Gaze Self-Similarity Plot—A New Visualization Technique
Abstract
:Introduction
Method
Differentiating Vertical and Horizontal Offsets Using GSSPVH
Quantitative Metrics for GSSP
Experiments and Results
Outlier Detection
Distinguishing Regions of Interest
Recurrence of Fixations
Smooth Pursuits Visualization
Distinguishing Focal and Ambient Patterns
Searching Strategy
Reading Patterns
GSSP Metrics Usage
Distinguishing Picture Types
Distinguishing a Level of Expertise
Handling with Long Sequences
Discussion
Distinguishing Picture Types
- ‘text’ has significantly higher horizontal contrast and lower horizontal homogeneity than other images,
- ‘task’ has significantly lower horizontal contrast than other images,
- both ‘task’ and ‘test’ have significantly lower uniformity and higher vertical contrast than both ‘free observation’ images,
- ‘free observation’ images have similar attributes values and no significant differences between them were observed,
- it is possible to distinguish the type of observation taking into account only three metrics derived from the GSSP, which was demonstrated using the Random Forest classification algorithm.
Distinguishing a Level of Expertise
Handling with Long Sequences
Summary
Acknowledgments
Conflicts of Interest
References
- Anderson, N. C., W. F. Bischof, K. E. Laidlaw, E. F. Risko, and A. Kingstone. 2013. Recurrence quantification analysis of eye movements. Behavior Research Methods 45, 3: 842–856. [Google Scholar] [PubMed]
- Binias, B., H. Palus, and M. Niezabitowski. 2016. Elimination of bioelectrical source overlapping effects from the eeg measurements. In Carpathian control conference (iccc), 2016 17th international. pp. 70–75. [Google Scholar]
- Blascheck, T., K. Kurzhals, M. Raschke, M. Burch, D. Weiskopf, and T. Ertl. 2014. State-of-the-art of visualization for eye tracking data. In Proceedings of eurovis. Vol. 2014. [Google Scholar]
- Burch, M. 2016. Time-preserving visual attention maps. In Intelligent decision technologies 2016. Springer: pp. 273–283. [Google Scholar]
- Demiralp, Ç., J. Cirimele, J. Heer, and S. K. Card. 2015. The verp explorer: A tool for exploring eye movements of visual-cognitive tasks using recurrence plots. In Workshop on eye tracking and visualization. pp. 41–55. [Google Scholar]
- Duchowski, A., and K. Krejtz. 2015. Visualizing dynamic ambient/focal attention with coefficient k. In Proceedings of etvis 2015. [Google Scholar]
- Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. 2009. The weka data mining software: An update. ACM SIGKDD explorations newsletter, vol. 11, pp. 10–18. [Google Scholar]
- Haralick, R. M., and K. Shanmugam. 1973. Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics 3, 6: 610–621. [Google Scholar] [CrossRef]
- Harezlak, K., and P. Kasprowski. 2014. Evaluating quality of dispersion based fixation detection algorithm. In Information sciences and systems 2014. Springer: pp. 97–104. [Google Scholar]
- Kasprowski, P. 2014. Mining of eye movement data to discover people intentions. In International conference: Beyond databases, architectures and structures. pp. 355–363. [Google Scholar]
- Kasprowski, P., and K. Harezlak. 2016. Gaze self-similarity plots as a useful tool for eye movement characteristics analysis. In Proceedings of etvis 2016. [Google Scholar]
- Krejtz, K., A. Duchowski, I. Krejtz, A. Szarkowska, and A. Kopacz. 2016. Discerning ambient/focal attention with coefficient k. ACM Transactions on Applied Perception (TAP) 13, 3: 11. [Google Scholar]
- Marwan, N., M. C. Romano, M. Thiel, and J. Kurths. 2007. Recurrence plots for the analysis of complex systems. Physics Reports 438, 5: 237–329. [Google Scholar] [CrossRef]
- Post, R. B., R. B. Welch, and B. Bridgeman. 2003. Perception and action: Two modes of processing visual information. In Visual perception: The influence of h.w. leibowitz. American Psychological Association: pp. 143–154. [Google Scholar]
- Shic, F., B. Scassellati, and K. Chawarska. 2008. The incomplete fixation measure. In Proceedings of the 2008 symposium on eye tracking research & applications. pp. 111–114. [Google Scholar]
- Velichkovsky, B. M., M. Joos, J. R. Helmert, and S. Pannasch. 2005. Two visual systems and their eye movements: Evidence from static and dynamic scene perception. In Proceedings of the xxvii conference of the cognitive science society. pp. 2283–2288. [Google Scholar]
- Vidal, M., A. Bulling, and H. Gellersen. 2012. Detection of smooth pursuits using eye movement shape features. In Proceedings of the symposium on eye tracking research and applications. pp. 177–180. [Google Scholar]
observation | contrast | homog | uniform |
Normal (Figure 5) Smooth pursuit (Figure 6) | 0.062 0.034 | 0.979 0.987 | 0.237 0.430 |
Ambient Focal (Figure 7) | 0.092 0.009 | 0.972 0.996 | 0.259 0.632 |
Text horizontal Text vertical (Figure 9) | 0.082 0.011 | 0.959 0.994 | 0.370 0.664 |
attribute | bus | cat | text | task | H | p-value | sign |
H01 contrast | .062 (.048) | .083 (.042) | .154 (.064) | .063 (.037) | 28.451 | 0 | *** |
H01 homogeneity | .977 (.01) | .969 (.011) | .952 (.007) | .975 (.006) | 34.253 | 0 | *** |
H10 contrast | .069 (.048) | .079 (.067) | .141 (.075) | .058 (.025) | 22.321 | 0 | *** |
H10 homogeneity | .977 (.01) | .973 (.013) | .957 (.01) | .978 (.006) | 32.848 | 0 | *** |
H11 contrast | .125 (.086) | .154 (.092) | .286 (.133) | .114 (.052) | 25.403 | 0 | *** |
H11 homogeneity | .957 (.017) | .947 (.02) | .917 (.013) | .957 (.01) | 35.417 | 0 | *** |
H11 uniformity | .25 (.125) | .205 (.056) | .152 (.023) | .159 (.024) | 23.627 | 0 | *** |
V01 contrast | .045 (.016) | .051 (.022) | .074 (.022) | .07 (.015) | 21.51 | 0 | *** |
V01 homogeneity | .979 (.007) | .977 (.009) | .973 (.006) | .972 (.005) | 12.853 | 0.005 | ** |
V10 contrast | .063 (.024) | .056 (.019) | .074 (.028) | .075 (.019) | 10.251 | 0.017 | * |
V10 homogeneity | .976 (.007) | .975 (.007) | .97 (.01) | .97 (.005) | 10.218 | 0.017 | * |
V11 contrast | .098 (.034) | .097 (.035) | .136 (.043) | .135 (.03) | 16.655 | 0.001 | *** |
V11 homogeneity | .96 (.011) | .957 (.013) | .949 (.013) | .948 (.008) | 13.832 | 0.003 | ** |
V11 uniformity | .363 (.115) | .311 (.111) | .205 (.048) | .156 (.023) | 47.07 | 0 | *** |
bus-cat | bus-text | bus-task | cat-text | text-task | cat-task | |
H01 contrast | .09 | ** | .24 | ** | ** | .25 |
H01 homog | .04 | ** | .21 | ** | ** | .22 |
H10 contrast | .42 | ** | 1.0 | ** | ** | .19 |
H10 homog | .29 | ** | .66 | ** | ** | .14 |
H11 contrast | .19 | ** | .66 | ** | ** | .14 |
H11 homog | .06 | ** | .62 | ** | ** | .08 |
H11 uniformity | .19 | ** | ** | ** | .48 | * |
V01 contrast | .41 | ** | ** | * | .79 | * |
V01 homog | .58 | * | * | .04 | .47 | .01 |
V10 contrast | .32 | .24 | .08 | .03 | .82 | * |
V10 homog | .82 | .04 | * | .1 | .91 | .01 |
V11 contrast | .96 | * | * | * | .76 | * |
V11 homog | .64 | .01 | * | .06 | .81 | * |
V11 uniformity | .08 | ** | ** | ** | ** | ** |
actual -> predicted | bus | cat | text | task |
bus | 11 | 5 | 0 | 1 |
cat | 5 | 10 | 1 | 0 |
text | 1 | 3 | 17 | 1 |
task | 1 | 0 | 0 | 16 |
attribute | laymen | specialists | H | p-value |
H cont | .14 (.16) | .09 (.06) | 0.13 | 0.72 |
H homo | .94 (.05) | .96 (.02) | 0.2 | 0.66 |
H unif | .4 (.12) | .29 (.07) | 43.8 | 0 |
V cont | .2 (.21) | .11 (.07) | 14.4 | 0 |
V homo | .93 (.06) | .96 (.02) | 13.0 | 0 |
V unif | .32 (.15) | .25 (.09) | 9.5 | 0.002 |
actual -> classified as | laymen | specialists |
laymen | 83 | 17 |
specialists | 12 | 79 |
Copyright © 2017. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Kasprowski, P.; Katarzyna, H. Gaze Self-Similarity Plot—A New Visualization Technique. J. Eye Mov. Res. 2017, 10, 1-14. https://doi.org/10.16910/jemr.10.5.3
Kasprowski P, Katarzyna H. Gaze Self-Similarity Plot—A New Visualization Technique. Journal of Eye Movement Research. 2017; 10(5):1-14. https://doi.org/10.16910/jemr.10.5.3
Chicago/Turabian StyleKasprowski, Pawel, and Harezlak Katarzyna. 2017. "Gaze Self-Similarity Plot—A New Visualization Technique" Journal of Eye Movement Research 10, no. 5: 1-14. https://doi.org/10.16910/jemr.10.5.3
APA StyleKasprowski, P., & Katarzyna, H. (2017). Gaze Self-Similarity Plot—A New Visualization Technique. Journal of Eye Movement Research, 10(5), 1-14. https://doi.org/10.16910/jemr.10.5.3