Topology for Gaze Analyses—Raw Data Segmentation
Abstract
Introduction
Splitting trajectory data into events
The basic oculomotor events
Higher level use for oculomotor events
The problem of defining a fixation
The problem of defining a fixation is one that perhaps deserves more recognition than it had in the past. Generally speaking, the more complex the system the more complex the task of definition will be. ... Once these needs are recognized and implemented, comparison between studies take on considerably more meaning.
Topological approach to the problem
Overview of existing approaches
Taxonomy of algorithms
Range of advanced methods
Topological data analysis
Configuration in physical space
Coherence in space and time
Visual assessment of trajectory spacetime
Homology for spacetime coherence
Abstract spacetime clustering
Sensory elements are semantic subfeatures of scenes or pictures being observed and motor elements are saccades that represent the syntactical structural or topological organization of the scene.
Results for fixation identification
Discussion
Acknowledgments
References
- Anantrasirichai, N.; Gilchrist, I. D.; Bull, D. R. Fixation identification for low-sample-rate mobile eye trackers. In 2016 ieee international conference on image processing (icip); 2016; pp. 3126–3130. [Google Scholar] [CrossRef]
- Anderson, N. C.; Bischof, W. F.; Laidlaw, K. E. W.; Risko, E. F.; Kingstone, A. Recurrence quantification analysis of eye movements. Behavior Research Methods 2013, 45(3), 842–856. [Google Scholar] [PubMed]
- Andersson, R.; Larsson, L.; Holmqvist, K.; Stridh, M.; Nyström, M. One algorithm to rule them all? an evaluation and discussion of ten eye movement event-detection algorithms. Behavior Research Methods 2016, 1–22. [Google Scholar] [CrossRef]
- Andersson, R.; Nyström, M.; Holmqvist, K. Sampling frequency and eye-tracking measures: how speed affects durations, latencies, and more. Journal of Eye Movement Research 2010, 3(3), 1–12. [Google Scholar]
- Artal, P. Optics of the eye and its impact in vision: a tutorial. Adv. Opt. Photon. 2014, 6(3), 340–367. [Google Scholar]
- Arzi, M.; Magnin, M. A fuzzy set theoretical approach to automatic analysis of nystagmic eye movements. IEEE Transactions on Biomedical Engineering 1989, 36(9), 954–963. [Google Scholar]
- ASL. Eye tracker system manual asl eyetrac 6 eyenal analysis software [Computer software manual]. 2007. [Google Scholar]
- Babcock, J. S.; Lipps, M.; Pelz, J. B. How people look at pictures before, during, and after scene capture: Buswell revisited. In Proc. spie 4662, human vision and electronic imaging vii; 2002; Vol. 4662, pp. 34–47. [Google Scholar] [CrossRef]
- Bahill, A. T. Predicting final eye position halfway through a saccade. IEEE Transactions on Biomedical Engineering 1983, 30(12), 781–786. [Google Scholar]
- Bahill, A. T.; Brockenbrough, A.; Troost, B. T. Variability and development of a normative data base for saccadic eye movements. Invest. Ophthalmol. Vis. Sci. 1981, 21(1), 116–125. [Google Scholar]
- Bahill, A. T.; Clark, M. R.; Stark, L. The main sequence, a tool for studying human eye movements. Mathematical Biosciences 1975, 24, 191–204. [Google Scholar]
- Behrens, F.; MacKeben, M.; Schröder-Preikschat, W. An improved algorithm for automatic detection of saccades in eye movement data and for calculating saccade parameters. Behavior Research Methods 2010, 3, 701–708. [Google Scholar]
- Behrens, F.; Weiss, L.-R. An algorithm separating saccadic from nonsaccadic eye movements automatically by use of the acceleration signal. Vision Research 1992, 32(5), 889 893. [Google Scholar]
- Bennett, A.; Rabbetts, R. B. Clinical visual optics, fourth ed.; Butterworth Heinemann Elsevier, 2007. [Google Scholar]
- Berg, D. J.; Boehnke, S. E.; Marino, R. A.; Munoz, D. P.; Itti, L. Free viewing of dynamic stimuli by humans and monkeys. Journal of Vision 2009, 9(5), 1–15. [Google Scholar]
- Bezdek, J.; Hathaway, R. Vat: a tool for visual assessment of (cluster) tendency. In Neural networks ijcnn ’02. proceedings of the 2002 international joint conference on; 2002; pp. 2225–2230. [Google Scholar]
- Bindemann, M. Scene and screen center bias early eye movements in scene viewing. Vision Research 2010, 50(23), 2577–2587. [Google Scholar] [CrossRef]
- Blackmon, T. T., Ho, Y. F., Chernyak, D. A., Azzariti, M., & Stark, L. W. (1999). Dynamic scanpaths: Eye movement analysis methods. In Is &t/spie conference on human vision and electronic imaging iv spie vol. 3644.
- Blignaut, P. Fixation identification:the optimum threshold for a dispersion algorithm. Attention, Perception, & Psychophysics 2009, 71(4), 881–895. [Google Scholar]
- Bollen, E.; Bax, J.; vanDijk, J. G.; Koning, M.; Bos, J. E.; Kramer, C. G. S.; van der Velde, E. A. Variability of the main sequence. Investigative Ophthalmology & Visual Science 1993, 34(13), 3700–3704. [Google Scholar]
- Borji, A.; Itti, L. Defending yarbus: Eye movements reveal observers’ task. Journal of Vision 2014, 14(3), 29. [Google Scholar] [PubMed]
- Brasel, S. A.; Gips, J. Points of view: Where do we look when we watch tv? Perception 2008, 37, 1890–1894. [Google Scholar] [PubMed]
- Buhmann, C.; Maintz, L.; Hierling, J.; Vettorazzi, E.; Moll, C. K.; Engel, A. K.; Zangemeister, W. H. Effect of subthalamic nucleus deep brain stimulation on driving in parkinson disease. Neurology 2014, 82(1), 32–40. [Google Scholar] [CrossRef]
- Buswell, G. T. How people look at pictures: A study of the psychology of perception in art; The University of Chicago Press, 1935. [Google Scholar]
- Camilli, M.; Nacchia, R.; Terenzi, M.; Nocera, F. D. Astef: A simple tool for examining fixations. Behavior Research Methods 2008, 40(2), 373–382. [Google Scholar]
- Carmi, R.; Itti, L. The role of memory in guiding attention during natural vision. Journal of Vision 2006, 6, 898–914. [Google Scholar]
- Carpenter, R. H. S. Movements of the eyes, 2nd ed.; Pion, 1988. [Google Scholar]
- Crabb, D. P.; Smith, N. D.; Rauscher, F. G.; Chisholm, C. M.; Barbur, J. L.; Edgar, D. F.; Garway-Heath, D. F. Exploring eye movements in patients with glaucoma when viewing a driving scene. PLoS ONE 2010, 5(3), e9710. [Google Scholar]
- Cuong, N. V.; Dinh, V.; Ho, L. S. T. Mel-frequency cepstral coefficients for eye movement identification. In 2012 ieee 24th international conference on tools with artificial intelligence; 2012; pp. 253–260. [Google Scholar] [CrossRef]
- Czabanski, R.; Pander, T.; Przybyla, T. Gruca, D. A., T., *!!! REPLACE !!!*, Kozielski, S., Eds.; Fuzzy approach to saccades detection in optokinetic nystagmus. In Man-machine interactions 3; Springer International Publishing, 2014; Vol. 242, pp. 231–238. [Google Scholar]
- Daye, P. M.; Optican, L. M. Saccade detection using a particle filter. Journal of Neuroscience Methods 2014, 235, 157 168. [Google Scholar]
- de Bruin, J. A.; Malan, K. M.; Eloff, J. H. P. Saccade deviation indicators for automated eye tracking analysis. In Proceedings of the 2013 conference on eye tracking south africa; ACM, 2013; pp. 47–54. [Google Scholar]
- Dorr, M.; Jarodzka, H.; Barth, E. Space-variant spatio-temporal filtering of video for gaze visualization and perceptual learning. In Etra ’10: Proceedings of the 2010 symposium on eye-tracking research & applications; ACM, 2010; pp. 307–314. [Google Scholar] [CrossRef]
- Dorr, M.; Vig, E.; Barth, E. Eye movement prediction and variability on natural video data sets. Visual Cognition 2012, 1–20. [Google Scholar]
- Duchowski, A. T. H., *!!! REPLACE !!!*, H., Szu, Eds.; 3d wavelet analysis of eye movements. In Proc. spie 3391, wavelet applications v, 435.; 1998. [Google Scholar]
- Duchowski, A. T. A breadth-first survey of eyetracking applications. Behavior Research Methods, Instruments, & Computers 2002, 34(4), 455–470. [Google Scholar]
- Duchowski, A. T. Eye tracking methodology, 2nd ed.; Springer, 2007. [Google Scholar]
- Eckmann, J.-P.; Kamphorst, S. O.; Ruelle, D. Recurrence plots of dynamical systems. Europhysics Letters 1987, 4(9), 973–977. [Google Scholar]
- Elbaum, T.; Wagner, M.; Botzer, A. Cyclopean vs. dominant eye in gaze-interface-tracking. Journal of Eye Movement Research 2017, 10. Available online: https://bop.unibe.ch/index.php/JEMR/article/view/2961.
- Engbert, R.; Kliegl, R. Microsaccades uncover the orientation of covert attention. Vision Research 2003, 43, 1035–1045. [Google Scholar] [PubMed]
- Engbert, R.; Mergenthaler, K. Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences of the United States 2006, 103(18), 7192–7197. [Google Scholar]
- Engbert, R.; Mergenthaler, K.; Sinn, P.; Pikovsky, A. An integrated model of fixational eye movements and microsaccades. In Proceedings of the National Academy of Sciences of the United States of America; 2011; 108. [Google Scholar]
- Farnand, S.; Vaidyanathan, P.; Pelz, J. Recurrence metrics for assessing eye movements in perceptual experiments. Journal of Eye Movement Research 2016, 9(4). [Google Scholar] [CrossRef]
- Fischer, B.; Biscaldi, M.; Otto, P. Saccadic eye movements of dyslexic adult subjects. Neuropsychologia 1993, 31(9), 887–906. [Google Scholar] [CrossRef]
- Follet, B.; Le Meur, O.; Baccino, T. New insights into ambient and focal visual fixations using an automatic classification algorithm. iPerception 2011, 2(6). [Google Scholar] [CrossRef]
- Frey, H.-P.; Honey, C.; König, P. What’s color got to do with it? the influence of color on visual attention in different categories. Journal of Vision 2008, 8(14). [Google Scholar] [CrossRef]
- Gilchrist, I. D. Liversedge, S. P., Gilchrist, I. D., Everling, S., Eds.; The oxford handbook of eye movements; (chap. Saccades); Oxford University Press, 2011. [Google Scholar]
- Gitelman, D. R. Ilab: A program for postexperimental eye movement analysis. Behavior Research Methods, Instruments, & Computers 2002, 34(4), 605 612. [Google Scholar]
- Godwin, H. J.; Reichle, E. D.; Menneer, T. Coarse-to-fine eye movement behavior during visual search. Psychonomic Bulletin & Review 2014, 21(5), 1244–1249. [Google Scholar] [CrossRef]
- Goldberg, J. H.; Schryver, J. C. Eyegaze-contingent control of the computer interface: Methodology and example for zoom detection. Behavior Research Methods 1995, 27(3), 338–350. [Google Scholar] [CrossRef]
- Goldberg, J. H.; Wichansky, A. M. Hyönä, J., Radach, R., Deubel, H., Eds.; Eye tracking in usability evaluation: A practitioner’s guide. In The mind’s eye: Cognitive and applied aspects of eye movement research; North-Holland, 2003; pp. 493–516. [Google Scholar]
- Goldstein, R. B.; Woods, R. L.; Peli, E. Where people look when watching movies: Do all viewers look at the same place? Comput Biol Med 2007, 37(7), 957–964. [Google Scholar] [CrossRef]
- Green, P. Dewar, Olson, P., Eds.; Where do drivers look while driving (and for how long)? In R. In Human factors in traffic safety, 2nd ed.; Lawyers & Judges, 2002; pp. 57–82. [Google Scholar]
- Greene, M. R.; Liu, T.; Wolfe, J. M. Reconsidering yarbus: A failure to predict observersŠ task from eye movement patterns. Vision Research 2012, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Groner, R.; Groner, M. Groner, R., Fraisse, P., Eds.; Towards a hypothetico-deductive theory of cognitive activity. In Cognition and eye movements; 1982; pp. 100–121. Available online: https://www.researchgate.net/ publication/312424385_Groner_R_Groner_M_1982_Towards_a_hypothetico-deductive_theory_of_cognitive_activity_In_R_Groner_P_Fraisse_Eds_Cognition_and_eye_movements_Amsterdam_North_Holland.
- Groner, R.; Groner, M. T. Attention and eye movement control: An overview Retrieved from http://dx.doi.org/10.1007/BF01739737 . European archives of psychiatry and neurological sciences 1989, 239(1), 9–16. [Google Scholar] [CrossRef]
- Groner, R.; Walder, F.; Groner, M. Gale, A. G., Johnson, F., Eds.; Looking at faces: Local and global aspects of scanpaths. In Theoretical and applied aspects of eye movement research selected/edited proceedings of the second european conference on eye movements; 1984; Vol. 22. [Google Scholar] [CrossRef]
- Gustafsson, F. Adaptive filtering and change detection; Wiley, 2000. [Google Scholar]
- Haji-Abolhassani, A.; Clark, J. J. An inverse yarbus process: Predicting observersŠ task from eye movement patterns. Vision Research 2014, 103, 127–142. [Google Scholar] [CrossRef]
- Hatcher, A. Algebraic topology; Cambridge University Press, 2002. [Google Scholar]
- Havens, T., Bezdek, J., Keller, J., & Popescu, M. (2008, dec.). Dunn’s cluster validity index as a contrast measure of vat images. In Pattern recognition, 2008. icpr 2008. 19th international conference on (pp. 1–4).
- Helo, A.; Rämä, P.; Pannash, S.; Meary, D. Eye movement patterns and visual attention during scene viewing in 3to 12-month-olds. Visual Neuroscience 2016, 33. [Google Scholar] [CrossRef]
- Hessels, R. S.; Niehorster, D. C.; Kemner, C.; Hooge, I. T. C. Noise-robust fixation detection in eye movement data: Identification by two-means clustering (i2mc). Behavior Research Methods 2016, 1–22. [Google Scholar] [CrossRef]
- Holmqvist, K.; Nyström, M.; Anderson, R.; Dewhurst, R.; Jarodzka, H.; van de Weijer, J. Eye tracking; Oxford University Press, 2011. [Google Scholar]
- Hooge, I.; Nyström, M.; Cornelissen, T.; Holmqvist, K. The art of braking: Post saccadic oscillations in the eye tracker signal decrease with increasing saccade size. Vision Research 2015, 112, 55–67. [Google Scholar] [CrossRef]
- Hoppe, S.; Bulling, A. End-to-end eye movement detection using convolutional neural networks. arXiv 2016, arXiv:1609.02452. Available online: http:// arxiv.org/abs/1609.02452.
- Horn, A. K.; Adamczyk, C. Paxinos, J. K. M., Ed.; Chapter 9 reticular formation: Eye movements, gaze and blinks. In The human nervous system (third edition), 3rd ed.; Academic Press, 2012; pp. 328–366. [Google Scholar]
- Inchingolo, P.; Spanio, M. On the identification and analysis of saccadic eye movements-a quantitative study of the processing procedures. Biomedical Engineering, IEEE Transactions on 1985, 32(9), 683–695. [Google Scholar]
- Inhoff, A. W.; Seymoura, B. A.; Schad, D.; Greenberg, S. The size and direction of saccadic curvatures during reading. Vision Research 2010, 50(12), 1117–1130. [Google Scholar]
- Itti, L. Quantifying the contribution of lowlevel saliency to human eye movements in dynamic scenes. Visual Cognition 2005, 12, 1093–1123. [Google Scholar]
- Jarodzka, H.; Holmqvist, K.; Nyström, M. A vector-based, multidimensional scanpath similarity measure. In Etra ’10: Proceedings of the 2010 symposium on eye-tracking research & applications; ACM, 2010; pp. 211–218. [Google Scholar] [CrossRef]
- Junejo, I. N.; Dexter, E.; Laptev, I.; Pérez, P. View-independent action recognition from temporal self-similarities. IEEE Transactions on Pattern Analysis and Machine Intelligence 2011, 33(1), 172–185. [Google Scholar]
- Just, M. A.; Carpenter, P. A. A theory of reading: from eye fixations to comprehension. Psychological Review 1980, 87(4), 329–354. [Google Scholar] [CrossRef] [PubMed]
- Jüttner, M.; Wolf, W. Occurrence of human express saccades depends on stimulus uncertainty and stimulus sequence. Experimental Brain Research 1992, 89(3), 678–681. [Google Scholar]
- Kaczynski, T.; Mischaikow, K.; Mrozek, M. Antmann, S. S., Marsden, J. E., S., L., Eds.; Computational homology; Springer, 2010; Volume No. 157. [Google Scholar]
- Karn, K. S. (2000, November). “saccade pickers” vs. “fixation pickers”: The effect of eye tracking instrumentation on research. In Proceedings eye tracking research & applications symposium 2000 (pp. 87–88).
- Karsh, R.; Breitenbach, F. W. Groner, R., Ed.; Looking at looking: The amorphous fixation measure. In Eye movements and psychological functions: International views; Hillsdale; Lawrence Erlbaum, 1983; pp. 53–64. [Google Scholar]
- Kasneci, E.; Kasneci, G.; Kübler, T. C.; Rosenstiel, W. The applicability of probabilistic methods to the online recognition of fixations and saccades in dynamic scenes. In Proceedings of the symposium on eye tracking research and applications; ACM, 2014; pp. 323–326. [Google Scholar]
- Kliegl, R.; Olson, R. K. Reduction and calibration of eye monitor data. Behavior Research Methods & Instrumentation 1981, 13(2), 107–111. [Google Scholar]
- Koh, D. H., Gowda, S. M., & Komogortsev, O. V. (2010). Real time eye movement identification protocol. In Extended abstracts of the 28th international conference on human factors in computing systems (pp. 3499–3504).
- Komogortsev, O. V.; Gobert, D. V.; Jayarathna, S.; Koh, D. H.; Gowda, S. M. Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Transactions on Biomedical Engineering 2010, 57(11), 2635–2645. [Google Scholar]
- Komogortsev, O. V.; Jayarathna, S.; Koh, D. H.; Gowda, S. M. Qualitative and quantitative scoring and evaluation of the eye movement classification algorithms (Tech. Rep.); Texas State Unversity San Marcos Department of Computer Science, 2009. [Google Scholar]
- Komogortsev, O. V.; Karpov, A. Automated classification and scoring of smooth pursuit eye movement in presence of fixation and saccades. Behavior Research Methods 2012, 45(1), 203–215. [Google Scholar]
- Komogortsev, O. V., & Khan, J. I. (2007). Kalman filtering in the design of eye-gaze-guided computer interfaces. In Human-computer interaction. hci intelligent multimodal interaction environments: 12th international conference, hci international 2007, Beijing.
- Krassanakis, V.; Filippakopoulou, V.; Nakos, B. Eyemmv toolbox: An eye movement postanalysis tool based on a two-step spatial dispersion threshold for fixation identification. Journal of Eye Movement Research 2014, 7(1), 1–10. [Google Scholar]
- Krauzlis, R. J.; Miles, F. A. Release of fixation for pursuit and saccades in humans: Evidence for shared inputs acting on different neural substrates. Journal of Neurophysiology 1996, 76(5), 2822–2833. [Google Scholar] [PubMed]
- Kumar, M.; Klingner, J.; Puranik, R.; Winograd, T.; Paepcke, A. Improving the accuracy of gaze input for interaction. In Etra ’08: Proceedings of the 2008 symposium on eye tracking research & applications; ACM, 2008; pp. 65–68. [Google Scholar]
- Land, M. F. Liversedge, S. P., Gilchrist, I. D., Everling, S., Eds.; Oculomotor behavior in vertebrates and invertebrates. In The oxford handbook of eye movements (chap. 1); Oxford University Press, 2011. [Google Scholar]
- Land, M. F.; Furneaux, S. The knowledge base of the oculomotor system. Phil. Trans. R. Soc. Lond. B 1997, 352(1358), 1231–1239. [Google Scholar]
- Land, M. F.; Lee, D. N. Where we look when we steer. Nature 1994, 369, 742–744. [Google Scholar]
- Land, M. F.; Tatler, B. W. Looking and acting; Oxford University Press, 2009. [Google Scholar]
- Lappi, O.; Lehtonen, E. Eye-movements in real curve driving: pursuit-like optokinesis in vehicle frame of reference, stability in an allocentric reference coordinate system. Journal of Eye Movement Research 2013, 6(1), 1–13. [Google Scholar]
- Larsson, P. Automatic visual behavior analysis. Unpublished master’s thesis, Control and Communication Department of electrical engineering Linköping University, Sweden, 2002. [Google Scholar]
- Leigh, R. J.; Kennard, C. Using saccades as a research tool in the clinical neurosciences. Brain 2004, 127 Pt 3, 460–477. [Google Scholar] [CrossRef]
- Leigh, R. J.; Zee, D. S. The neurology of eye movements, 4th ed.; Oxford, 2006. [Google Scholar]
- Liston, D. B., Krukowski, A. E., & Stone, L. S. (2012). Saccade detection during smooth tracking. Displays.
- Liversedge, S. P.; Gilchrist, I. D.; Everling, S. (Eds.) The oxford handbook of eye movements; Oxford University Press, 2011. [Google Scholar]
- Longbotham, H. G.; Engelken, E. J.; Rea, J.; Shelton, D.; R., R.; A., C.; Harris, J. Nonlinear approaches for separation of slow and fast phase nystagmus signals. Biomedical Sciences Instrumentation 1994, 30, 99–104. [Google Scholar]
- Manor, B. R.; Gordon, E. Defining the temporal threshold for ocular fixation in free-viewing visuocognitive tasks. Journal of Neuroscience Methods 2003, 128(1-2), 85–93. [Google Scholar]
- Martinez-Conde, S.; Macknik, S. L.; Troncoso, X. G.; Hubel, D. H. Microsaccades: a neurophysiological analysis. Trends in Neurosciences 2009, 32(9), 463–475. [Google Scholar]
- Marwan, N.; Romano, M. C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Physics Reports 2007, 438(5–6), 237–329. [Google Scholar]
- Mason, R. L. Digital computer estimation of eye fixations. Behavior Research Methods & Instrumentation 1976, 8(2), 185–188. [Google Scholar]
- Matin, E. Saccadic suppression: A review and an analysis. Psychological Bulletin 1974, 81(12), 899–917. [Google Scholar]
- Matsuoka, K.; Harato, H. Detection of rapid phases of eye movements using third order derivatives. Japanese J. Ergonomics 1983, 19, 147–153. [Google Scholar]
- McClung, S. N.; Kang, Z. Characterization of visual scanning patterns in air traffic control. Computational Intelligence and Neuroscience 2016. [Google Scholar] [CrossRef]
- Menz, C.; Groner, R. Groner, R., McConkie, G. W., Menz, C., Eds.; The effects of stimulus characteristics, task requirements and individual differences on scanning patterns. In Eye movements and human information processing; North Holland, 1985. [Google Scholar]
- Mosquera, S.; Verma, S.; McAlinden, C. Cen-tration axis in refractive surgery. Eye and Vision 2015, 2(1), 4. [Google Scholar]
- Mould, M. S.; Foster, D. H.; Amano, K.; Oakley, J. P. A simple nonparametric method for classifying eye fixations. Vision Research 2012, 57(15), 18–25. [Google Scholar]
- Munkres, J. R. Elements of algebraic topology; Perseus Publishing, 1984. [Google Scholar]
- Munn, S. M.; Stefano, L.; Pelz, J. B. Fixationidentification in dynamic scenes: comparing an automated algorithm to manual coding. In Apgv ’08: Proceedings of the 5th symposium on applied perception in graphics and visualization; ACM, 2008; pp. 33–42. [Google Scholar]
- Munoz, D. P.; Armstrong, I.; Coe, B. Gompel, R. P. V., Fischer, M. H., Murray, W. S., Hill, R. L., Eds.; Using eye movements to probe development and dysfunction. In Eye movements (p. 99 124); Elsevier, 2007. [Google Scholar]
- Nodine, C.; Kundel, H.; Toto, L.; Krupinski, E. Recording and analyzing eye-position data using a microcomputer workstation. Behavior Research Methods, Instruments, & Computers 1992, 24(3), 475–485. [Google Scholar]
- Noton, D.; Stark, L. Eye movements and visual perception. Scientific American 1971a, 224(6), 34–43. [Google Scholar]
- Noton, D.; Stark, L. Scanpaths in eye movements during pattern perception. Science 1971b, 171(3968), 308–311. [Google Scholar]
- Noton, D.; Stark, L. Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision Research 1971c, 11(9), 929–942. [Google Scholar] [PubMed]
- Nyström, M.; Holmqvist, K. An adaptive algorithm for fixation, saccade, and glissade detection in eyetracking data. Behavior Research Methods 2010, 42(1), 188–204. [Google Scholar]
- Olsen, A. The tobii i-vt fixation filter (Tech. Rep.); Tobii Technology, 2012. [Google Scholar]
- Olsson, P. Real-time and offline filters for eye tracking . Unpublished master’s thesis, KTH Royal Institute of Technology, 2007. [Google Scholar]
- Over, E.; Hooge, I.; Vlaskamp, B.; Erkelens, C. Coarse-to-fine eye movement strategy in visual search. Vision Research 2007, 47(17), 2272 2280. [Google Scholar] [CrossRef]
- Paulsen, D. J.; Hallquist, M. N.; Geier, C. F.; Luna, B. Effects of incentives, age, and behavior on brain activation during inhibitory control: A longitudinal fmri study. Developmental Cognitive Neuroscience 2015, 11, 105–115. [Google Scholar] [PubMed]
- Peters, R. J.; Itti, L. Applying computational tools to predict gaze direction in interactive visual environments. ACM Transactions on Applied Perception; 2008; 5. [Google Scholar]
- Poulton, E. C. Peripheral vision, refractoriness and eye movements in fast oral reading. British Journal of Psychology 1962, 53(4), 409–419. [Google Scholar] [PubMed]
- Privitera, C. M. (2006). The scanpath theory: its definition and later developments. In Human vision and electronic imaging xi (Vol. 6057, pp. 87–91).
- Privitera, C. M.; Stark, L. W. Algorithms for defining visual regions-of-interest: Comparison with eye fixations. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22(9), 970–982. [Google Scholar]
- Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin 1998, 124(3), 372–422. [Google Scholar]
- Reimer, B.; Sodhi, M. Detecting eye movements in dynamic environments. Behavior Research Methods 2006, 38(4), 667–682. [Google Scholar] [PubMed]
- Reutskaja, E.; Nagel, R.; Camerer, C. F.; Rangel, A. Search dynamics in consumer choice under time pressure: An eye-tracking study. American Economic Review 2011, 101, 900–926. [Google Scholar]
- Rigas, I.; Economou, G.; Fotopoulos, S. Biometric identification based on the eye movements and graph matching techniques. Pattern Recognition Letters 2012, 33(6), 786–792. [Google Scholar]
- Rolfs, M. Microsaccades: Small steps on a long way. Vision Research 2009, 49, 2415–2441. [Google Scholar]
- Rothkopf, C. A., & Pelz, J. B. (2004). Head movement estimation for wearable eye tracker. In Proceedings of the eye tracking research & application symposium etra 2004.
- Russo, J. E. Schulte-Mecklenbeck, M., Kühlberger, A., Ranyard, R., Eds.; Eye fixations as a process trace. In A handbook of process tracing methods for decision research; Taylor & Francis, 2010; pp. 43–64. [Google Scholar]
- Saez de Urabain, I. R.; Johnson, M. H.; Smith, T. J. Grafix: A semiautomatic approach for parsing lowand high-quality eye-tracking data. Behavior Research Methods 2015, 47(1), 53–72. [Google Scholar] [CrossRef] [PubMed]
- Salvucci, D. D., & Anderson, J. R. (1998). Tracing eye movement protocols with cognitive process models. In Proceedings of the twentieth annual conference of the cognitive science society (pp. 923–928).
- Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. In Etra ’00: Proceedings of the 2000 symposium on eye tracking research & applications.
- Santella, A.; DeCarlo, D. Robust clustering of eye movement recordings for quantification of visual interest. In Etra ’04: Proceedings of the 2004 symposium on eye tracking research & applications; New York, NY, USA, ACM, 2004; pp. 27–34. [Google Scholar] [CrossRef]
- Santini, T., Fuhl, W., Kübler, & Kasneci, E. (2016). Bayesian identification of fixations, saccades, and smooth pursuits. In Acm symposium on eye tracking research & applications, etra 2016.
- Sauter, D.; Martin, B. J.; Di Renzo, N.; Vomscheid, C. Analysis of eye tracking movements using innovations generated by a kalman filter. Medical and Biological Engineering and Computing 1991, 29(1), 63–69. [Google Scholar] [PubMed]
- Schwartz, S. H. Morita, J., Boyle, P. J., Eds.; Visual perception, fourth ed.; McGraw-Hill, 2010. [Google Scholar]
- Schwartz, S. H. Geometric and visual optics, second ed.; McGraw-Hill education, 2013. [Google Scholar]
- Scinto, L. F. M.; Barnette, B. D. An algorithm for determining clusters, pairs or singletons in eye-movement scan-path records. Behavior Research Methods, Instruments, & Computers 1986, 18(1), 41–44. [Google Scholar]
- seeingmachines. facelab 4 user manual, 4th ed.; Computer software manual, 2005. [Google Scholar]
- Shelhamer, M. Nonlinear dynamic systems evaluation of ‘rhythmic’ eye movements (optokinetic nystagmus). Journal of Neuroscience Methods 1998, 83(1), 45 56. [Google Scholar]
- Shelhamer, M.; Zalewski, S. A new application for time-delay reconstruction: detection of fast-phase eye movements. Physics Letters A 2001, 291(4-5), 349–354. [Google Scholar]
- Sheth, B. R.; Young, R. Two visual pathways in primates based on sampling of space: Exploitation and exploration of visual information. Frontiers in Integrative Neuroscience 2016, 10, 37. [Google Scholar] [CrossRef]
- Shic, F.; Scassellati, B.; Chawarska, K. The incomplete fixation measure. In Etra ’08: Proceedings of the 2008 symposium on eye tracking research & applications; New York, NY, USA, ACM, 2008; pp. 111–114. [Google Scholar]
- Smeets, J. B. J.; Hooge, I. T. C. Nature of variability in saccades. Journal of Neurophysiol 2003, 90, 12–20. [Google Scholar]
- Smith, N. D.; Crabb, D. P.; Glen, F. C.; Burton, R.; Garway-Heath, D. F. Eye movements in patients with glaucoma when viewing images of everyday scenes. Seeing and Perceiving 2012, 25(5), 471–492. [Google Scholar]
- Smith, T. J.; Mital, P. K. Attentional synchrony and the influence of viewing task on gaze behavior n static and dynamic scenes. Journal of Vision 2013, 13(8), 1–24. [Google Scholar]
- Smyrnis, N. Metric issues in the study of eye movements in psychiatry. Brain and Cognition 2008, 68(3), 341–358. [Google Scholar] [PubMed]
- Stampe, D. M. Heuristic filtering and reliable calibration methods for video-based pupiltracking systems. Behavior Research Methods, Instruments, & Computers 1993, 25(2), 137–142. [Google Scholar]
- Stark, L.; Ellis, S. R. Fisher, D. F., Monty, R. A., Senders, J. W., Eds.; Scanpath revisited: Cognitive models direct active looking. In Eye movements: cogniton and visual perception; Hillsdale, NJ, 1981; pp. 193–226. [Google Scholar]
- Sundstedt, V.; Stavrakis, E.; Wimmer, M.; Reinhard, E. A psychohysical study of fixation behavior in a computer game. In Apgv ’08: Proceedings of the 5th symposium on applied perception in graphics and visualization; ACM, 2008; pp. 43–50. [Google Scholar]
- Tafaj, E.; Kasneci, G.; Rosenstiel, W.; Bogdan, M. Bayesian online clustering of eye movement data. In Proceedings of the symposium on eye tracking research and applications; ACM, 2012; pp. 285–288. [Google Scholar]
- Tatler, B.; Wade, N.; Kaulard, K. Examining art: dissociating pattern and perceptual influences on oculomotor behaviour. Spatial Vision 2007, 21(1), 165–184. [Google Scholar] [PubMed]
- Tatler, B. W. The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. Journal of Vision 2007, 7(14), 4. [Google Scholar] [CrossRef]
- Tatler, B. W.; Wade, N. J.; Kwan, H.; Findlay, J. M.; Velichkovsky, B. M. Yarbus, eye movements, and vision. i-Perception 2010, 1, 7 27. [Google Scholar]
- Thornton, T. L.; Gilden, D. L. Parallel and serial processes in visual search. Psychological Review 2007, 114. [Google Scholar] [CrossRef]
- Tobii. Tobii studio version 3.3.0 (3.3.0 ed.); Computer software manual, 2014. [Google Scholar]
- Tole, J. R.; Young, L. R. Fisher, D. F., Monty, R. A., Senders, J. W., Eds.; Digital filters for saccade and fixation detection. In Eye movements: Cognition and visual perception; Lawrence Erlbaum, 1981. [Google Scholar]
- Trukenbrod, H. A.; Engbert, R. Eye movements in a sequential scanning task: Evidence for distributed processing. Journal of Vision 2012, 12(1), 1–12. [Google Scholar]
- Tseng, P.-H.; Carmi, R.; Cameron, I. G. M.; Munoz, D. P., I; i, L.; 4, *!!! REPLACE !!!*. Quantifying center bias of observers in free viewing of dynamic natural scenes. Journal of Vision 2009, 9(7). [Google Scholar] [CrossRef]
- Ungerleider, L. G.; Haxby, J. V. S´whatŠ and S´whereŠ in the human brain. Current Opinion in Neurobiology 1994, 4(2), 157–165. [Google Scholar] [CrossRef]
- Urruty, T.; Lew, S., I. Detecting eye fixations by projection clustering. ACM Transactions on Multimedia Computing, Communications and Applications 2007, 3(4). [Google Scholar] [CrossRef]
- S˘pakov, O.; Miniotas, D. Application of clustering algorithms in eye gaze visualizations. Information Technology and Control 2007, 36(2), 213–216. [Google Scholar]
- Valsecchi, M.; Gegenfurtner, K. R.; Schütz, A. C. Saccadic and smooth-pursuit eye movements during reading of drifting texts. Journal of Vision 2013, 13(10), 8. [Google Scholar] [CrossRef] [PubMed]
- van der Lans, R.; Wedel, M.; Pieters, R. Defining eye-fixation sequences across individuals and tasks: the binocular-individual threshold (bit) algorithm. Behavior Research Methods 2011, 43, 239–257. [Google Scholar] [CrossRef]
- van der Linde, I.; Rajashekar, U.; Bovik, A. C.; Cormack, L. K. Doves: A database of visual eye movements. Spatial Vision 2009, 22(2), 161–177. [Google Scholar] [PubMed]
- Van der Stigchel, S.; Meeter, M.; Theeuwes, J. Eye movement trajectories and what they tell us. Neuroscience and Biobehavioral Reviews 2006, 30, 666–679. [Google Scholar] [CrossRef]
- van Hateren, J. H.; van der Schaaf, A. Independent component filters of natural images compared with simple cells in primary visual cortex. Proceedings of the Royal Society of London B: Biological Sciences 1998, 265(1394), 359–366. [Google Scholar] [CrossRef]
- Velichkovsky, B. M., Joos, M., Helmert, J. R., & Pannash, S. (2005). Two visual systems and their eye movements: evidence from static and dynamic scene perception. In Proceedings of the xxvii conference of the cognitive science society (pp. 2283-2288). Retrieved from https://tu-dresden.de/ mn/psychologie/applied-cognition/ ressourcen/dateien/publikationen/ pdf/velichkovsky2005.pdf?lang=de.
- Vella, F., I; antino, I.; Scardino, G. Person identification through entropy oriented mean shift clustering of human gaze patterns. Multimedia Tools and Applications 2016, 1–25. [Google Scholar] [CrossRef]
- Veneri, G. Pattern recognition on human vision; Transworld Research Network, 2013; pp. 19–47. [Google Scholar]
- Veneri, G., Piu, P., Federighi, P., Rosini, F., Federico, A., & Rufa, A. (2010, June). Eye fixations identification based on statistical analysis case study. In Cognitive information processing (cip), 2010 2nd international workshop on (pp. 446–451). June 2010.
- Veneri, G.; Piu, P.; Rosini, F.; Federighi, P.; Federico, A.; Rufa, A. Automatic eye fixations identification based on analysis of variance and covariance. Pattern Recognition Letters 2011, 32, 1588–1593. [Google Scholar] [CrossRef]
- Vidal, M., Bulling, A., & Gellersen, H. (2012). Detection of smooth pursuits using eye movement shape features. In Proceedings of the symposium on eye tracking research and applications (pp. 177–180). 2012.
- Špakov, O. Comparison of eye movement filters used in hci. In Proceedings of the symposium on eye tracking research and applications; ACM, 2012; pp. 281–284. [Google Scholar]
- Wass, S.; Smith, T.; Johnson, M. Parsing eyetracking data of variable quality to provide accurate fixation duration estimates in infants and adults. Behavior Research Methods 2013, 45(1), 229–250. [Google Scholar] [CrossRef]
- Weiskrantz, L. Review lecture: Behavioural analysis of the monkey’s visual nervous system. Proceedings of the Royal Society of London B: Biological Sciences 1972, 182(1069), 427–455. [Google Scholar] [CrossRef] [PubMed]
- Widdel, H. Operational problems in analysing eye movements. Theoretical and applied aspects of eye movement research 1984, 22, 21–29. [Google Scholar]
- Wooding, D. S. Eye movements of large populations: Ii. deriving regions of interest, coverage, and similarity using fixation maps. Behavior Research Methods, Instruments, & Computers 2002a, 34(4), 518–528. [Google Scholar]
- Wooding, D. S. Fixation maps: quantifying eye-movement traces. In Etra ’02: Proceedings of the 2002 symposium on eye tracking research & applications; ACM, 2002b; pp. 31–36. [Google Scholar]
- Wooding, D. S.; Mugglestone, M. D.; Purdy, K. J.; Gale, A. G. Eye movements of large populations: I. implementation and performance of an autonomous public eye tracker. Behavior Research Methods, Instruments, & Computers 2002, 34(4), 509–517. [Google Scholar]
- Wyatt, H. J. Detecting saccades with jerk. Vision Research 1998, 38, 2147–2153. [Google Scholar]
- Zangemeister, W. H.; Stiehl, H. S.; Freksa, C. (Eds.) Visual attention and cognition; North-Holland, 1996; Vol. 116. [Google Scholar]
- Zemblys, R. Zemblys, R. (2016). Eye-movement event detection meets machine learning. In The 20th international conference biomedical engineering 2016. Retrieved from https:// www.researchgate.net/publication/ 311027097_Eye-movement_event_detection_meets_machine_learning.
- Zemblys, R., Niehorster, D. C., Komogortsev, O., & Holmqvist, K. (2017). Using machine learning to detect events in eye-tracking data (accepted paper). Behavior Research Methods.
Copyright © 2024. This article is licensed under a Creative Commons Attribution 4.0 International License.
Share and Cite
Hein, O.; Zangemeister, W.H. Topology for Gaze Analyses—Raw Data Segmentation. J. Eye Mov. Res. 2017, 10, 1-25. https://doi.org/10.16910/jemr.10.1.1
Hein O, Zangemeister WH. Topology for Gaze Analyses—Raw Data Segmentation. Journal of Eye Movement Research. 2017; 10(1):1-25. https://doi.org/10.16910/jemr.10.1.1
Chicago/Turabian StyleHein, Oliver, and Wolfgang H. Zangemeister. 2017. "Topology for Gaze Analyses—Raw Data Segmentation" Journal of Eye Movement Research 10, no. 1: 1-25. https://doi.org/10.16910/jemr.10.1.1
APA StyleHein, O., & Zangemeister, W. H. (2017). Topology for Gaze Analyses—Raw Data Segmentation. Journal of Eye Movement Research, 10(1), 1-25. https://doi.org/10.16910/jemr.10.1.1