Microsaccade-Induced Prolongation of Saccade Latencies Depends on Microsaccade Amplitude
Abstract
:Introduction
Methods
Participants
Experimental setup and eye-movement recording
Procedure
Stimuli
Data preparation
Results
Microsaccade amplitude
Microsaccades and saccadic response latencies
Discussion
Conclusion
Funding
References
- Anderson, R. W., E. L. Keller, N. J. Gandhi, and S. Das. 1998. Two-dimensional saccade-related population activity in superior colliculus in monkey. Journal of Neurophysiology 80: 798–817. [Google Scholar] [PubMed]
- Bair, W., and L. P. O’Keefe. 1998. The influence of fixational eye movements on the response of neurons in area MT of the macaque. Visual Neuroscience 15: 779–786. [Google Scholar] [PubMed]
- Basso, M. A., R. J. Krauzlis, and R. H. Wurtz. 2000. Activation and inactivation of rostral superior colliculus neurons during smooth-pursuit eye movements in monkeys. Journal of Neurophysiology 84: 892–908. [Google Scholar]
- Bates, D. 2007. lme4: Linear mixed-effects models using s4 classes. (R package version 0.99875-9). [Google Scholar]
- Brainard, D. H. 1997. The Psychophysics Toolbox. Spatial Vision 10: 433–436. [Google Scholar] [PubMed]
- Cornelissen, F. W., E. M. Peters, and J. Palmer. 2002. The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox. Behavior Research Methods, Instruments, & Computers 34: 613–617. [Google Scholar]
- Cornsweet, T. N. 1956. Determination of the stimuli for involuntary drifts and saccadic eyer movements. Journal of the Optical Society of America 46: 987–993. [Google Scholar]
- Cunitz, R. J., and R. M. Steinman. 1969. Comparison of saccadic eye movements during fixation and reading. Vision Research 9: 683–693. [Google Scholar]
- Deubel, H., and T. Elsner. 1986. Threshold perception and saccadic eye movements. Biological Cybernetics 54: 351–358. [Google Scholar]
- Ditchburn, R. W. 1980. The function of small saccades. Vision Research 20: 271–272. [Google Scholar]
- Elsner, T., and H. Deubel. 1986. The effect of saccades on threshold perception-A model study. Biological Cybernetics 54: 359–366. [Google Scholar]
- Engbert, R., and R. Kliegl. 2003. Microsaccades uncover the orientation of covert attention. Vision Research 43: 1035–1045. [Google Scholar]
- Engbert, R., and R. Kliegl. 2004. Microsaccades keep the eyes’ balance during fixation. Psychological Science 15: 431–436. [Google Scholar] [PubMed]
- Engbert, R., and K. Mergenthaler. 2006. Microsaccades are triggered by low retinal image slip. Proceedings of the National Academy of Sciences, USA 103: 7192–7197. [Google Scholar]
- Gandhi, N. J., and E. L. Keller. 1999. Comparison of saccades perturbed by stimulation of the rostral superior colliculus, the caudal superior colliculus, and the omnipause neuron region. Journal of Neurophysiology 82: 3236–3253. [Google Scholar] [PubMed]
- Gerrits, H. J. M., and A. J. H. Vendrik. 1974. The influence of stimulus movements on perception in parafoveal stabilized vision. Vision Research 14: 175–180. [Google Scholar] [CrossRef]
- Kopecz, K. 1995. Saccadic reaction times in gap/overlap paradigms: A model based on integration of intentional and visual information on neural, dynamic fields. Vision Research 35: 2911–2925. [Google Scholar]
- Kopecz, K., and G. Schöner. 1995. Saccade motor planning by integrating visual information and pre-information on neural dynamic fields. Biological Cybernetics 73: 49–60. [Google Scholar]
- Kowler, E., and R. M. Steinman. 1980. Small saccades serve no useful purpose: Reply to a letter by R.W. Ditchburn. Vision Research 20: 273–276. [Google Scholar]
- Krauzlis, R. J. 2003. Neuronal activity in the rostral superior colliculus related to the initiation of pursuit and saccadic eye movements. Journal of Neuroscience 23: 4333–4344. [Google Scholar]
- Krauzlis, R. J., M. A. Basso, and R. H. Wurtz. 1997. Shared motor error for multiple eye movements. Science 276: 1693–1695. [Google Scholar]
- Krauzlis, R. J., M. A. Basso, and R. H. Wurtz. 2000. Discharge properties of neurons in the rostral superior colliculus of the monkey during smooth-pursuit eye movements. Journal of Neurophysiology 84: 876–891. [Google Scholar] [CrossRef] [PubMed]
- Laubrock, J., R. Engbert, and R. Kliegl. 2008. Fixational eye movements influence the perceived direction of ambiguous apparent motion. Journal of Vision. in press. [Google Scholar]
- Leopold, D. A., and N. K. Logothetis. 1998. Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Experimental Brain Research 123: 341–345. [Google Scholar] [CrossRef]
- Martinez-Conde, S. 2006. Fixational eye movements in normal and pathological vision. Progress in Brain Research 154: 151–176. [Google Scholar] [PubMed]
- Martinez-Conde, S., S. L. Macknik, and D. H. Hubel. 2000. Microsaccadic eye movements and firing of single cells in the striate cortex of macaque monkeys. Nature Neuroscience 3: 251–258. [Google Scholar]
- Martinez-Conde, S., S. L. Macknik, and D. H. Hubel. 2002. The function of bursts of spikes during visual fixation in the awake primate lateral geniculate nucleus and primary visual cortex. Proceedings of the National Academy of Sciences, USA 99: 13920–13925. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Conde, S., S. L. Macknik, X. G. Troncoso, and T. A. Dyar. 2006. Microsaccades counteract visual fading during fixation. Neuron 49: 297–305. [Google Scholar] [CrossRef]
- Mergenthaler, K., and R. Engbert. 2007. Modeling the control of fixational eye movements with neurophysiological delays. Physical Review Letters 98, 138104: 1–4. [Google Scholar]
- Munoz, D. P., M. C. Dorris, M. Paré, and S. Everling. 2000. On your mark get set: Brainstem circuitry underlying saccadic initiation. Canadian Journal of Physiology and Pharmacology 78: 934–944. [Google Scholar] [CrossRef]
- Munoz, D. P., and P. J. Istvan. 1998. Lateral inhibitory interactions in the intermediate layers of the monkey superior colliculus. Journal of Neurophysiology 79: 1193–1209. [Google Scholar] [CrossRef]
- Munoz, D. P., and R. H. Wurtz. 1993a. Fixation cells in monkey superior colliculus I. Characteristics of cell discharge. Journal of Neurophysiology 70: 559–575. [Google Scholar] [CrossRef]
- Munoz, D. P., and R. H. Wurtz. 1993b. Fixation cells in monkey superior colliculus II. Reversible activation and deactivation. Journal of Neurophysiology 70: 576–589. [Google Scholar] [PubMed]
- Munoz, D. P., and R. H. Wurtz. 1995. Saccade-related activity in monkey superior colliculus II. Spread of activity during saccades. Journal of Neurophysiology 73: 2334–2348. [Google Scholar]
- Nakahara, H., K. Morita, R. H. Wurtz, and L. M. Optican. 2006. Saccade-related spread of activity across superior colliculus may arise from asymmetry of internal connections. Journal of Neurophysiology 96: 765–774. [Google Scholar]
- Otero-Millan, J., X. G. Troncoso, S. L. Macknik, I. Serrano-Pedraza, and S. Martinez-Conde. 2008. Saccades and microsaccades during visual fixation, exploration and search: Foundations for a common saccadic generator. Journal of Vision. accepted pending minor revisions. [Google Scholar] [CrossRef] [PubMed]
- Pelli, D. G. 1997. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision 10: 437–442. [Google Scholar]
- Pinheiro, J., and D. Bates. 2000. Mixed-effects models in S and S-PLUS. New York: Springer. [Google Scholar]
- R Development Core Team. 2007. R: A language and environment for statistical computing. Vienna, Austria: ISBN 3-900051-07-0. [Google Scholar]
- Robinson, D. A. 1972. Eye movements evoked by collicular stimulation in the alert monkey. Vision Research 12: 1795–1808. [Google Scholar] [CrossRef]
- Rolfs, M., R. Engbert, and R. Kliegl. 2004. Perception and motor control: The link between fixational eye movements and postural sway. Perception 33 Suppl. S: 136. [Google Scholar]
- Rolfs, M., R. Kliegl, and R. Engbert. 2008. Toward a model of microsaccade generation: The case of microsaccadic inhibition. Journal of Vision 8, 11: 5.1–23. [Google Scholar]
- Rolfs, M., J. Laubrock, and R. Kliegl. 2006. Shortening and prolongation of saccade latencies following microsaccades. Experimental Brain Research 169: 369–376. [Google Scholar]
- Scudder, C. A., C. R. S. Kaneko, and A. F. Fuchs. 2002. The brainstem burst generator for saccadic eye movements: A modern synthesis. Experimental Brain Research 142: 439–462. [Google Scholar]
- Snodderly, D. M., I. Kagan, and M. Gur. 2001. Selective activation of visual cortex neurons by fixational eye movements: Implications for neural coding. Visual Neuroscience 18: 259–277. [Google Scholar] [PubMed]
- Sparks, D. L. 2002. The brainstem control of saccadic eye movements. Nature Reviews Neuroscience 3: 952–964. [Google Scholar] [PubMed]
- Supèr, H., C. van der Togt, H. Spekreijse, and V. A. F. Lamme. 2004. Correspondence of presaccadic activity in the monkey primary visual cortex with saccadic eye movements. Proceedings of the National Academy of Sciences USA 101: 3230–3235. [Google Scholar]
- Trappenberg, T. P., M. C. Dorris, D. P. Munoz, and R. M. Klein. 2001. A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. Journal of Cognitive Neuroscience 13: 256–271. [Google Scholar] [CrossRef]
- Troncoso, X. G., S. L. Macknik, and S. Martinez-Conde. 2008. Microsaccades counteract perceptual filling-in. Journal of Vision. in press. [Google Scholar]
© 2008 by the author. 2008 Martin Rolfs, Jochen Laubrock, Reinhold Kliegl
Share and Cite
Rolfs, M.; Laubrock, J.; Kliegl, R. Microsaccade-Induced Prolongation of Saccade Latencies Depends on Microsaccade Amplitude. J. Eye Mov. Res. 2007, 1, 1-8. https://doi.org/10.16910/jemr.1.3.1
Rolfs M, Laubrock J, Kliegl R. Microsaccade-Induced Prolongation of Saccade Latencies Depends on Microsaccade Amplitude. Journal of Eye Movement Research. 2007; 1(3):1-8. https://doi.org/10.16910/jemr.1.3.1
Chicago/Turabian StyleRolfs, Martin, Jochen Laubrock, and Reinhold Kliegl. 2007. "Microsaccade-Induced Prolongation of Saccade Latencies Depends on Microsaccade Amplitude" Journal of Eye Movement Research 1, no. 3: 1-8. https://doi.org/10.16910/jemr.1.3.1
APA StyleRolfs, M., Laubrock, J., & Kliegl, R. (2007). Microsaccade-Induced Prolongation of Saccade Latencies Depends on Microsaccade Amplitude. Journal of Eye Movement Research, 1(3), 1-8. https://doi.org/10.16910/jemr.1.3.1