid. A 61.5% rise in the overall profits can be achieved by applying
P2PET compared with the traditional energy trading mechanism.

Table 3. Contrast of profits between two mechanisms of energy trading.

MG 1 MG 2 MG 3 MG 4 MG 5 MG 6 MG 7

Profit without P2PET (CNY) −428.3 −281.5 −1224.7 −1429.4 −1989.0 −4542.4 −1516.6
Profit with P2PET (CNY) −340.9 −230.0 −993.5 −1090.6 −1483.0 −3539.1 −1199.6

Growth Rate 20.4% 18.3% 18.9% 23.7% 25.4% 22.1% 20.9%

MG 8 MG 9 MG 10 MG 11 MG 12 MG 13 MG 14

Profit without P2PET (CNY) 1126.2 491.9 295.4 −110.1 421.2 1328.3 515.6
Profit with P2PET (CNY) 1687.4 808.4 459.3 −70.5 581.0 1874.2 708.4

Growth Rate 49.8% 64.3% 55.5% 36.0% 37.9% 41.1% 37.4%

In summary, the presented peer-to-peer energy trading among microgrids is capable of raising
profits and improving the utilization of RES through a decentralized energy trading method as a result
of considering multiple dimensions of willingness and the personalized preferences of the microgrids.

5. Conclusions

To enable the weakly centralized operation of microgrids in a distribution network, a peer-to-peer
energy trading mechanism, including scheduling, bidding, exchange, and settlement, was developed
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to facilitate non-cooperative clean energy transactions. Based on a three-layer distribution network
architecture and the decentralization characteristics of a blockchain, a parallel bidding framework
was designed to support multi-initial-condition energy trading among microgrids. Counter behavior,
time pressure, and other dimensions of willingness were modeled to mimic the dynamic attitude
fluctuation in the bidding process. By simulating a multi-agent system on a private Ethereum
blockchain, the results of a realistic case from Guizhou Province show that the proposed parallel
multidimensional bidding strategy is capable of making reasonable negotiation decisions and has
learning ability. The microgrids with counter behavior can detect abnormal price control behaviors
of their opponents and take appropriate countermeasures. In addition, the setting of time pressure
promotes the closing of deals before the deadline. It can be observed that different percentages of
profit growth are achieved by microgrids under personalized preferences and demands. A 61.5%
growth of the overall profits can be achieved compared with the traditional energy trading mechanism.
Also, 22.6% of the demand and 50.3% of the surplus production are satisfied by local DERs, avoiding
large line-losses from power transmission and the underutilization of RESs. The proposed P2P energy
trading mechanism and corresponding blockchain platform can be applied to more local energy
markets in the future EI.

Although excellent results were acquired in the case studies, there are still some limitations and
deficiencies to be discussed. As for the parallel bidding framework, it is hard to measure the impact
of trading quantity fluctuations. Moreover, if the supply-demand relationship of the energy market
changes dynamically due to the application of large-capacity energy storage, the bid and asking price
in the trading process might not be monotonous. Future work will be focused on solving the above
problems and the design of the P2P energy future market. Besides, a series of policy reforms and the
market access of ICT (e.g., blockchain, cryptocurrency) are still required before the P2P energy trading
becomes a reality. The role that the distribution network operator plays in the weakly centralized
energy market and related service pricing are also key points to be studied in the future.
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Appendix A. Distributed Power Flow Calculation and Congestion Price Formation

For P2P energy trading among microgrids, constraints on power flow are important physical
constraints to be considered, which means that the power flow calculation and congestion management
should be implemented before real-time energy consumption. In the traditional distribution networks,
these two processes are accomplished by centralized aggregators, requiring a great number of
computing resources.

So, in the proposed P2P energy trading mechanism, the calculation of power flow was made
in a distributed computation pattern based on a blockchain, as introduced in Reference [35]. MGOs
calculate the power flow of lines linked with themselves in a distributed way according to temporary
bidding results and local line parameters and compare the result with the maximum power flow of
lines to verify whether the bidding results pass the safety check. As for congestion management,
the commonly adopted method of centralized cuts in transaction requests is no longer applicable.
Furthermore, the modification of deals that have already reached consensus will cause the rollback and
branching of a blockchain, which is contrary to the design concept of a blockchain. A price variable
called the congestion price was designed to reflect the severity of power line congestion and the extent
of each transaction’s impact on overall congestion. The initial congestion price from microgrid i to j
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was set as 0. If the bidding result does not pass the safety check, the congestion price will be updated
according to the following equation:

πt,r+1
ij = πt,r

ij + ωt ∑
l∈L

|Pl − Pl max|
|Pl max|

(A1)

where πt,r
ij represents the congestion price at round r in time slot t. L is the set of lines that power the

transaction from MG i to MG j and contributes to congestion. Pl is the actual power on line l, Plmax is
the maximum power that line l can hold. ωt is the congestion coefficient that varies with time slots
and actual congestion situations. As shown in Figure 3, the congestion price is added to the base price
in each application of the bidding game, which has a huge impact on the target trading microgrid and
expected trading quantity. The iteration ends when all the bidding applications in the list pass the
safety check.

Appendix B. Supplementary Case Data from the Guizhou Grid, China

The distance matrix of 14 microgrids in Guizhou Grid, China, is given in Table A1, which
indicates the distance between any two microgrids in this distribution network. The transmission
price is 2 × 10−5 CNY/(kWh · km). Each kWh of energy purchased from the grid is charged at
peak/flat/valley price formulated by the Guizhou Grid, which divides a day into three types of time
intervals, as shown in Table A2. The power of 14 microgrids in Guizhou Province, China, is presented
in Figure A1.

Table A1. Distance matrix of 14 microgrids in the Guizhou Grid (km).

i

Dij j
1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 10.2 14.5 149.7 162 171.1 50.3 21.6 175.0 178.2 182.3 75 184.3 119.6
2 10.2 0 17.9 159.2 171.9 183.4 60.1 17 183.2 188.3 192 85.6 197.2 131
3 14.5 17.9 0 165.3 177 185.3 5.6 24.8 186.8 193.5 196 91.7 202.9 135.2
4 149.7 159.2 165.3 0 12.1 220.5 102.6 175 22.7 27.1 231.5 125.2 234.9 172
5 162 171.9 177 12.1 0 232 112.2 187.3 34.8 39.3 242.6 137 247.5 182.4
6 171.1 183.4 185.3 220.5 232 0 122.4 95.9 242 247.7 10.2 145.6 15 192.1
7 50.3 60.1 5.6 102.6 112.2 122.4 0 75.2 122.3 127.8 130.5 25 135.9 70.4
8 21.6 17 24.8 175 187.3 95.9 75.2 0 197.1 202.3 205.7 100.4 213.8 145
9 175.0 183.2 186.8 22.7 34.8 242 122.3 197.1 0 36.2 252.3 147.6 257 192.9

10 178.2 188.3 193.5 27.1 39.3 247.7 127.8 202.3 36.2 0 257 152.4 262.6 197
11 182.3 192 196 231.5 242.6 10.2 130.5 205.7 252.3 257 0 155.1 15.9 204.7
12 75 85.6 91.7 125.2 137 145.6 25 100.4 147.6 152.4 155.1 0 160.5 95.1
13 184.3 197.2 202.9 234.9 247.5 15 135.9 213.8 257 262.6 15.9 160.5 0 205.7
14 119.6 131 135.2 172 182.4 192.1 70.4 145 192.9 197 204.7 95.1 205.7 0

Table A2. Peak/flat/valley electricity price formulated by the Guizhou Grid.

Time Interval Interval Type Price (CNY/kWh)

08:00–11:00, 18:00–21:00 Peak 1.197
06:00–08:00, 11:00–18:00, 21:00–22:00 Flat 0.744

22:00–06:00 Valley 0.356
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Figure A1. Power of 14 microgrids in Guizhou Province, China.
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