A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts
Abstract
:1. Introduction
2. Chemical Structure of Lignin
3. Microwave Assisted Lignin Liquefaction in Hydrogen Donor Solvents
3.1. Effect of Solvents
3.1.1. Hydrogen Donor Solvent of Single Components
3.1.2. Hydrogen Donor Solvent of Multi-Component
3.2. Effect of Catalysts
3.2.1. Homogeneous Catalyst
3.2.2. Heterogeneous Catalyst
4. Conventional Lignin Liquefaction in Hydrogen Donor Solvents
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Li, C.; Zhao, X.; Wang, A.; Huber, G.W.; Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 2015, 115, 11559–11624. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, R.; Jastrzebski, R.; Clough, M.T.; Ralph, J.; Kennema, M.; Bruijnincx, P.C.; Weckhuysen, B.M. Paving the way for lignin valorisation: Recent advances in bioengineering, biorefining and catalysis. Angew. Chem. Int. Ed. 2016, 55, 8164–8215. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.P.; Ngo, H.H.; Guo, W. A mini review on renewable sources for biofuel. Bioresour. Technol. 2014, 169, 742–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Ruiz, J.C.; Luque, R.; Sepulveda-Escribanoa, A. Transformations of biomass-derived platform molecules: From high added-value chemicals to fuels via aqueous-phase processing. Chem. Soc. Rev. 2011, 40, 5266–5281. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, R.; Palkovits, R.; Schuth, F. Depolymerization of cellulose using solid catalysts in ionic liquids. Angew. Chem. Int. Ed. 2008, 47, 8047–8050. [Google Scholar] [CrossRef] [PubMed]
- Gosselink, R.J.A.; de Jong, E.; Guran, B.; Abacherli, A. Co-ordination network for lignin-standardisation, production and applications adapted to market requirements. Ind. Crops Prod. 2004, 20, 121–129. [Google Scholar] [CrossRef]
- Fan, L.L.; Zhang, Y.N.; Liu, S.Y.; Zhou, N.; Chen, P.; Cheng, Y.L.; Addy, M.; Lu, Q.; Omar, M.M.; Liu, Y.H.; et al. Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters. Bioresour. Technol. 2017, 241, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Effendi, A.; Gerhauser, H.; Bridgwater, A.V. Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renew. Sustain. Energy Rev. 2008, 12, 2092–2116. [Google Scholar] [CrossRef]
- Wen, J.L.; Xue, B.L.; Xu, F.; Sun, R.C.; Pinkert, A. Unmasking the structural features and property of lignin from bamboo. Ind. Crops Prod. 2013, 42, 332–343. [Google Scholar] [CrossRef]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Avison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M. Lignin valorization: Improving lignin processing in the biorefinery. Science 2014, 344, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.H.; Pan, H.; Zhou, Y.H.; Zhang, M. Methods to improve lignin’s reactivity as a phenol substitute and as replacement for other phenolic compounds: A brief review. BioResources 2011, 6, 3515–3525. [Google Scholar]
- Naik, S.N.; Goud, V.V.; Rout, P.K.; Dalai, A.K. Production of first and second generation biofuels: A comprehensive review. Renew. Sustain. Energy Rev. 2010, 14, 578–597. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Dobado, J.A. Lignin as renewable raw material. ChemSusChem 2010, 3, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, D.; Westover, T.L.; Czernik, S.; Jablonski, W. Biomass feedstocks for renewable fuel production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 2014, 16, 384–406. [Google Scholar] [CrossRef]
- Li, H.; Qu, Y.; Xu, J. Microwave-assisted conversion of lignin. In Production of Biofuels and Chemicals with Microwave; Zhen, F., Richard, L.S., Jr., Qi, X.H., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 3, pp. 61–82. ISBN 978-94-017-9611-8. [Google Scholar]
- Shen, D.; Jin, W.; Hu, J.; Xiao, R.; Luo, K. An overview on fast pyrolysis of the main constituents in lignocellulosic biomass to valued-added chemicals: Structures, pathways and interactions. Renew. Sustain. Energy Rev. 2015, 51, 761–774. [Google Scholar] [CrossRef]
- Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sustain. Energy Rev. 2013, 21, 506–523. [Google Scholar] [CrossRef]
- Kang, S.; Li, X.; Fan, J.; Chang, J. Hydrothermal conversion of lignin: A review. Renew. Sustain. Energy Rev. 2013, 27, 546–558. [Google Scholar] [CrossRef]
- Duan, D.L.; Wang, Y.P.; Ruan, R.; Tayier, M.; Dai, L.L.; Zhao, Y.F.; Zhou, Y.; Liu, Y.H. Comparative study on various alcohols solvolysis of organosolv lignin using microwave energy: Physicochemical and morphological properties. Chem. Eng. Process. 2018, 126, 38–44. [Google Scholar] [CrossRef]
- Tayier, M.; Duan, D.L.; Zhao, Y.F.; Ruan, R.; Wang, Y.P.; Liu, Y.H. Catalytic effects of various acids on microwave assisted depolymerization of organosolv lignin. Bioresource 2018, 13, 412–424. [Google Scholar] [CrossRef]
- Zou, R.; Zhao, Y.F.; Wang, Y.P.; Duan, D.L.; Fan, L.L.; Dai, L.L.; Liu, Y.H.; Ruan, R.S. Microwave-assisted depolymerization of lignin with metal chloride in a hydrochloric acid and formic acid system. Bioresource 2018, 13, 3704–3719. [Google Scholar] [CrossRef]
- Toledano, A.; Serrano, L.; Pineda, A.; Romero, A.A.; Luque, R.; Labidi, J. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: Catalyst screening. Appl. Catal. B: Environ. 2014, 145, 43–55. [Google Scholar] [CrossRef]
- Shen, D.K.; Liu, N.N.; Dong, C.J.; Xiao, R.; Gu, S. Catalytic solvolysis of lignin with the modified HUSYs in formic acid assisted by microwave heating. Chem. Eng. J. 2015, 270, 641–647. [Google Scholar] [CrossRef]
- Milovanovic, J.; Rajic, N.; Romero, A.A.; Li, H.K.; Shih, K.; Tschentscher, R.; Luque, R. Insights into the microwave-assisted mild deconstruction of lignin feedstocks using NiO-containing ZSM-5 zeolites. ACS Sustain. Chem. Eng. 2016, 4, 4305–4313. [Google Scholar] [CrossRef]
- Xiao, W.; Han, L.; Zhao, Y. Comparative study of conventional and microwave-assisted liquefaction of corn stover in ethylene glycol. Ind. Crops Prod. 2011, 34, 1602–1606. [Google Scholar] [CrossRef]
- Ma, Q.Z.; Liu, Q.Y.; Li, W.Z.; Ma, L.L.; Wang, J.D.; Liu, M.H.; Zhang, Q. Catalytic depolymerization of lignin for liquefied fuel at mild condition by rare earth metals loading on CNT. Fuel Process. Technol. 2017, 161, 220–225. [Google Scholar] [CrossRef]
- Salema, A.A.; Ani, F.N. Microwave induced pyrolysis of oil palm biomass. Bioresour. Technol. 2011, 102, 3388–3395. [Google Scholar] [CrossRef] [PubMed]
- Shu, R.Y.; Long, J.X.; Xu, Y.; Ma, L.L.; Zhang, Q.; Wang, T.J.; Wang, C.G.; Yuan, Z.Q.; Wu, Q.Y. Investigation on the structural effect of lignin during the hydrogenolysis process. Bioresour. Technol. 2016, 200, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhuang, Y.; Chen, L.; Liu, J.; Li, D.; Ye, N. Process optimization for microwave assisted direct liquefaction of Sargassum polycystum, C. agardh using response surface methodology. Bioresour. Technol. 2012, 120, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.B.; Zhuang, Y.B.; Li, Y.; Chen, L.M.; Guo, J.X.; Li, D.M.; Ye, N.H. Optimizing the conditions for the microwave-assisted direct liquefaction of Ulva prolifera for bio-oil production using response surface methodology. Energy 2013, 60, 69–76. [Google Scholar] [CrossRef]
- Podschun, J.; Saake, B.; Lehnen, R. Catalytic demethylation of organosolv lignin in aqueous medium using indium triflate under microwave irradiation. React. Funct. Polym. 2017, 119, 82–86. [Google Scholar] [CrossRef]
- Zhou, L.; Budarin, V.; Fan, J.J.; Sloan, R.; Macquarrie, D. Efficient method of lignin isolation using microwave-assisted acidolysis and characterization of the residual lignin. ACS Sustain. Chem. Eng. 2017, 5, 3768–3774. [Google Scholar] [CrossRef]
- Bundhoo, Z.M.A. Microwave-assisted conversion of biomass and waste materials to biofuels. Renew. Sustain. Energy Rev. 2018, 82, 1149–1177. [Google Scholar] [CrossRef]
- Xu, C.; Arancon, R.A.D.; Labidid, J.; Luque, R. Lignin depolymerisation strategies-Towards valuable chemicals and fuels. Chem. Soc. Rev. 2014, 43, 7485–7500. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D. Lignin as a base material for materials applications: Chemistry, application and economics. Ind. Crops Prod. 2008, 27, 202–207. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.B.; Wang, J.Z.; Shen, D.K.; Xue, J.T.; Guan, S.P.; Gu, S.; Luo, K.H. Catalytic oxidation of lignin in solvent systems for production of renewable chemicals: A review. Polymers 2017, 9, 240. [Google Scholar] [CrossRef]
- Lange, H.; Decina, S.; Crestini, C. Oxidative upgrade of lignin—Recent routes reviewed. Eur. Polym. J. 2013, 49, 1151–1173. [Google Scholar] [CrossRef] [Green Version]
- Behling, R.; Valange, S.; Chatel, G. Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: What results? What limitations? What trends? Green Chem. 2016, 18, 1839–1854. [Google Scholar] [CrossRef]
- Bu, Q.; Lei, H.; Ren, S.; Wang, L.; Zhang, Q.; Tang, J.; Ruan, R. Production of phenols and biofuels by catalytic microwave pyrolysis of lignocellulosic biomass. Bioresour. Technol. 2012, 108, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.H.; Sharma, B.K.; Liu, P.; Xia, H.H.; Xu, J.M.; Jiang, J.C. Microwave assisted depolymerization of alkaline lignin over hydrotalcite-based CuNiAl mixed oxides. ACS Sustain. Chem. Eng. 2018, 6, 11519–11528. [Google Scholar] [CrossRef]
- Toledano, A.; Serrano, L.; Labidi, J.; Pineda, A.; Balu, A.M.; Luque, R. Heterogeneously catalysed mild hydrogenolytic depolymerisation of lignin under microwave irradiation with hydrogen-donating solvents. ChemCatChem 2013, 5, 977–985. [Google Scholar] [CrossRef]
- Liu, Q.; Li, P.F.; Liu, N.N.; Shen, D.K. Lignin depolymerization to aromatic monomers and oligomers in isopropanol assisted by microwave heating. Polym. Degrad. Stabil. 2017, 135, 54–60. [Google Scholar] [CrossRef]
- Dhar, P.; Vinu, R. Understanding lignin depolymerization to phenols via microwave-assisted solvolysis process. J. Environ. Chem. Eng. 2017, 5, 4759–4768. [Google Scholar] [CrossRef]
- Shao, L.P.; Zhang, Q.L.; You, T.T.; Zhang, X.M.; Xu, F. Microwave-assisted efficient depolymerization of alkaline lignin in methanol/formic acid media. Bioresour. Technol. 2018, 264, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.P.; Zhu, G.D.; Huang, X.Z.; Qiu, X.Q. Microwave assisted liquefaction of wheat straw alkali lignin for the production of monophenolic compounds. J. Energy Chem. 2015, 24, 72–76. [Google Scholar] [CrossRef]
- Duan, D.L.; Zhao, Y.F.; Fan, L.L.; Dai, L.L.; Lv, J.Q.; Ruan, R.; Wang, Y.P.; Liu, Y.H. Low-power microwave radiation-assisted depolymerization of ethanol organsolv lignin in ethanol/formic acid mixtures. Bioresources 2017, 12, 5308–5320. [Google Scholar] [CrossRef]
- Gosz, K.; Kosmela, P.; Hejna, A.; Gajowiec, G.; Piszczyk, L. Biopolyols obtained via microwave-assisted liquefaction of lignin: Structure, rheological, physical and thermal properties. Wood Sci. Technol. 2018, 52, 599–617. [Google Scholar] [CrossRef]
- Zhu, G.D.; Lin, M.L.; Fan, D.; Ning, W.S.; Ouyang, X.P.; Qian, Y.; Qiu, X.Q. Effect of benzyl functionality on microwave-assisted cleavage of Cα-Cβ bonds in lignin model compounds. J. Phys. Chem. C 2017, 121, 1537–1545. [Google Scholar] [CrossRef]
- Zhu, G.D.; Jin, D.X.; Zhao, L.S.; Ouyang, X.P.; Chen, C.; Qiu, X.Q. Microwave-assisted selective cleavage of Cα-Cβ bond for lignin depolymerization. Fuel Process. Technol. 2017, 161, 155–161. [Google Scholar] [CrossRef]
- Li, Y.M.; Li, B.Z.; Du, F.L.; Wang, Y.; Pan, L.X.; Chen, D. Microwave-assisted hydrothermal liquefaction of lignin for the preparation of phenolic formaldehyde adhesive. J. Appl. Polym. Sci. 2017, 134, 44510–44517. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, J.; Hse, C.; Shupe, T.F. Renewable chemical feedstocks from integrated liquefaction processing of lignocellulosic materials using microwave energy. Green Chem. 2012, 14, 2821–2830. [Google Scholar] [CrossRef]
- Kim, H.G.; Park, Y. Manageable conversion of lignin to phenolic chemicals using a microwave reactor in the presence of potassium hydroxide. Ind. Eng. Chem. Res. 2013, 52, 10059–10062. [Google Scholar] [CrossRef]
- Sequeiros, A.; Serrano, L.; Briones, R.; Labidi, J. Lignin liquefaction under microwave heating. J. Appl. Polym. Sci. 2013, 130, 3292–3298. [Google Scholar] [CrossRef]
- Xie, J.L.; Qi, J.Q.; Hse, C.Y.; Shupe, T.F. Effect of lignin derivatives in the bio-polyols from microwave liquefied bamboo on the properties of polyurethane foams. Bioresources 2014, 9, 578–588. [Google Scholar] [CrossRef]
- Huang, X.Y.; De Hoop, C.F.; Xie, J.L.; Hse, C.Y.; Qi, J.Q.; Hu, T.X. Characterization of biobased polyurethane foams employing lignin fractionated from microwave liquefied switchgrass. Int. J. Polym. Sci. 2017. [Google Scholar] [CrossRef]
- Limarta, S.O.; Ha, J.M.; Park, Y.K.; Lee, H.; Suh, D.J.; Jae, J. Efficient depolymerization of lignin in supercritical ethanol by a combination of metal and base catalysts. J. Ind. Eng. Chem. 2018, 57, 45–54. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, J.; Kim, U.J.; Choi, J.W. Conversion of lignin to phenol-rich oil fraction under supercritical alcohols in the presence of metal catalysts. Energy Fuels 2015, 29, 5154–5163. [Google Scholar] [CrossRef]
- Kim, M.; Son, D.; Choi, J.W.; Jae, J.; Suh, D.J.; Ha, J.M.; Lee, K.Y. Production of phenolic hydrocarbons using catalytic depolymerization of empty fruit bunch (EFB)-derived organosolv lignin on H beta-supported Ru. Chem. Eng. J. 2017, 309, 187–196. [Google Scholar] [CrossRef]
- Kloekhorst, A.; Shen, Y.; Yie, Y.; Fang, M.; Heeres, H.J. Catalytic hydrodeoxygenation and hydrocracking of Alcell (R) lignin in alcohol/formic acid mixtures using a Ru/C catalyst. Biomass Bioenergy 2015, 80, 147–161. [Google Scholar] [CrossRef]
- Huang, S.H.; Mahmood, N.; Zhang, Y.S.; Tymchyshyn, M.; Yuan, Z.S.; Xu, C. Reductive de-polymerization of kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts. Fuel 2017, 209, 579–586. [Google Scholar] [CrossRef]
- Shu, R.Y.; Zhang, Q.; Ma, L.L.; Xu, Y.; Chen, P.R.; Wang, C.G.; Wang, T.J. Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin. Bioresour. Technol. 2016, 221, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.J.; Huang, P.L.; Wen, J.L.; Sun, R.C. A facile method for char elimination during base-catalyzed depolymerization and hydrogenolysis of lignin. Fuel Process. Technol. 2017, 167, 491–501. [Google Scholar] [CrossRef]
- Hidajat, M.J.; Riaz, A.; Park, J.; Insyani, R.; Verma, D.; Kim, J. Depolymerization of concentrated sulfuric acid hydrolysis lignin to high-yield aromatic monomers in basic sub- and supercritical fluids. Chem. Eng. J. 2017, 317, 9–19. [Google Scholar] [CrossRef]
Feedstock | Reaction Conditions | Catalysts | Products | Reference |
---|---|---|---|---|
Ethanol organsolv lignin | alcohols, S/L = 24:1, 100 W, 160 °C, 30 min | H2SO4 | bio-oil, solid residual | [19] |
Lignin fromolive tree | tetralin or formic acid, S/L = 25:1, 400 W, 140 °C, 30 min | Ni/Al-SBA | guaiacol and syringol-type compounds | [22] |
Lignin fromblack liquor | formic acid, 24:1, 600 W, 130 °C, 30 min | HUSY | bio-oil (monophenol, oligomer) | [23] |
Biolignin, eucalyptus and hardwood lignins | formic acid, S/L = 24:1, 400 W, 180 °C, 60 min | NiO/H-ZSM-5 | bio-oil (mesitol, banillin), biochar | [24] |
Biochoice lignin | dioxand-methtanol, S/L = 30:1, 200–280 °C, 30–180 min | Ce/CNT, La/CNT | liquefied fuel, oligomers | [26] |
Biomass from China | ethylene glycol, S/L = 18.5:1, 130–170 °C, 0–35 min | H2SO4 | bio-oil (fatty acid methyl ester, alkane) | [29] |
Organosolv lignin | water-sulfolane, S/L = 20:1, 275 °C, 30 min | indium triflate | methylated liquid product | [31] |
Alkaline lignin | methanol, S/L = 40:1, 400 W, 100–160 °C, 40–80 min | CuNiAl | bio-oil (monophenol, oligomer) | [41] |
Lignin from agricultural residues | tetralin, glycerol, formic acid or isopropanol, S/L = 25:1, 150 °C, 30 min | Ni/Al-SBA-15 | bio-oil, biochar, residual lignin | [42] |
Lignin from black liquor | isopropanol, S/L = 16:1, 600 W, 100–180 °C, 5–60 min | / | bio-oil, char | [43] |
Alkaline lignin | ethylene glycol, DMSO or DMF, S/L = 50:1, 600 W, 100–140 °C, 20–80 min | / | syringaldehyde, acetosyringone, etc. | [44] |
Alkaline lignin | methanol-formic acid, S/L = 24:1, 400 W, 120–180 °C, 15–45 min | / | bio-oil (monophenol, oligomer), residue | [45] |
Alkaline lignin | ethylene glycol-phenol, S/L = 20:1, 300 W, 100–180 °C, 10–60 min | H2SO4 | guaiacols, syringols | [46] |
Bamboo lignin | ethanol-formic acid, S/L = 24:1, 80 W, 100–200 °C, 20–60 min | / | bio-oil (guaiacol, vanillin, syringol, etc.) | [47] |
Lignin (Sigma-Aldrich) | glycerol, 1,4-butanediol, S/L = 5:1, 180 W, 130–170 °C, 5 min | / | biopolyols | [48] |
Lignin model compounds | methanol-water, 400 W, 140, 160 °C, 2–60 min | ferric sulfate | phenolic monomers | [49] |
Organosolv lignin | methanol-water, 160 °C, 30 min | ferric sulfate | vanillin, syringaldehyde, etc. | [50] |
Organosolv lignin | PEG, glycerol, S/L = 85:15, 155 °C, 5 min | H2SO4 | polyols | [55] |
Bamboo residues | methanol, glycerol, S/L = 4:1, 150 °C, 3 min | H2SO4 | bio-polyols | [56] |
Switchgrass | methanol-glycerol, S/L = 4:1, 155 °C, 5 min | H2SO4 | mixtures for polyurethane foams | [57] |
Feedstock | Reaction Conditions | Products | Reference |
---|---|---|---|
Kraft lignin | ethanol, Ru/C-MgO/ZrO2, 350 °C, 1 h, 10 bar N2 | bio-oil, containing 17.5% phenolic monomer | [57] |
Asian lignin | ethanol, Pt/C, 350 °C, 40 min, 3 MPa H2 | 77.4% of bio-oil, 3.7% char | [58] |
organosolv lignin | ethanol-water, Ru/H-Beta zeolite, 225 °C, 40 bar H2 | guaiacol, 4-methylguaiacol, 4-ethylguaiaco, etc. | [59] |
Alcell lignin | isopropanol-formic acid, Ru/C, 400 °C, 4 h | lignin oils (alkylphenolics, catechols, guaiacols, etc.) | [60] |
Kraft lignin | formic acid, 10%Ni/Zeolite, FHUDS-2, 200–300 °C, 1–3 h | de-polymerized lignin (1000–3000 g/mol) | [61] |
Hydrolyzed lignin | methanol, Pd/C and CrCl3, 300 °C, 4 h, 2 MPa H2 | bio-oil containing 26.3% monomers | [62] |
Organosolv lignin | isopropanol-water, Ru/C and NaOH, 260 °C, 1 h, 2 MPa H2 | 95.4% water-soluble, 6.4% char | [63] |
Sulfuric acid hydrolysis lignin, kraft lignin | H2O/ethanol, NaOH/KOH, 330 °C, 30 min; 1 MPa N2 | monomer, solid residue | [64] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Xu, J.; Jiang, J.; Sharma, B.K. A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts. Energies 2018, 11, 2877. https://doi.org/10.3390/en11112877
Zhou M, Xu J, Jiang J, Sharma BK. A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts. Energies. 2018; 11(11):2877. https://doi.org/10.3390/en11112877
Chicago/Turabian StyleZhou, Minghao, Junming Xu, Jianchun Jiang, and Brajendra K. Sharma. 2018. "A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts" Energies 11, no. 11: 2877. https://doi.org/10.3390/en11112877
APA StyleZhou, M., Xu, J., Jiang, J., & Sharma, B. K. (2018). A Review of Microwave Assisted Liquefaction of Lignin in Hydrogen Donor Solvents: Effect of Solvents and Catalysts. Energies, 11(11), 2877. https://doi.org/10.3390/en11112877