An Exploratory Eye-Tracking Study of Breast-Cancer Screening Ads: A Visual Analytics Framework and Descriptive Atlas
Abstract
1. Introduction
2. Literature Review
2.1. Early vs. Sustained Attention in Advertising and Health Messages
2.2. Visual Analytics of Eye-Tracking: Heatmaps, AOIs, and Scanpaths
2.3. Descriptive vs. Inferential Approaches in Neuromarketing
- RQ1 (Early Capture): Where does attention land first—by AOI and semantic category—and how concentrated is initial capture within each ad? (first-hit percentages and entry ranks).
- RQ2 (Sustained Attention): Which elements dominate dwell when contrasted pairwise within an ad (dwell-dominance matrices summarizing P[AOIi>AOIj])?
- RQ3 (Audience Shifts): How do early capture and dwell patterns shift across strata (age, household, and education)?
3. Research Methodology
3.1. Design, Apparatus, and Participants
3.2. Stimuli and Areas of Interest (AOIs)
3.3. Procedure and Measures
3.4. Data Processing and Visual Analytics Protocol
Pairwise Dwell Dominance (Key Analytic)
4. Data Analysis and Results
4.1. Preliminary Analysis
Further Visualizations
4.2. RQ1—Early Capture and First-Hit Distributions
4.3. RQ2—Sustained Attention and Dwell Dominance
4.3.1. AOI-Level Dwell Dominance (Per Ad)
4.3.2. Category-Level Dwell Dominance
4.4. RQ3—Subgroup Attention Patterns and Audience Shifts in Early Capture
Early vs. Sticky (Entry vs. Dwell)
4.5. Sanity Checks and Robustness
5. Discussion
5.1. RQ1—Early Capture (First Hit/TTFF)
5.2. RQ2—Sustained Attention (Dwell Dominance)
5.3. RQ3—Audience Shifts (Age, Household, and Education)
5.4. Implications for Theory
6. Practical Implications
6.1. For Policymakers and Government Agencies
6.2. For Business and Campaign Managers
6.3. For Educators and Health-Promotion Teams
6.4. Cross-Cutting Practices
7. Conclusions, Limitations, and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giordano, L.; Von Karsa, L.; Tomatis, M.; Majek, O.; De Wolf, C.; Lancucki, L.; Hofvind, S.; Nystrom, L.; Segnan, N.; Ponti, A. Mammographic Screening Programmes in Europe: Organization, Coverage and Participation. J. Med. Screen. 2012, 19, 72–82. [Google Scholar] [CrossRef]
- Orquin, J.L.; Holmqvist, K. A Primer on Eye-Tracking Methodology for Behavioral Science. In A Handbook of Process Tracing Methods: Second Edition; Taylor and Francis: Hoboken, NJ, USA, 2019; pp. 53–64. ISBN 9781351662765. [Google Scholar]
- Smith, D.; Thomson, K.; Bambra, C.; Todd, A. The Breast Cancer Paradox: A Systematic Review of the Association between Area-Level Deprivation and Breast Cancer Screening Uptake in Europe. Cancer Epidemiol. 2019, 60, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Chen-Sankey, J.; Weiger, C.; La Capria, K. Using Eye Tracking to Examine Young Adults’ Visual Attention to E-Cigarette Advertising Features and Associated Positive E-Cigarette Perceptions. Ann. Behav. Med. 2024, 58, 445–456. [Google Scholar] [CrossRef]
- Cardoso, R.; Hoffmeister, M.; Brenner, H. Breast Cancer Screening Programmes and Self-Reported Mammography Use in European Countries. Int. J. Cancer 2023, 152, 2512–2527. [Google Scholar] [CrossRef]
- Pedrós Barnils, N.; Härtling, V.; Singh, H.; Schüz, B. Sociodemographic Inequalities in Breast Cancer Screening Attendance in Germany Following the Implementation of an Organized Screening Program: Scoping Review. BMC Public Health 2024, 24, 2211. [Google Scholar] [CrossRef]
- Guo, R.; Kim, N.; Lee, J. Empirical Insights into Eye-Tracking for Design Evaluation: Applications in Visual Communication and New Media Design. Behav. Sci. 2024, 14, 1231. [Google Scholar] [CrossRef]
- Fisher, J.T.; Huskey, R.; Keene, J.R.; Weber, R. The Limited Capacity Model of Motivated Mediated Message Processing: Looking to the Future. Ann. Int. Commun. Assoc. 2018, 42, 291–315. [Google Scholar] [CrossRef]
- Trigoni, M.; Mahoney, M.C.; Moschandreas, J.; Tsiftsis, D.; Koumantakis, E.; Lionis, C. Approaches to Breast Cancer Screening among Primary Care Physicians in Rural Areas of Crete, Greece. J. Cancer Educ. 2011, 26, 490–496. [Google Scholar] [CrossRef]
- Totzkay, D.; Silk, K.J.; Thomas, B.D.H. Evaluating the Extended Parallel Process Model’s Danger Control Predictions in the Context of Dense Breast Notification Laws. Health Commun. 2022, 37, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Georga, D.; Zartaloudi, A.; Saridi, M.; Fradelos, E.C.; Rouka, E.; Sarafis, P.; Mastrogiannis, D.; Toska, A. Factors Determining Women’s Attitudes and Knowledge Toward Breast Cancer Screening: A Systematic Review. Healthcare 2025, 13, 1605. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.A.; Forthofer, M.S.; Mc Cormack-Brown, K.; Alfonso, M.L.; Quinn, G. A Social Marketing Approach to Increasing Breast Cancer Screening Rates. J. Health Educ. 2000, 31, 320–330. [Google Scholar] [CrossRef]
- Dobrenova, F.V.; Grabner-Kräuter, S.; Diehl, S.; Terlutter, R. The Use of Advertising Appeals in Breast Cancer Detection Messages: A Web Content Analysis. Women Health 2019, 59, 867–882. [Google Scholar] [CrossRef]
- Siev, J.J.; Williams, S.; Petty, R.E. Elaboration Likelihood Model. In The International Encyclopedia of Health Communication; Wiley: Hoboken, NJ, USA, 2022; pp. 1–6. [Google Scholar]
- Moudatsou, M.M.; Kritsotakis, G.; Alegakis, A.K.; Koutis, A.; Philalithis, A.E. Social Capital and Adherence to Cervical and Breast Cancer Screening Guidelines: A Cross-Sectional Study in Rural Crete. Health Soc. Care Community 2014, 22, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Deandrea, S.; Molina-Barceló, A.; Uluturk, A.; Moreno, J.; Neamtiu, L.; Peiró-Pérez, R.; Saz-Parkinson, Z.; Lopez-Alcalde, J.; Lerda, D.; Salas, D. Presence, Characteristics and Equity of Access to Breast Cancer Screening Programmes in 27 European Countries in 2010 and 2014. Results from an International Survey. Prev. Med. (Baltim.) 2016, 91, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Zielonke, N.; Kregting, L.M.; Heijnsdijk, E.A.M.; Veerus, P.; Heinävaara, S.; McKee, M.; de Kok, I.M.C.M.; de Koning, H.J.; van Ravesteyn, N.T.; Gredinger, G.; et al. The Potential of Breast Cancer Screening in Europe. Int. J. Cancer 2021, 148, 406–418. [Google Scholar] [CrossRef]
- Wedel, M.; Pieters, R. Eye Fixations on Advertisements and Memory for Brands: A Model and Findings. Mark. Sci. 2000, 19, 297–312. [Google Scholar] [CrossRef]
- Lam, C.; Huang, Z.; Shen, L. Infographics and the Elaboration Likelihood Model (ELM): Differences between Visual and Textual Health Messages. J. Health Commun. 2022, 27, 737–745. [Google Scholar] [CrossRef]
- Mahanama, B.; Jayawardana, Y.; Rengarajan, S.; Jayawardena, G.; Chukoskie, L.; Snider, J.; Jayarathna, S. Eye Movement and Pupil Measures: A Review. Front. Comput. Sci. 2022, 3, 733531. [Google Scholar] [CrossRef]
- Eskenazi, M.A. Best Practices for Cleaning Eye Movement Data in Reading Research. Behav. Res. Methods 2024, 56, 2083–2093. [Google Scholar] [CrossRef]
- Brigaud, E.; Lafont, A.; Blanc, N. Your Eyes Do Not Lie! Dissecting Humor Effects in Health Messages Using Eye Tracker Technology. Front. Public Health 2021, 9, 653584. [Google Scholar] [CrossRef]
- Li, Q.; Dong-Ling Wang, L.; Zhang, W. A Study of Parental Decision-Making over the Vaccination of Girls, Based on the Protection Motivation Theory and the Elaboration Likelihood Model. Front. Public Health 2022, 10, 1024399. [Google Scholar]
- Using Eye-Tracking Technology in Neuromarketing. Rom. J. Ophthalmol. 2023, 67, 2. [CrossRef]
- Gleichauf, K.; Wagner-Hartl, V.; Ackner, G.J.; Pfeffer, S. Understanding Visual Attention to Button Design Utilizing Eye-Tracking: An Experimental Investigation. Appl. Syst. Innov. 2025, 8, 27. [Google Scholar] [CrossRef]
- Yılmaz, N.G.; Timmermans, D.R.M.; Van Weert, J.C.M.; Damman, O.C. Breast Cancer Patients’ Visual Attention to Information in Hospital Report Cards: An Eye-Tracking Study on Differences between Younger and Older Female Patients. Health Inform. J. 2023, 29, 14604582231155279. [Google Scholar] [CrossRef]
- Pieters, R.; Wedel, M. Attention Capture and Transfer in Advertising: Brand, Pictorial, and Text-Size Effects. J. Mark. 2004, 68, 36–50. [Google Scholar] [CrossRef]
- Higgins, E.; Leinenger, M.; Rayner, K. Eye Movements When Viewing Advertisements. Front. Psychol 2014, 5, 210. [Google Scholar] [CrossRef]
- Loon, G.V.A.N.; Hermsen, F.; Naber, M. Predicting Product Preferences on Retailers’ Web Shops through Measurement of Gaze and Pupil Size Dynamics. J. Cogn. 2022, 5, 45. [Google Scholar] [CrossRef]
- Gianino, M.M.; Lenzi, J.; Bonaudo, M.; Fantini, M.P.; Siliquini, R.; Ricciardi, W.; Damiani, G. Organized Screening Programmes for Breast and Cervical Cancer in 17 EU Countries: Trajectories of Attendance Rates. BMC Public Health 2018, 18, 1236. [Google Scholar] [CrossRef] [PubMed]
- Mercincavage, M.; Sidhu, A.K.; Waugh, L.; Kreider, C.; Souprountchouk, V.; Delnevo, C.D.; Villanti, A.C.; Strasser, A.A. Effects of Pictorial Warning Labels Depicting Lesser-Known and Well-Known Risks of Smoking on Viewing Patterns, Recall, and Knowledge of Smoking Harms. Drug Alcohol. Depend. 2023, 251, 110939. [Google Scholar] [CrossRef]
- Bhatnagar, R.; Orquin, J.L. A Meta-Analysis on the Effect of Visual Attention on Choice. J. Exp. Psychol. Gen. 2022, 151, 2265–2283. [Google Scholar] [CrossRef] [PubMed]
- AbiGhannam, N.; Chilek, L.A.; Koh, H.E. Three Pink Decades: Breast Cancer Coverage in Magazine Advertisements. Health Commun. 2018, 33, 462–468. [Google Scholar] [CrossRef]
- Hooge, I.; Camps, G. Scan Path Entropy and Arrow Plots: Capturing Scanning Behavior of Multiple Observers. Front. Psychol. 2013, 4, 996. [Google Scholar] [CrossRef] [PubMed]
- Nelson, O.; Salawu, A. Effective Use of Media Awareness Campaigns for Breast Cancer Effective Use of Media Awareness Campaigns for Breast Cancer Care among Women: A Comparative Study Care among Women: A Comparative Study Effective Use of Media Awareness Campaigns for Breast Cancer Care among Women: A Comparative Study. J. Int. Women’s Stud. 2016, 17, 160–173. [Google Scholar]
- Duchowski, A.T.; Duchowski, A.T. Eye Tracking Methodology: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 3-319-57883-9. [Google Scholar]
- Rosenberger, W.F.; Lachin, J.M. Randomization in Clinical Trials: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Mohr, D.L.; Wilson, W.J.; Freund, R.J. Statistical Methods; Academic Press: New York, NY, USA, 2021; ISBN 0-323-89988-9. [Google Scholar]
- Carter, B.T.; Luke, S.G. Best Practices in Eye Tracking Research. Int. J. Psychophysiol. 2020, 155, 49–62. [Google Scholar] [CrossRef]
- Tobii, A.B. Tobii Pro Nano (Product Page—Discontinued). Available online: https://www.tobii.com/products/discontinued/tobii-pro-nano (accessed on 30 October 2025).
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; Oxford University Press: Oxford, UK, 2011; ISBN 0-19-162542-6. [Google Scholar]
- Olsen, A. The Tobii I-VT Fixation Filter. Tobii Technol. 2012, 21, 4–19. [Google Scholar]
- Komogortsev, O.V.; Gobert, D.V.; Jayarathna, S.; Gowda, S.M. Standardization of Automated Analyses of Oculomotor Fixation and Saccadic Behaviors. IEEE Trans. Biomed. Eng. 2010, 57, 2635–2645. [Google Scholar] [CrossRef]
- Orquin, J.L.; Ashby, N.J.S.; Clarke, A.D.F. Areas of Interest as a Signal Detection Problem in Behavioral Eye-tracking Research. J. Behav. Decis. Mak. 2016, 29, 103–115. [Google Scholar] [CrossRef]
- Peng-Li, D.; Mathiesen, S.L.; Chan, R.C.K.; Byrne, D.V.; Wang, Q.J. Sounds Healthy: Modelling Sound-Evoked Consumer Food Choice through Visual Attention. Appetite 2021, 164, 105264. [Google Scholar] [CrossRef]
- Cobb, D.P.; Jashami, H.; Hurwitz, D.S. Bicyclists’ Behavioral and Physiological Responses to Varying Roadway Conditions and Bicycle Infrastructure. Transp. Res. Part F Traffic Psychol. Behav. 2021, 80, 172–188. [Google Scholar] [CrossRef]
- Salvucci, D.D.; Goldberg, J.H. Identifying Fixations and Saccades in Eye-Tracking Protocols. In Proceedings of the 2000 Symposium on Eye Tracking Research & Applications; Association for Computing Machinery: New York, NY, USA, 2000; pp. 71–78. [Google Scholar]
- Friedrich, M.; Rußwinkel, N.; Möhlenbrink, C. A Guideline for Integrating Dynamic Areas of Interests in Existing Set-up for Capturing Eye Movement: Looking at Moving Aircraft. Behav. Res. Methods 2017, 49, 822–834. [Google Scholar] [CrossRef]
- Lacoste-Badie, S.; Yu, J.J.; Droulers, O. Do Health Warning Labels on Alcohol Packaging Attract Visual Attention? A Systematic Review. Public. Health 2024, 236, 184–192. [Google Scholar] [CrossRef]
- Rea, M.S. Toward a model of visual performance: Foundations and data. J. Illum. Eng. Soc. 1986, 15, 41–57. [Google Scholar] [CrossRef]
- Pasick, R.J.; Burke, N.J. A Critical Review of Theory in Breast Cancer Screening Promotion across Cultures. In Proceedings of the Annual Review of Public Health; Annual Reviews: Palo Alto, CA, USA, 2008; Volume 29, pp. 351–368. [Google Scholar]
- Bozorgi, N.; Khani, S.; Elyasi, F.; Moosazadeh, M.; Janbabaei, G.; Shojaee, L. A Review of Strategies to Promote Breast Cancer Screening Behaviors in Women. J. Maz. Univ. Med. Sci. 2018, 28, 243–255. [Google Scholar]











| Characteristic | N | Percentage | |
|---|---|---|---|
| Age group | 40–45 | 9 | 30.0% |
| 46–50 | 5 | 16.7% | |
| 51–55 | 7 | 23.3% | |
| 56–60 | 9 | 30.0% | |
| Household type | Married with children | 19 | 63.3% |
| Married without children | 3 | 10.0% | |
| Single with children | 3 | 10.0% | |
| Single without children | 5 | 16.7% | |
| Education | Primary school | 4 | 13.3% |
| Compulsory high school | 13 | 43.3% | |
| University | 7 | 23.3% | |
| Master’s degree and above | 6 | 20.0% |
| AOI Category | Description |
|---|---|
| Text | Headlines, body text, or captions |
| Symbol | Ribbons, hearts, symbolic elements (e.g., breast/statistics icons) |
| Image/Visual | Photographs, illustrations, or drawings |
| Logo | Corporate or organizational logos |
| Website | Stylized URLs or web references |
| Source/Authority | Institutions, endorsing bodies, or political figures |
| Ad. | AOI | AOI Category | Mean FC (n) | Median TTFF (ms) | Median FD (ms) |
|---|---|---|---|---|---|
| Ad1 | Ad1_WomansFace | Image | 8.3 | 143.12 | 123.13 |
| Ad1 | Ad1_Icon(ribbon) | Symbol | 2.06 | 634.84 | 462.24 |
| Ad1 | Ad1_HeadText | Text | 27.59 | 297.05 | 206.86 |
| Ad1 | Ad1_Icon(heart) | Symbol | 9.36 | 301.23 | 335.66 |
| Ad2 | Ad2_Icon(heart) | Symbol | 10.61 | 821.84 | 318.78 |
| Ad2 | Ad2_HeadText | Text | 2.82 | 458.08 | 224.83 |
| Ad2 | Ad2_Family | Image | 18.51 | 433.11 | 207.17 |
| Ad2 | Ad2_Icon(breasts) | Symbol | 18.83 | 111.16 | 299.67 |
| Ad2 | Ad2_Text | Text | 3.23 | 299.89 | 224.68 |
| Ad2 | Ad2_FofiGenimata | Source/Authority | 7.53 | 78.92 | 184.04 |
| Ad2 | Ad2_YpourgioYgeias | Source/Authority | 2.41 | 508.57 | 221.19 |
| Ad2 | Ad2_Kivernisi | Source/Authority | 22.73 | 280.79 | 205.72 |
| Ad3 | Ad3_HeadText | Text | 10.6 | 123.45 | 277.23 |
| Ad3 | Ad3_Icon(ribbon) | Symbol | 2.53 | 112.6 | 240.58 |
| Ad3 | Ad3_Icon1Statistics | Symbol | 21.81 | 538.07 | 198.74 |
| Ad3 | Ad3_SmallText1 | Text | 12.63 | 372.69 | 250.69 |
| Ad3 | Ad3_Icon2Statistics | Symbol | 2.16 | 299.57 | 187.76 |
| Ad3 | Ad3_SmallText2 | Text | 21.45 | 193.88 | 193.84 |
| Ad3 | Ad3_Icon3Statistics | Symbol | 10.13 | 352.98 | 308.84 |
| Ad3 | Ad3_SmallText3 | Text | 2.23 | 961.78 | 217.58 |
| Ad3 | Ad3_BusinessWesbsite(Ygeia) | Source/Authority | 20.93 | 98.67 | 220.25 |
| Ad3 | Ad3_BusinessLogo(Ygeia) | Logo | 15.71 | 157.89 | 346.89 |
| Ad4 | Ad4_Picture(womanhand-drawn) | Image | 6.05 | 171.52 | 486.3 |
| Ad4 | Ad4_HeadText | Text | 2.16 | 440.88 | 463.63 |
| Ad4 | Ad4_Icon(breast) | Symbol | 29.55 | 496.68 | 463.4 |
| Ad4 | Ad4_Text | Text | 9.61 | 601.52 | 237.21 |
| Ad4 | Ad4_BusinessWebsite(AlphaBank) | Website | 7.45 | 32.52 | 187.21 |
| Ad4 | Ad4_BusinessLogo(AlphaBank) | Logo | 12.36 | 245.7 | 354.88 |
| Ad5 | Ad5_HeadText | Text | 10.56 | 403.93 | 235.88 |
| Ad5 | Ad5_Picture(magnifier/breasts) | Image | 2.86 | 324.59 | 203.79 |
| Ad5 | Ad5_Text | Text | 15.43 | 489.78 | 173.55 |
| Ad5 | Ad5_BusinessWebsite(ProtoTheme) | Website | 13.2 | 331.81 | 178.45 |
| Ad5 | Ad5_BusinessLogo(ProtoThema) | Logo | 6.2 | 255.91 | 240.44 |
| Ad6 | Ad6_Headtext | Text | 16.81 | 75.85 | 273.37 |
| Ad6 | Ad6_Icon(ribbon) | Symbol | 23.3 | 231.66 | 211.28 |
| Ad6 | Ad6_picture(fist) | Image | 13.95 | 90.45 | 212.45 |
| Ad6 | Ad6_IconswithText | Text | 12.32 | 42.01 | 294.1 |
| Ad6 | Ad6_Website | Website | 2.87 | 37.12 | 196.83 |
| Ad6 | Ad6_FofiGenimata | Source/Authority | 16.49 | 76.11 | 202.77 |
| Ad6 | Ad6_YpourgioYgeias | Source/Authority | 2.21 | 63.21 | 153.21 |
| Ad6 | Ad6_Kivernisi | Source/Authority | 15.21 | 53.2 | 743.23 |
| Ad | AOI Category | First-Hit % | Median TTFF (ms) |
|---|---|---|---|
| Ad1 | Image | 33.3 | 29 |
| Symbol | 63.3 | 188 | |
| Text | 3.3 | 53 | |
| Ad2 | Image | 6.7 | 52 |
| Source/Authority | 50.0 | 33 | |
| Symbol | 6.7 | 58 | |
| Text | 36.7 | 27 | |
| Ad3 | Logo | 13.3 | 18 |
| Source/Authority | 6.7 | 51 | |
| Symbol | 50.0 | 30 | |
| Text | 30.0 | 41 | |
| Ad4 | Image | 30.0 | 2906 |
| Logo | 10.0 | 137 | |
| Source/Authority | 0.0 | 48 | |
| Symbol | 20.0 | 194 | |
| Text | 16.7 | 55 | |
| Website | 23.3 | 18 | |
| Ad5 | Image | 36.7 | 31 |
| Logo | 16.7 | 296 | |
| Symbol | 3.3 | 29 | |
| Text | 30.0 | 41 | |
| Website | 13.3 | 1187 | |
| Ad6 | Image | 0.0 | 203 |
| Logo | 0.0 | 45 | |
| Source/Authority | 43.3 | 44 | |
| Symbol | 26.7 | 3565 | |
| Text | 16.7 | 332 | |
| Website | 13.3 | 284 |
| Ad | Top-3 AOIs (S) | Bottom-3 AOIs (S) |
|---|---|---|
| Ad1 | WomansFace (0.20) Icon(ribbon) (0.08) HeadText (−0.13) | Icon(heart) (−0.14) HeadText (−0.13) Icon(ribbon) (0.08) |
| Ad2 | Text (0.38) Icon(heart) (0.23) FofiGenimata (0.13) | Icon(breasts) (−0.35) Family (−0.21) Kivernisi (−0.13) |
| Ad3 | BusinessWesbsite(Ygeia) (0.22) BusinesLogo(Ygeia) (0.20) HeadText (0.12) | SmallText3 (−0.22) Icon(ribbon) (−0.15) Icon3Statistics (−0.10) |
| Ad4 | Text (0.20) Picture(womanhand-drawn) (0.08) BusinessLogo(AlphaBank) (0.03) | HeadText (−0.16) BusinessWebsite(AlphaBank) (−0.13) Icon(breast) (−0.03) |
| Ad5 | Picture(magnifier/breasts) (0.11) Text (0.08) | BusinessLogo(ProtoThema) (−0.08) HeadText (−0.07) BusinessWebsite(ProtoTheme) (−0.04) |
| Ad6 | Kivernisi (0.22) Website (0.17) FofiGenimata (0.12) | Icon(ribbon) (−0.16) Headtext (−0.13) picture(fist) (−0.13) |
| Ad | Image | Symbol | Text | Logo | Website | Source/Authority |
|---|---|---|---|---|---|---|
| Ad1 | −0.16 | 0.56 | −0.40 | — | — | — |
| Ad2 | −0.65 | −0.08 | 0.19 | — | — | 0.54 |
| Ad3 | — | 0.47 | 0.52 | −0.49 | — | −0.49 |
| Ad4 | −0.29 | −0.31 | 0.41 | −0.28 | −0.19 | 0.67 |
| Ad5 | −0.10 | −0.20 | 0.72 | 0.02 | −0.43 | — |
| Ad6 | −0.53 | −0.18 | 0.47 | 0.00 | −0.37 | 0.61 |
| Ad | Age | Image | Symbol | Text | Logo | Website | Source/Authority |
|---|---|---|---|---|---|---|---|
| Ad1 | 40–45 | 22.2 | 77.8 | — | — | — | — |
| 46–50 | 60.0 | 40.0 | — | — | — | — | |
| 51–55 | 42.9 | 57.1 | — | — | — | — | |
| 56–60 | 22.2 | 66.7 | 11.1 | — | — | — | |
| Ad2 | 40–45 | — | 11.1 | 44.4 | — | — | 44.4 |
| 46–50 | 20.0 | 20.0 | 20.0 | — | — | 40.0 | |
| 51–55 | — | — | 57.1 | — | — | 42.9 | |
| 56–60 | 11.1 | — | 22.2 | — | — | 66.7 | |
| Ad3 | 40–45 | — | 33.3 | 44.4 | 11.1 | — | 11.1 |
| 46–50 | — | 40.0 | 40.0 | 20.0 | — | — | |
| 51–55 | — | 71.4 | 14.3 | — | — | 14.3 | |
| 56–60 | — | 55.6 | 22.2 | 22.2 | — | — | |
| Ad4 | 40–45 | 33.3 | 22.2 | 22.2 | 11.1 | 11.1 | — |
| 46–50 | 20.0 | 40.0 | — | — | 40.0 | — | |
| 51–55 | 28.6 | 14.3 | 28.6 | 14.3 | 14.3 | — | |
| 56–60 | 33.3 | 11.1 | 11.1 | 11.1 | 33.3 | — | |
| Ad5 | 40–45 | 33.3 | 11.1 | 33.3 | 11.1 | 11.1 | — |
| 46–50 | 40.0 | — | 20.0 | 40.0 | — | — | |
| 51–55 | 28.6 | — | 42.9 | 14.3 | 14.3 | — | |
| 56–60 | 44.4 | — | 22.2 | 11.1 | 22.2 | — | |
| Ad6 | 40–45 | — | 33.3 | 22.2 | — | 11.1 | 33.3 |
| 46–50 | — | — | 40.0 | — | 20.0 | 40.0 | |
| 51–55 | — | 14.3 | 14.3 | — | 14.3 | 57.1 | |
| 56–60 | — | 44.4 | — | — | 11.1 | 44.4 |
| Ad | Household | Image | Symbol | Text | Logo | Website | Source/Authority |
|---|---|---|---|---|---|---|---|
| Ad1 | Married w/Kids | 42.1 | 52.6 | 5.3 | — | — | — |
| Married w/o Kids | 33.3 | 66.7 | — | — | — | — | |
| Single w/Kids | 33.3 | 66.7 | — | — | — | — | |
| Single w/o Kids | — | 100.0 | — | — | — | — | |
| Ad2 | Married w/Kids | 10.5 | 5.3 | 26.3 | — | — | 57.9 |
| Married w/o Kids | — | — | 33.3 | — | — | 66.7 | |
| Single w/Kids | — | 33.3 | 66.7 | — | — | — | |
| Single w/o Kids | — | — | 50.0 | — | — | 50.0 | |
| Single (no kids) | — | — | 100.0 | — | — | — | |
| Ad3 | Married w/Kids | — | 52.6 | 26.3 | 10.5 | — | 10.5 |
| Married w/o Kids | — | 66.7 | 33.3 | — | — | — | |
| Single w/Kids | — | 33.3 | 33.3 | 33.3 | — | — | |
| Single w/o Kids | — | 25.0 | 50.0 | 25.0 | — | — | |
| Single (no kids) | — | 100.0 | — | — | — | — | |
| Ad4 | Married w/Kids | 31.6 | 26.3 | 5.3 | 15.8 | 21.1 | — |
| Married w/o Kids | — | — | 66.7 | — | 33.3 | — | |
| Single w/Kids | 33.3 | — | 33.3 | — | 33.3 | — | |
| Single w/o Kids | 25.0 | 25.0 | 25.0 | — | 25.0 | — | |
| Single (no kids) | 100.0 | — | — | — | — | — | |
| Ad5 | Married w/Kids | 31.6 | 5.3 | 31.6 | 15.8 | 15.8 | — |
| Married w/o Kids | — | — | 33.3 | 66.7 | — | — | |
| Single w/Kids | 66.7 | — | — | — | 33.3 | — | |
| Single w/o Kids | 75.0 | — | 25.0 | — | — | — | |
| Single (no kids) | — | — | 100.0 | — | — | — | |
| Ad6 | Married w/Kids | — | 36.8 | 10.5 | — | — | 52.6 |
| Married w/o Kids | — | — | 66.7 | — | — | 33.3 | |
| Single w/Kids | — | — | — | — | 66.7 | 33.3 | |
| Single w/o Kids | — | — | 25.0 | — | 50.0 | 25.0 | |
| Single (no kids) | — | 100.0 | — | — | — | — |
| Ad | Education | Image | Symbol | Text | Logo | Website | Source/Authority |
|---|---|---|---|---|---|---|---|
| Ad1 | Compulsory/HS | 38.5 | 53.8 | 7.7 | — | — | — |
| University | 57.1 | 42.9 | — | — | — | — | |
| Masters+ | 16.7 | 83.3 | — | — | — | — | |
| Primary | — | 100.0 | — | — | — | — | |
| Ad2 | Compulsory/HS | 7.7 | — | 23.1 | — | — | 69.2 |
| University | — | 14.3 | 57.1 | — | — | 28.6 | |
| Masters+ | — | 16.7 | 50.0 | — | — | 33.3 | |
| Primary | 25.0 | — | 25.0 | — | — | 50.0 | |
| Ad3 | Compulsory/HS | — | 30.8 | 53.8 | 7.7 | — | 7.7 |
| University | — | 85.7 | — | 14.3 | — | — | |
| Masters+ | — | 33.3 | 33.3 | 16.7 | — | 16.7 | |
| Primary | — | 75.0 | — | 25.0 | — | — | |
| Ad4 | Compulsory/HS | 23.1 | 30.8 | 7.7 | 7.7 | 30.8 | — |
| University | 28.6 | — | 42.9 | — | 28.6 | — | |
| Masters+ | 33.3 | 33.3 | 16.7 | — | 16.7 | — | |
| Primary | 50.0 | — | — | 50.0 | — | — | |
| Ad5 | Compulsory/HS | 30.8 | — | 30.8 | 23.1 | 15.4 | — |
| University | 28.6 | — | 42.9 | 14.3 | 14.3 | — | |
| Masters+ | 50.0 | 16.7 | 33.3 | — | — | — | |
| Primary | 50.0 | — | — | 25.0 | 25.0 | — | |
| Ad6 | Compulsory/HS | — | 30.8 | 7.7 | — | 15.4 | 46.2 |
| University | — | 42.9 | 14.3 | — | 14.3 | 28.6 | |
| Masters+ | — | 16.7 | 50.0 | — | 16.7 | 16.7 | |
| Primary | — | — | — | — | — | 100.0 |
| Ad | Age (vs. Overall) | Household (vs. Overall) | Education (vs. Overall) |
|---|---|---|---|
| Ad1 | 40–45 → Symbols/Images ↑ | With children → Images ↑ | University/Postgrad → Text ↑ |
| Ad2 | 56–60 → Source/Authority ↑ | With children → Family Image ↑ | University/Postgrad → Text/Website ↑ |
| Ad3 | 46–55 → Text/Statistics ↑ | No children → Text/Website ↑ | University/Postgrad → Statistics/Website ↑ |
| Ad4 | 40–50 → Symbols/Image ↑ | With children → Image ↑ | University/Postgrad → Text ↑ |
| Ad5 | 40–45 → Image ↑ | With children → Image ↑ | University/Postgrad → Text/Website ↑ |
| Ad6 | 56–60 → Source/Authority ↑ | No children → Website/Text ↑ | University/Postgrad → Website/Text ↑ |
| Matrix/Scope | Notes | ||
|---|---|---|---|
| AOI dwell-dominance (all ads, pooled) | Pass | Pass | Ties coded 0.5; low-N cells masked in figures |
| Category TTFF precedence (all ads, pooled) | Pass | Pass | “Earlier” is a win in precedence |
| Ad1 (AOI dwell dominance) | Pass | Pass | |
| Ad2 (AOI dwell dominance) | Pass | Pass | |
| Ad3 (AOI dwell dominance) | Pass | Pass | |
| Ad4 (AOI dwell dominance) | Pass | Pass | |
| Ad5 (AOI dwell dominance) | Pass | Pass | |
| Ad6 (AOI dwell dominance) | Pass | Pass |
| Ad | Pearson r | Spearman ρ | |
|---|---|---|---|
| Ad1 | 4 | 0.81 | 0.80 |
| Ad2 | 8 | 0.98 | 1.00 |
| Ad3 | 10 | 0.87 | 0.96 |
| Ad4 | 6 | 0.81 | 0.77 |
| Ad5 | 5 | 0.68 | 0.50 |
| Ad6 | 8 | 0.90 | 0.74 |
| Ad | Protect (Early + Sticky) | Promote (Late + Sticky → Move Earlier) | Unclutter (Early + Not Sticky) | Reconsider (Neither) |
|---|---|---|---|---|
| Ad1 | Ribbon | Woman’s face | — | Headline; Heart icon |
| Ad2 | Text body | Heart icon | Headline band | Family image; Breasts icon |
| Ad3 | — (head text is modest+) | Website tag; Logo | — | Ribbon; SmallText3 |
| Ad4 | Hand-drawn image | Long text block | Website band | Headline |
| Ad5 | Magnifier image | Central text | Headline | Logo; Website tag |
| Ad6 | Government label; Website strip | — (endorser already early) | Ribbon | Fist image; Headline |
| Recurring Pattern | Evidence (Ads/Examples) | Actionable “Fix-It” Heuristic |
|---|---|---|
| Text/CTA late but sticky | Ad3 headline; Ad4 long text | Increase typographic contrast/scale; place in the vicinity of entry icon/image; dampen ambient competing salience |
| Icons outcompete text for entry | Ad1 ribbon; Ad5 magnifier | Use icons as portals (nest or arrow to CTA); balance icon weight to prevent CTA from being isolated |
| Logos/website sticky but found late | Ad3 website/logo; Ad4 copy | Shift towards entry path; introduce contrast edges (scale/weight/outlining); align on path of intuitive scan |
| Authority cues dominate in authority-forward layouts | Ad2, Ad6 labels/endorsers | Maintain CTA adjacency (space/micro-contrast); make CTA clear and legible |
| Decorative images early but not sticky | Ad4 website band; Ad5 headline visual pair | Slice or reuse decorative salience; introduce functional micro-copy to convert entry to dwell |
| Family imagery captures family households | Ad2 family image | Where there is the need for household targeting, otherwise down-weight to prevent draining the CTA. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yfantidou, I.; Balaskas, S.; Skandali, D. An Exploratory Eye-Tracking Study of Breast-Cancer Screening Ads: A Visual Analytics Framework and Descriptive Atlas. J. Eye Mov. Res. 2025, 18, 64. https://doi.org/10.3390/jemr18060064
Yfantidou I, Balaskas S, Skandali D. An Exploratory Eye-Tracking Study of Breast-Cancer Screening Ads: A Visual Analytics Framework and Descriptive Atlas. Journal of Eye Movement Research. 2025; 18(6):64. https://doi.org/10.3390/jemr18060064
Chicago/Turabian StyleYfantidou, Ioanna, Stefanos Balaskas, and Dimitra Skandali. 2025. "An Exploratory Eye-Tracking Study of Breast-Cancer Screening Ads: A Visual Analytics Framework and Descriptive Atlas" Journal of Eye Movement Research 18, no. 6: 64. https://doi.org/10.3390/jemr18060064
APA StyleYfantidou, I., Balaskas, S., & Skandali, D. (2025). An Exploratory Eye-Tracking Study of Breast-Cancer Screening Ads: A Visual Analytics Framework and Descriptive Atlas. Journal of Eye Movement Research, 18(6), 64. https://doi.org/10.3390/jemr18060064

