Visual Scanpath Training to Emotional Faces Following Severe Traumatic Brain Injury: A Single Case Design
Abstract
:Introduction
Neural correlates of face and facial expression recognition
The visual scanpath to faces
The present study
Methods
Participant
Study Design
Stimuli
Apparatus
Procedure
Data Analyses
Areas of Interest (AOIs)
Single case design analyses
Results
Emotions collapsed
Mean number of fixations
Mean duration of fixations
Effect of emotional expression
Qualitative inspection of the visual scanpath
Discussion
Conclusions
Ethics and Conflict of Interest
Acknowledgments
References
- Adolphs, R. 2002. Neural systems for recognizing emotion. Current Opinion in Neurobiology 12: 169–177. [Google Scholar] [CrossRef] [PubMed]
- Adolphs, R., D. Tranel, H. Damasio, and A. R. Damasio. 1994. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, December: 669–672. [Google Scholar] [CrossRef]
- Albert, M. L. 1973. A simple test of visual neglect. Neurology 23: 658–664. [Google Scholar] [CrossRef]
- Babbage, D. R., J. Yim, B. Zupan, D. Neumann, M. R. Tomita, and B. Willer. 2011. Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology 25, 3: 277–285. [Google Scholar] [CrossRef] [PubMed]
- Binder, A. S., K. Lancaster, J. Lengenfelder, N. D. Chiaravalloti, and H. M. Genova. 2019. Community integration in traumatic brain injury: The contributing factor of affect recognition deficits. Journal of the International Neuropsychological Society 25: 890–895. [Google Scholar]
- Biszak, A. M., and D. R. Babbage. 2014. Facial affect difficulties in traumatic brain injury rehabilitation services. Brain Injury 28, 1: 97–104. [Google Scholar] [CrossRef]
- Bornhofen, C., and S. McDonald. 2008a. Treating deficits in emotion perception following traumatic brain injury. Neuropsychological Rehabilitation 18, 1: 22–44. [Google Scholar] [CrossRef]
- Bornhofen, C., and S. McDonald. 2008b. Comparing strategies for treating emotion perception deficits in traumatic brain injury. Journal of Head Trauma Rehabilitation 23, 2: 103–115. [Google Scholar] [CrossRef]
- Bryden, M. P. 1977. Measuring handedness with questionnaires. Neuropsychologia 15: 617–624. [Google Scholar] [CrossRef]
- Byiers, B. J., J. Reichle, and F. J. Symons. 2012. Singlesubject experimental design for evidence-based practice. American Journal of Speech Language Pathology 21, 4: 397–414. [Google Scholar] [CrossRef]
- Combs, D. R., A. Tosheva, D. L. Penn, M. R. Basso, J. L. Wanner, and K. Laib. 2011. Attention shaping as a means to improve emotion perception deficits in outpatients with schizophrenia and impaired controls. Schizophrenia Research 127, 1–3: 151–156. [Google Scholar] [CrossRef]
- Croker, V., and S. McDonald. 2005. Recognition of emotion from facial expression following traumatic brain injury. Brain Injury 19, 10: 787–799. [Google Scholar] [CrossRef] [PubMed]
- Ekman, P., and W. V. Friesen. 1971. Constants across cultures in the face and emotion. Journal of Personality and Social Psychology 17, 2: 124–129. [Google Scholar] [CrossRef]
- Genova, H. M., V. Rajagopalan, N. D. Chiaravalloti, A. Binder, J. Deluca, and J. Lengenfelder. 2015. Facial affect recognition linked to damage in specific white matter tracts in traumatic brain injury. Social Neuroscience 10, 1: 27–34. [Google Scholar] [CrossRef] [PubMed]
- Greene, L. 2019. Visual strategies underpinning social cognition in traumatic brain injury. (Doctor of Philosophy). Sheffield Hallam University, United Kingdom. Retrieved from: http://shura.shu.ac.uk/id/eprint/27552.
- Hariri, A. R., S. Y. Bookheimer, and J. C. Mazziota. 2000. Modulating emotional responses: effects of a neocortical network on the limbic system. NeuroReport II: 43–48. [Google Scholar] [CrossRef]
- Haxby, J. V., E. A. Hoffman, and M. I. Gobbini. 2000. The distributed human neural system for face perception. Trends in Cognitive Sciences 4, 6: 223–233. [Google Scholar] [CrossRef]
- Henderson, J. M., C. C. Williams, and R. J. Falk. 2005. Eye movements are functional during face learning. Memory & Cognition 33, 1: 98–106. [Google Scholar] [CrossRef]
- Horley, K., L. M. Williams, C. Gonsalvez, and E. Gordon. 2004. Face to face: visual scanpath evidence for abnormal processing of facial expressions in social phobia. Psychiatry Research 127: 43–53. [Google Scholar] [CrossRef]
- Husain, M., S. Mannan, T. Hodgson, E. Wojciulik, J. Driver, and C. Kennard. 2001. Impaired spatial working memory across saccades contributes to abnormal search in parietal neglect. Brain 124: 941–952. [Google Scholar] [CrossRef]
- Kanwisher, N., J. McDermott, and M. M. Chun. 1997. The fusiform face area: A module in human extrastriate cortex specialised for face perception. The Journal of Neuroscience 17, 11: 4302–4311. [Google Scholar] [CrossRef] [PubMed]
- Kanwisher, N., and G. Yovel. 2006. The fusiform face area: a cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B 361: 2109–2128. [Google Scholar] [CrossRef]
- Kapoor, N., and K. J. Ciuffreda. 2002. Vision disturbances following traumatic brain injury. Current Treatment Options in Neurology 4, 4: 271–280. [Google Scholar] [CrossRef] [PubMed]
- Kennard, C. 2002. Scanpaths: The path to understanding abnormal cognitive processing in neurological disease. Annals of the New York Academy of Sciences 956: 242–249. [Google Scholar] [CrossRef]
- Khan, F., I. J. Baguley, and I. D. Cameron. 2003. 4: Rehabilitation after traumatic brain injury. Medical Journal of Australia 178, 6: 290–295. [Google Scholar] [CrossRef] [PubMed]
- Knox, L., and J. Douglas. 2009. Long-term ability to interpret facial expression after traumatic brain injury and its relation to social integration. Brain and Cognition 69: 442–449. [Google Scholar] [CrossRef]
- Kratochwill, T. R., J. Hitchcock, R. H. Horner, J. R. Levin, S. L. Odom, D. M. Rindskopf, and W. R. Shadish. 2010. Single-case designs technical documentation. Version 1.0 (Pilot). Retrieved from What Works Clearinghouse website: http://ies.ed.gov/ncee/wwc/Docs/ReferenceResources/wwc_scd.pdf.
- Ledford, J. R., J. D. Lane, and K. E. Severini. 2018. Systematic use of visual analysis for assessing outcomes in single case design studies. Brain Impairment 19, 1: 4–17. [Google Scholar] [CrossRef]
- Lopes, M. A. L., H. P. Ferreira, J. C. Carvalho, L. Cardoso, and C. Andre. 2007. Screening tests are not enough to detect hemineglect. Arquivos de NeuroPsiquiatria 65, 4b: 1192–1195. [Google Scholar] [CrossRef]
- Loughland, C. M., L. M. Williams, and E. Gordon. 2002. Schizophrenia and affective disorder show different visual scanning behavior for faces: a trait versus statebased distinction? Biological Psychiatry 52, 4: 338–348. [Google Scholar] [CrossRef]
- Loughland, C. M., L. M. Williams, and A. W. Harris. 2004. Visual scanpath dysfunction in first-degree relatives of schizophrenia probands: evidence for a vulnerability marker? Schizophrenia Research 67, 1: 11–21. [Google Scholar] [CrossRef]
- Mancuso, M., N. Magnani, A. Cantagallo, G. Rossi, D. Capitani, V. Galletti, G. Cardamone, and I. H. Robertson. 2015. Emotion recognition impairment in traumatic brain injury compared with schizophrenia spectrum: Similar deficits with different origins. The Journal of Nervous and Mental Disease 203, 2: 87–95. [Google Scholar] [CrossRef]
- Manolov, R. 2018. Linear trend in single-case visual and quantitative analyses. Behavior Modification 42, 5: 684–706. [Google Scholar] [CrossRef]
- Marsh, P. J., G. Luckett, T. A. Russell, M. Coltheart, and M. J. Green. 2012. Effects of facial emotion recognition remediation on visual scanning of novel face stimuli. Schizophrenia Research 141, 2–3: 234–240. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, D., and P. Ekman. 2004. Japanese and Caucasian facial expressions of emotion (JACFEE) and neutral faces (JACNeuF). Paul Ekman & Associates: Berkeley, CA. [Google Scholar]
- May, M., M. Milders, B. Downey, M. Whyte, V. Higgins, Z. Wojcik, S. Aimn, and S. O’Rourke. 2017. Social behavior and impairments in social cognition following traumatic brain injury. Journal of the International Neuropsychological Society 23: 400–411. [Google Scholar] [CrossRef]
- Meichenbaum, D., and R. Cameron. 1973. Training schizophrenics to talk to themselves: a means of developing attentional controls. Behavior Therapy 4, 4: 515–534. [Google Scholar] [CrossRef]
- Menon, D. K., K. Schwab, D. W. Wright, and A. I. R. Maas. 2010. Position statement: Definition of traumatic brain injury. Archives of Physical Medicine and Rehabilitation 91, 11: 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Milders, M. 2019. Relationship between social cognition and social behaviour following traumatic brain injury. Brain Injury 33, 1: 62–68. [Google Scholar] [CrossRef]
- Milders, M., S. Fuchs, and J. R. Crawford. 2003. Neuropsychological impairments and changes in emotional and social behaviour following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology 25, 2: 157–172. [Google Scholar] [CrossRef]
- Molenberghs, P., M. V. Sale, and J. B. Mattingley. 2012. Is there a critical lesion site for unilateral spatial neglect? A meta-analysis using activation likelihood estimation. Frontiers in Human Neuroscience 6, 78: 1–10. [Google Scholar] [CrossRef]
- Neumann, D., D. R. Babbage, B. Zupan, and B. Willer. 2015. A randomised controlled trial of emotion recognition training after traumatic brain injury. Journal of Head Trauma Rehabilitation 30, 3: E12E23. [Google Scholar]
- Neumann, D., M. A. Keiski, B. C. McDonald, and Y. Wang. 2014. Neuroimaging and facial affect processing: implications for traumatic brain injury. Brain Imaging and Behavior 8: 460–473. [Google Scholar] [CrossRef]
- Niehorster, D. C., T. H. W. Cornelissen, K. Holmqvist, I. T. C. Hooge, and R. S. Hessels. 2018. What to expect from your remote eye-tracker when participants are unrestrained. Behavior Research Methods 50: 213–227. [Google Scholar] [CrossRef] [PubMed]
- Noton, D., and L. Stark. 1971. Eye movements and visual perception. Scientific American 224, 6: 34–43. [Google Scholar]
- Palermo, R., and M. Coltheart. 2004. Photographs of facial expression: Accuracy, response times, and ratings of intensity. Behavior Research Methods, Instruments, & Computers 36, 4: 634–638. [Google Scholar] [CrossRef]
- Pelphrey, K. A., N. J. Sasson, J. S. Reznick, G. Paul, and J. Piven. 2002. Visual scanning of faces in autism. Journal of Autism and Developmental Disorders 32: 249–261. [Google Scholar]
- Ponsford, J. 2013. Edited by J. Ponsford, S. Sloan and P. Snow. Mechanism, recovery and sequelae of traumatic brain injury. In Traumatic Brain Injury. [Google Scholar]
- Rehabilitation for everyday adaptive living, 2nd ed. East Sussex: Psychology Press.
- Posner, M. I. 1980. Orienting of attention. Quarterly Journal of Experimental Psychology 32: 3–25. [Google Scholar] [CrossRef]
- Prigatano, G. P., and K. H. Pribram. 1982. Perception and memory of facial affect following brain injury. Perceptual and Motor Skills 54: 859–869. [Google Scholar] [CrossRef] [PubMed]
- Radice-Neumann, D., B. Zupan, M. Tomita, and B. Willer. 2009. Training emotional processing in persons with brain injury. Journal of Head Trauma Rehabilitation 24, 5: 313–323. [Google Scholar] [CrossRef] [PubMed]
- Rigon, A., L. S. Turkstra, B. Mutlu, and M. C. Duff. 2018. Facial-affect recognition deficit as a predictor of different aspects of social-communication impairment in traumatic brain injury. Neuropsychology 32, 4: 476–483. [Google Scholar] [CrossRef]
- Rigon, A., M. W. Voss, L. S. Turkstra, B. Mutlu, and M. C. Duff. 2017. Relationship between individual differences in functional connectivity and facialemotion recognition abilities in adults with traumatic brain injury. Neuroimage: Clinical 13: 370–377. [Google Scholar] [CrossRef]
- Rigon, A., M.W. Voss, L. S. Turkstra, B. Mutlu, and M. C. Duff. 2019. Functional neural correlates of facial affect recognition impairment following TBI. Brain Imaging and Behavior 13, 2: 526–540. [Google Scholar] [CrossRef]
- Rosenberg, H., M. Dethier, R. P. C. Kessels, R. F. Westbrook, and S. McDonald. 2015. Emotion perception after moderate-severe traumatic brain injury: the valence effect and the role of working memory, processing speed, and nonverbal reasoning. Neuropsychology 29, 4: 509–521. [Google Scholar] [CrossRef] [PubMed]
- Russell, T. A., M. J. Green, I. Simpson, and M. Coltheart. 2008. Remediation of facial emotion perception in schizophrenia: Concomitant changes in visual attention. Schizophrenia Research 103: 248–256. [Google Scholar] [CrossRef]
- Saatman, K. E., A.-C. Duhaime, R. Bullock, A. I. R. Maas, A. Valadka, and G. T. Manley. 2008. & Workshop Scientific Team and Advisory Panel Members Classification of traumatic brain injury for targeted therapies. Journal of Neurotrauma 25: 719–738. [Google Scholar] [CrossRef]
- Sabatinelli, D., E. E Fortune, Q. Li, A. Siddiqui, C. Krafft, W. T. Oliver, S. Beck, and J. Jeffries. 2011. Emotional perception: Meta-analyses of face and natural scene processing. NeuroImage 54: 2524–2533. [Google Scholar] [CrossRef]
- Spell, L. A., and E. Frank. 2000. Recognition of nonverbal communication of affect following traumatic brain injury. Journal of Nonverbal Behavior 24, 4: 285–300. [Google Scholar]
- Spikman, J. M., M. V. Milders, A. C. Visser-Keizer, H. J. Westerhof-Evers, and J. van der Naalt. 2013. Deficits in facial emotion recognition indicate behavioral changes and impaired self-awareness after moderate to severe traumatic brain injury. PLoSONE 8, 6: e65581. [Google Scholar] [CrossRef]
- Stephan, B. C. M., and D. Caine. 2009. Aberrant pattern of scanning in prosopagnosia reflects impaired face processing. Brain and Cognition 69, 2: 262–268. [Google Scholar] [CrossRef] [PubMed]
- Tobii Technology. 2011. Tobii T60 & T120 Eye Tracker User Manual. Stockholm, Sweden: Tobii Technology AB.
- Tsao, D. Y., and M. S. Livingstone. 2008. Mechanisms of face perception. Annual Review of Neuroscience 31: 411–437. [Google Scholar] [CrossRef]
- Vannest, K. J., R. I. Parker, O. Gonen, and T. Adiguzel. 2016. Single Case Research: Web based calculators for SCR analysis. (Version 2.0). [Web based application]. College Station, TX: Texas A&M University. Retrieved from: www.singlecaseresearch.org.
- Vassallo, S., S. Cooper, and J. Douglas. 2009. Visual scanning in the recognition of facial affect: Is there an observer sex difference? Journal of Vision 9, 3: 1–10. 300. [Google Scholar] [CrossRef]
- Vassallo, S., and J. Douglas. 2021. A novel combined visual scanning and verbal cuing intervention improves facial affect recognition after chronic severe traumatic brain injury: A single case design. Neuropsychological Rehabilitation 31, 6: 863–888. [Google Scholar] [CrossRef]
- Vassallo, S., J. Douglas, and E. White. 2011. Visual scanning in the recognition of facial affect in traumatic brain injury. i-Perception 2, 4: 250. [Google Scholar] [CrossRef]
- Walker-Smith, G. J., A. G. Gale, and J. M. Findlay. 1977. Eye movement strategies involved in face perception. Perception 6: 313–326. [Google Scholar] [CrossRef] [PubMed]
- Watts, A. J., and J. M. Douglas. 2006. Interpreting facial expression and communication competence following severe traumatic brain injury. Aphasiology 20, 8: 707–722. [Google Scholar] [CrossRef]
- Wauters, L., and T. P. Marquardt. 2019. Disorders of emotional communication in traumatic brain injury. Seminars in Speech and Language 40, 1: 13–26. [Google Scholar] [CrossRef] [PubMed]
- Williams, L. M., C. M. Loughland, E. Gordon, and D. Davidson. 1999. Visual scanpaths in schizophrenia: is there a deficit in face recognition? Schizophrenia Research 40, 3: 189–199. [Google Scholar] [CrossRef]
- Wilson, B., A. Baddeley, J. Evans, and A. Shiel. 1994. Errorless learning in the rehabilitation of memory impaired people. Neuropsychological Rehabilitation 4, 3: 307–326. [Google Scholar] [CrossRef]
- Wong, A.M.F. 2008. Eye Movement Disorders. United States of America: Oxford University Press. [Google Scholar]
Baseline | Intervention | Follow up | p-value | |
Number of fixations | ||||
Right AOI | 6.67 (1.73) | 9.57 (4.12) | 12.41 (9.05) | 0.134 |
Left AOI | 0.40 (0.34) | 4.58 (2.76) | 4.20 (4.61) | 0.001* |
Duration of fixations (ms) | ||||
Right AOI | 2376.83 (437.12) | 4155.07 (2016.18) | 4827.48 (3721.80) | 0.0752 |
Left AOI | 101.42 (82.29) | 2224.40 (1423.25) | 1471.68 (1666.70) | 0.001* |
Mean number of fixations | Mean duration of fixations (ms) | |||||||
Right AOI | Left AOI | Right AOI | Left AOI | |||||
Emotion | Tau | p-value | Tau | p-value | Tau | p-value | Tau | p-value |
Anger | 0.403 | 0.174 | 1.00 | 0.001* | 0.333 | 0.261 | 0.972 | 0.001* |
Disgust | 0.056 | 0.852 | 1.00 | 0.001* | 0.028 | 0.925 | 1.00 | 0.001* |
Anxious | 0.347 | 0.242 | 0.917 | 0.002* | 0.361 | 0.223 | 1.00 | 0.001* |
Happy | -0.806 | 0.007* | 0.681 | 0.022* | -0.694 | 0.019* | 0.597 | 0.044* |
Sad | 0.556 | 0.061 | 0.917 | 0.002* | 0.694 | 0.019* | 0.944 | 0.002* |
Surprise | 0.389 | 0.190 | 1.00 | 0.001* | 0.472 | 0.111 | 1.00 | 0.001* |
Copyright © 2021. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Vassallo, S.; Douglas, J. Visual Scanpath Training to Emotional Faces Following Severe Traumatic Brain Injury: A Single Case Design. J. Eye Mov. Res. 2021, 14, 1-16. https://doi.org/10.16910/jemr.14.4.6
Vassallo S, Douglas J. Visual Scanpath Training to Emotional Faces Following Severe Traumatic Brain Injury: A Single Case Design. Journal of Eye Movement Research. 2021; 14(4):1-16. https://doi.org/10.16910/jemr.14.4.6
Chicago/Turabian StyleVassallo, Suzane, and Jacinta Douglas. 2021. "Visual Scanpath Training to Emotional Faces Following Severe Traumatic Brain Injury: A Single Case Design" Journal of Eye Movement Research 14, no. 4: 1-16. https://doi.org/10.16910/jemr.14.4.6
APA StyleVassallo, S., & Douglas, J. (2021). Visual Scanpath Training to Emotional Faces Following Severe Traumatic Brain Injury: A Single Case Design. Journal of Eye Movement Research, 14(4), 1-16. https://doi.org/10.16910/jemr.14.4.6