Shorter Fixation Durations for Up-Directed Saccades During Saccadic Exploration: A Meta-Analysis
Abstract
:Introduction
“…the model and good data go hand in hand in advancing the field.”(p. 7, Rayner, 2009)
Method
Data Selection Criteria
Description of Selected Datasets
Data Analysis
Results
Moderator: Task (Visual Search vs. Scene Viewing)
Moderator: Source (Published vs. Unpublished)
Moderator: Pre-Planned Test (Yes vs. No)
Moderator: Chinrest (Yes vs. No)
Discussion
Speculative Explanations
A Word on SRTs and PSFDs
Limitations
Conclusion
Ethics and Conflict of Interest
Acknowledgments
References
- Abegg, M.; Pianezzi, D.; Barton, J. A vertical asymmetry in saccades. Journal Of Eye Movement Research 2015, 8(5), 1–10. [Google Scholar] [CrossRef]
- Bell, A. H.; Everling, S.; Munoz, D. P. Influence of Stimulus Eccentricity and Direction on Characteristics of Proand Antisaccades in Non-Human Primates. Journal of Neurophysiology 2000, 84(5), 2595–2604. [Google Scholar] [CrossRef]
- Brown, J. M.; Greene, H. H. Brown, J. M., Ed.; We’re going to study the mind. In Pioneer Visual Neuroscience: A Festschrift for Naomi Weisstein; New York: Routledge, 2018; pp. 6–32. [Google Scholar]
- Castelhano, M. S.; Henderson, J. M. Stable individual differences across images in human saccadic eye movements. Canadian Journal of Experimental Psychology 2008, 62(1), 1–14. [Google Scholar] [CrossRef]
- Drager, U. C.; Hubel, D. H. Topography of visual and somatosensory projections to mouse superior colliculus. Journal of Neurophysiology 1976, 39(1), 91–101. [Google Scholar] [CrossRef] [PubMed]
- Foulsham, T.; Frost, E.; Sage, L. Stable individual differences predict eye movements to the left, but not handedness or line bisection. Vision Research 2018, 144, 38–46. [Google Scholar] [CrossRef]
- Foulsham, T.; Kingstone, A. Asymmetries in the direction of saccades during perception of scenes and fractals: Effects of image type and image features. Vision Research 2010, 50(8), 779–795. [Google Scholar] [CrossRef] [PubMed]
- Goldring, J.; Fischer, B. Reaction times of vertical prosaccades and antisaccades in gap and overlap tasks. Experimental Brain Research 1997, 113(1), 88–103. [Google Scholar] [CrossRef]
- Goldberg, M. E.; Walker, M. F. Hudspeth, A. J., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., Kandel, E. R., Eds.; The control of gaze. In Principles of Neural Science; McGraw-Hill; New York, NY, USA, 2013; pp. 894–916. [Google Scholar]
- Greene, H. H.; Brown, J. M. Where did I come from? Where am I going? Functional differences in visual search fixation duration. Journal Of Eye Movement Research 2017, 10(1), 1–13. [Google Scholar] [CrossRef]
- Greene, H. H.; Brown, J. M.; Dauphin, B. When do you look where you look? A visual field asymmetry. Vision Research 2014, 102, 33. [Google Scholar] [CrossRef]
- Greene, H. H.; Brown, J. M.; Paradis, B. A. Luminance contrast and the visual span during visual target localization. Displays 2013, 34(1), 27–32. [Google Scholar] [CrossRef]
- Greene, H. H.; Pollatsek, A.; Masserang, K.; Lee, Y. J.; Rayner, K. Directional processing within the perceptual span during visual target localization. Vision Research 2010, 50(13), 1274–1282. [Google Scholar] [CrossRef]
- Hackman, R. B. An experimental study of variability in ocular latency. Journal of Experimental Psychology 1940, 27(5), 546–558. [Google Scholar] [CrossRef]
- Hafed, Ziad M.; Chen, C.-Y. Sharper, stronger, faster upper visual field representation in primate superior colliculus. Current Biology 2016, 26(13), 1647–1658. [Google Scholar] [CrossRef]
- Hagler, D. J., Jr. Visual field asymmetries in visual evoked responses. Journal of Vision 2014, 14(14), 13–13. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.; Ahmad, S.; Cui, Y. A theory of how columns in the neocortex enable learning the structure of the world. Frontiers in Neural Circuits 2017, 11(81), 1–17. [Google Scholar] [CrossRef]
- Hedges, L.; Olkin, I. Statistical Methods for Meta-Analysis; San Diego: Academic Press, 1985. [Google Scholar]
- Henderson, J. M.; Luke, S. G. Stable individual differences in saccadic eye movements during reading, pseudoreading, scene viewing, and scene search. Journal of Experimental Psychology: Human Perception and Performance 2014, 40(4), 1390–1400. [Google Scholar] [CrossRef]
- Heywood, S.; Churcher, J. Structure of the visual array and saccadic latency: implications for oculomotor control. Quarterly Journal of Experimental Psychology 1980, 32(2), 335–341. [Google Scholar] [CrossRef]
- Higgins, J. P. T.; Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002, 21(11), 1539–1558. [Google Scholar] [CrossRef]
- Holmes, G. M. Ferrier Lecture The organization of the visual cortex in man. Proceedings of the Royal Society of London. Series B Biological Sciences 1945, 132(869), 348–361. [Google Scholar] [CrossRef]
- Honda, H.; Findlay, J. M. Saccades to targets in three-dimensional space: Dependence of saccadic latency on target location. Perception & Psychophysics 1992, 52(2), 167–174. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C. A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 2000, 40(10), 1489–1506. [Google Scholar] [CrossRef] [PubMed]
- Kremlácek, J.; Kuba, M.; Chlubnová, J.; Kubová, Z. Effect of stimulus localisation on motion-onset VEP. Vision Research 2004, 44(26), 2989–3000. [Google Scholar] [CrossRef]
- Lasker, A. G.; Zee, D. S. Ocular motor abnormalities in Huntington's disease. Vision Research 1997, 37(24), 3639–3645. [Google Scholar] [CrossRef]
- Laubrock, J.; Cajar, A.; Engbert, R. Control of fixation duration during scene viewing by interaction of foveal and peripheral processing. Journal of Vision 2013, 13(12). [Google Scholar] [CrossRef]
- Maxwell, S. E.; Lau, M. Y.; Howard, G. S. Is psychology suffering from a replication crisis? What does “failure to replicate” really mean? American Psychologist 2015, 70(6), 487–498. [Google Scholar] [CrossRef] [PubMed]
- Miles, W. R. The reaction time of the eye. Psychological Monographs 1936, 47(2), 268–293. [Google Scholar] [CrossRef]
- Najemnik, J.; Geisler, W. S. Simple summation rule for optimal fixation selection in visual search. Vision Research 2009, 49(10), 1286–1294. [Google Scholar] [CrossRef]
- Nuthmann, A. Fixation durations in scene viewing: Modeling the effects of local image features, oculomotor parameters, and task. Psychonomic Bulletin & Review 2017, 24(2), 370–392. [Google Scholar] [CrossRef]
- Nuthmann, A.; Henderson, J. M. Object-based attentional selection in scene viewing. Journal of Vision 2010, 10(8). [Google Scholar] [CrossRef]
- Nuthmann, A.; Smith, T. J.; Engbert, R.; Henderson, J. M. CRISP: a computational model of fixation durations in scene viewing. Psychological Review 2010, 117(2), 382. [Google Scholar] [CrossRef]
- Parkhurst, D.; Law, K.; Niebur, E. Modeling the role of salience in the allocation of overt visual attention. Vision Research 2002, 42(1), 107–123. [Google Scholar] [CrossRef] [PubMed]
- Patel, S. S.; Jankovic, J.; Hood, A. J.; Jeter, C. B.; Sereno, A. B. Reflexive and volitional saccades: Biomarkers of Huntington disease severity and progression. Journal of the Neurological Sciences 2012, 313(1), 35–41. [Google Scholar] [CrossRef]
- Pitzalis, S.; Di Russo, F. Spatial anisotropy of saccadic latency in normal subjects and braindamaged patients. Cortex; a journal devoted to the study of the nervous system and behavior 2001, 37(4), 475–492. [Google Scholar] [CrossRef] [PubMed]
- Portin, K.; Vanni, S.; Virsu, V.; Hari, R. Stronger occipital cortical activation to lower than upper visual field stimuli Neuromagnetic recordings. Experimental Brain Research 1999, 124(3), 287–294. [Google Scholar] [CrossRef] [PubMed]
- Previc, F. H. Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications. Behavioral and Brain Sciences 1990, 13(3), 519–575. [Google Scholar] [CrossRef]
- Rao, R. P. N.; Zelinsky, G. J.; Hayhoe, M. M.; Ballard, D. H. Eye movements in iconic visual search. Vision Research 2002, 42(11), 1447–1463. [Google Scholar] [CrossRef]
- Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin 1998, 124(3), 372. [Google Scholar] [CrossRef]
- Rayner, K. The 35th Sir Frederick Bartlett Lecture: Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology 2009, 62(8), 1457–1506. [Google Scholar] [CrossRef]
- Schlykowa, L.; Hoffmann, K.-P.; Bremmer, F.; Thiele, A. Monkey saccadic latency and pursuit velocity show a preference for upward directions of target motion. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience 1996, 7(2), 409–412. [Google Scholar] [CrossRef]
- Sheth, B. R.; Young, R. Two Visual Pathways in Primates Based on Sampling of Space: Exploitation and Exploration of Visual Information. Frontiers in Integrative Neuroscience 2016, 10(37). [Google Scholar] [CrossRef]
- Shrout, P. E.; Rodgers, J. Psychology, Science, and Knowledge Construction: Broadening Perspectives from the Replication Crisis. Annual Review of Psychology 69 2018, 487–510. [Google Scholar] [CrossRef] [PubMed]
- Silva, M. F.; Brascamp, J. W.; Ferreira, S.; CasteloBranco, M.; Dumoulin, S. O.; Harvey, B. M. Radial asymmetries in population receptive field size and cortical magnification factor in early visual cortex. NeuroImage 167 2018, 41–52. [Google Scholar] [CrossRef]
- Skrandies, W. The upper and lower visual field of man: Electrophysiological and functional differences. Progress in sensory physiology 8 1987, 2–93. [Google Scholar]
- Strauss, G. P.; Ossenfort, K. L.; Whearty, K. M. Reappraisal and Distraction Emotion Regulation Strategies Are Associated with Distinct Patterns of Visual Attention and Differing Levels of Cognitive Demand. PLoS One 2016, 11(11), e0162290. [Google Scholar] [CrossRef]
- Tatler, B. W.; Vincent, B. T. The prominence of behavioural biases in eye guidance. Visual Cognition 2009, 17(6-7), 1029–1054. [Google Scholar] [CrossRef]
- Termsarasab, P.; Thammongkolchai, T.; Rucker, J. C.; Frucht, S. J. The diagnostic value of saccades in movement disorder patients: a practical guide and review. Journal of Clinical Movement Disorders 2015, 2(1), 14. [Google Scholar] [CrossRef]
- Trukenbrod, H.; Engbert, R. ICAT: a computational model for the adaptive control of fixation durations. Psychonomic Bulletin & Review 2014, 1–28. [Google Scholar] [CrossRef]
- Tzelepi, A.; Laskaris, N.; Amditis, A.; Kapoula, Z. Cortical activity preceding vertical saccades: A MEG study. Brain Research 1321 2010, 105–116. [Google Scholar] [CrossRef]
- Tzelepi, A.; Yang, Q.; Kapoula, Z. The effect of transcranial magnetic stimulation on the latencies of vertical saccades. Experimental Brain Research 2005, 164(1), 67–77. [Google Scholar]
- Woodworth, R. S. Experimental psychology; New York: H. Holt and Company, 1938. [Google Scholar]
- Zelinsky, G. J. A theory of eye movements during target acquisition. Psychological Review 2008, 115(4), 787. [Google Scholar]
- Zhou, W.; King, W. M. Attentional sensitivity and asymmetries of vertical saccade generation in monkey. Vision Research 2002, 42(6), 771–779. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yu, G.; Xuefei, Y.; Wu, S.; Zhang, M. Asymmetric representations of upper and lower visual fields in egocentric and allocentric references. Journal of Vision 2017, 17(1), 111. [Google Scholar] [CrossRef] [PubMed]
Study | Condition & stimuli in study | Sample Size | PSFD up- saccades (ms) | PSFD downsaccade (ms) | Difference in means (ms) | Hedge’s g | Std Err |
Foulsham & Kingstone (2010) | 2-second viewing of natural scenes and fractals (encoding phase) | 20 | 243.55 | 269.17 | 25.62 | 0.702 | 0.242 |
Greene et al., (2014) | Engaged viewing of ambiguous (Rorschach) inkblots. | 44 | 327.28 | 355.25 | 27.97 | 1.015 | 0.183 |
Greene’s lab ~ | 15-second viewing to rate the attractiveness of 9 urban scenes. | 20 | 252.40 | 270.71 | 18.31 | 0.515 | 0.230 |
Greene’s lab ~ | 15-second viewing to rate the secureness of 9 urban scenes. | 19 | 252.98 | 278.63 | 25.65 | 0.499 | 0.234 |
Greene’s lab ~ | Engaged viewing of university webpages. | 8 | 185.91 | 227.49 | 41.58 | 2.539 | 0.708 |
Strauss’ lab ~ | Passive viewing of IAPS unpleasant scenes. | 20 | 272.89 | 300.2 | 27.31 | 1.204 | 0.287 |
Strauss’ lab ~ | Passive viewing of IAPS unpleasant scenes. | 19 | 265.02 | 302.36 | 37.34 | 1.527 | 0.331 |
Strauss et al., (2016) | 5-second viewing of unpleasant IAPS scenes, while distracted by thoughts of unrelated neutral objects. | 25 | 291.77 | 314.82 | 23.05 | 0.552 | 0.209 |
Strauss et al., (2016) | 5-second viewing of unpleasant IAPS scenes, while reappraising them to be neutral. | 25 | 282.27 | 304.66 | 22.39 | 0.726 | 0.219 |
Brown & Greene, (2018) | Visual search for low contrast square in a random gray-dot display. | 18 | 268.08 | 297.77 | 29.69 | 1.218 | 0.303 |
Brown & Greene, (2018) Greene & | Visual search for low contrast square in a random red-dot display. Visual search for low contrast | 18 18 | 280.39 256.14 | 313.86 278.71 | 33.47 22.57 | 1.506 1.409 | 0.337 0.325 |
Brown, (2017) | square in a random gray-dot display. | ||||||
Greene et al., (2014) | Visual search for low contrast checkerboard in a random gray-dot display. | 12 | 213.84 | 255.27 | 41.43 | 1.579 | 0.420 |
Greene et al., (2014) | Visual search for low contrast square in a random gray-dot display. | 24 | 243.18 | 286.52 | 43.34 | 1.822 | 0.329 |
Greene et al., (2013) | Monocular visual search for high contrast square in a random gray-dot display. | 12 | 218.29 | 227.82 | 9.53# | 0.577 | 0.293 |
Greene et al., (2013) | Monocular visual search for low contrast square in a random gray-dot display. | 12 | 341.6 | 366 | 24.40 | 0.647 | 0.299 |
Greene et al., (2013) | Visual search for high contrast square in a random gray-dot display. | 11 | 206.92 | 201.69 | -5.23# | -0.186 | 0.281 |
Greene et al., (2013) | Visual search for low contrast square in a random gray-dot display. | 12 | 305.56 | 317.6 | 12.04# | 0.306 | 0.276 |
Greene et al., (2010) | Visual search of roadmaps. | 10 | 242.13 | 257.91 | 15.78# | 0.552 | 0.314 |
Greene’s lab ~ | 3-second visual search-white circles on blue background. | 15 | 201.52 | 220.41 | 18.89 | 1.313 | 0.342 |
Greene’s lab ~ | 3-second visual search-white circles on green background. | 15 | 198.24 | 224.16 | 25.92 | 1.553 | 0.374 |
Greene’s lab ~ | 3-second visual search-white circles on red background. | 15 | 200.31 | 220.96 | 20.65 | 1.411 | 0.355 |
Greene’s lab ~ | Visual search for low contrast square in a random gray-dot display. | 15 | 206.02 | 234.46 | 28.44 | 1.296 | 0.340 |
Means | 247.07 | 272.25 | 25.18 |
Copyright © 2020. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Greene, H.H.; Brown, J.M.; Strauss, G.P. Shorter Fixation Durations for Up-Directed Saccades During Saccadic Exploration: A Meta-Analysis. J. Eye Mov. Res. 2019, 12, 1-12. https://doi.org/10.16910/jemr.12.8.5
Greene HH, Brown JM, Strauss GP. Shorter Fixation Durations for Up-Directed Saccades During Saccadic Exploration: A Meta-Analysis. Journal of Eye Movement Research. 2019; 12(8):1-12. https://doi.org/10.16910/jemr.12.8.5
Chicago/Turabian StyleGreene, Harold H., James M. Brown, and Gregory P. Strauss. 2019. "Shorter Fixation Durations for Up-Directed Saccades During Saccadic Exploration: A Meta-Analysis" Journal of Eye Movement Research 12, no. 8: 1-12. https://doi.org/10.16910/jemr.12.8.5
APA StyleGreene, H. H., Brown, J. M., & Strauss, G. P. (2019). Shorter Fixation Durations for Up-Directed Saccades During Saccadic Exploration: A Meta-Analysis. Journal of Eye Movement Research, 12(8), 1-12. https://doi.org/10.16910/jemr.12.8.5