Therapeutic Advances in Initially Unresectable Locally Advanced Intrahepatic Cholangiocarcinoma: Emerging Treatments and the Role of Liver Transplantation
Abstract
:1. Introduction
2. Pathogenesis, Presentation, and Diagnosis
3. Surgery as the Gold Standard for iCCA Treatment
4. Systemic Chemotherapy for Initially Unresectable iCCA
5. Use of Locoregional and Liver-Directed Therapies in Initially Unresectable iCCA
6. Liver Transplantation for Intrahepatic Cholangiocarcinoma
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Razumilava, N.; Gores, G.J. Cholangiocarcinoma. Lancet 2014, 383, 2168–2179. [Google Scholar] [CrossRef]
- Rodrigues, P.M.; Olaizola, P.; Paiva, N.A.; Olaizola, I.; Agirre-Lizaso, A.; Landa, A.; Bujanda, L.; Perugorria, M.J.; Banales, J.M. Pathogenesis of Cholangiocarcinoma. Annu. Rev. Pathol. 2021, 16, 433–463. [Google Scholar] [CrossRef] [PubMed]
- Panayotova, G.; Guerra, J.; Guarrera, J.V.; Lunsford, K.E. The Role of Surgical Resection and Liver Transplantation for the Treatment of Intrahepatic Cholangiocarcinoma. J. Clin. Med. 2021, 10, 2428. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.W.; Moon, S.H.; Kim, J.H. Diagnosis of Cholangiocarcinoma. Diagnostics 2023, 13, 233. [Google Scholar] [CrossRef]
- Connor, A.A.; Kodali, S.; Abdelrahim, M.; Javle, M.M.; Brombosz, E.W.; Ghobrial, R.M. Intrahepatic cholangiocarcinoma: The role of liver transplantation, adjunctive treatments, and prognostic biomarkers. Front. Oncol. 2022, 12, 996710. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Alsaraf, Y.; Bandaru, S.S.; Lyons, S.; Reap, L.; Ngo, T.; Yu, Z.; Yu, Q. Epidemiology, survival and new treatment modalities for intrahepatic cholangiocarcinoma. J. Gastrointest. Oncol. 2024, 15, 1777–1788. [Google Scholar] [CrossRef]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next horizon in mechanisms and management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Cerrito, L.; Ainora, M.E.; Borriello, R.; Piccirilli, G.; Garcovich, M.; Riccardi, L.; Pompili, M.; Gasbarrini, A.; Zocco, M.A. Contrast-Enhanced Imaging in the Management of Intrahepatic Cholangiocarcinoma: State of Art and Future Perspectives. Cancers 2023, 15, 3393. [Google Scholar] [CrossRef]
- Weber, S.M.; Ribero, D.; O’Reilly, E.M.; Kokudo, N.; Miyazaki, M.; Pawlik, T.M. Intrahepatic cholangiocarcinoma: Expert consensus statement. HPB 2015, 17, 669–680. [Google Scholar] [CrossRef]
- Orcutt, S.T.; Anaya, D.A. Liver Resection and Surgical Strategies for Management of Primary Liver Cancer. Cancer Control 2018, 25, 1073274817744621. [Google Scholar] [CrossRef]
- Mavros, M.N.; Economopoulos, K.P.; Alexiou, V.G.; Pawlik, T.M. Treatment and Prognosis for Patients with Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-analysis. JAMA Surg. 2014, 149, 565–574. [Google Scholar] [CrossRef] [PubMed]
- de Jong, M.C.; Nathan, H.; Sotiropoulos, G.C.; Paul, A.; Alexandrescu, S.; Marques, H.; Pulitano, C.; Barroso, E.; Clary, B.M.; Aldrighetti, L.; et al. Intrahepatic cholangiocarcinoma: An international multi-institutional analysis of prognostic factors and lymph node assessment. J. Clin. Oncol. 2011, 29, 3140–3145. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Qin, L.X.; Zhou, J.; Sun, H.C.; Qiu, S.J.; Ye, Q.H.; Wang, L.; Tang, Z.Y.; Fan, J. Staging, prognostic factors and adjuvant therapy of intrahepatic cholangiocarcinoma after curative resection. Liver Int. 2014, 34, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Ribero, D.; Pinna, A.D.; Guglielmi, A.; Ponti, A.; Nuzzo, G.; Giulini, S.M.; Aldrighetti, L.; Calise, F.; Gerunda, G.E.; Tomatis, M.; et al. Surgical Approach for Long-term Survival of Patients with Intrahepatic Cholangiocarcinoma: A Multi-institutional Analysis of 434 Patients. Arch. Surg. 2012, 147, 1107–1113. [Google Scholar] [CrossRef]
- Farges, O.; Fuks, D.; Boleslawski, E.; Le Treut, Y.P.; Castaing, D.; Laurent, A.; Ducerf, C.; Rivoire, M.; Bachellier, P.; Chiche, L.; et al. Influence of surgical margins on outcome in patients with intrahepatic cholangiocarcinoma: A multicenter study by the AFC-IHCC-2009 study group. Ann. Surg. 2011, 254, 824–829, discussion 830. [Google Scholar] [CrossRef]
- Primrose, J.N.; Fox, R.P.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Capecitabine compared with observation in resected biliary tract cancer (BILCAP): A randomised, controlled, multicentre, phase 3 study. Lancet Oncol. 2019, 20, 663–673. [Google Scholar] [CrossRef]
- Edeline, J.; Benabdelghani, M.; Bertaut, A.; Watelet, J.; Hammel, P.; Joly, J.P.; Boudjema, K.; Fartoux, L.; Bouhier-Leporrier, K.; Jouve, J.L.; et al. Gemcitabine and Oxaliplatin Chemotherapy or Surveillance in Resected Biliary Tract Cancer (PRODIGE 12-ACCORD 18-UNICANCER GI): A Randomized Phase III Study. J. Clin. Oncol. 2019, 37, 658–667. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Moore, M.J.; Cox, T.F.; Valle, J.W.; Palmer, D.H.; McDonald, A.C.; Carter, R.; Tebbutt, N.C.; Dervenis, C.; Smith, D.; et al. Effect of adjuvant chemotherapy with fluorouracil plus folinic acid or gemcitabine vs observation on survival in patients with resected periampullary adenocarcinoma: The ESPAC-3 periampullary cancer randomized trial. JAMA 2012, 308, 147–156. [Google Scholar] [CrossRef]
- Shroff, R.T.; Kennedy, E.B.; Bachini, M.; Bekaii-Saab, T.; Crane, C.; Edeline, J.; El-Khoueiry, A.; Feng, M.; Katz, M.H.G.; Primrose, J.; et al. Adjuvant Therapy for Resected Biliary Tract Cancer: ASCO Clinical Practice Guideline. J. Clin. Oncol. 2019, 37, 1015–1027. [Google Scholar] [CrossRef]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef]
- Oh, D.Y.; He, A.R.; Qin, S.; Chen, L.T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Lee, M.A.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022, 1, EVIDoa2200015. [Google Scholar] [CrossRef] [PubMed]
- Kelley, R.K.; Ueno, M.; Yoo, C.; Finn, R.S.; Furuse, J.; Ren, Z.; Yau, T.; Klümpen, H.J.; Chan, S.L.; Ozaka, M.; et al. Pembrolizumab in combination with gemcitabine and cisplatin compared with gemcitabine and cisplatin alone for patients with advanced biliary tract cancer (KEYNOTE-966): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2023, 401, 1853–1865. [Google Scholar] [CrossRef] [PubMed]
- Shroff, R.T.; Javle, M.M.; Xiao, L.; Kaseb, A.O.; Varadhachary, G.R.; Wolff, R.A.; Raghav, K.P.S.; Iwasaki, M.; Masci, P.; Ramanathan, R.K.; et al. Gemcitabine, Cisplatin, and nab-Paclitaxel for the Treatment of Advanced Biliary Tract Cancers: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 824–830. [Google Scholar] [CrossRef]
- Shroff, R.T.; King, G.; Colby, S.; Scott, A.J.; Borad, M.J.; Goff, L.; Matin, K.; Mahipal, A.; Kalyan, A.; Javle, M.M.; et al. SWOG S1815: A Phase III Randomized Trial of Gemcitabine, Cisplatin, and Nab-Paclitaxel Versus Gemcitabine and Cisplatin in Newly Diagnosed, Advanced Biliary Tract Cancers. J. Clin. Oncol. 2025, 43, 536–544. [Google Scholar] [CrossRef]
- Yadav, S.; Xie, H.; Bin-Riaz, I.; Sharma, P.; Durani, U.; Goyal, G.; Borah, B.; Borad, M.J.; Smoot, R.L.; Roberts, L.R.; et al. Neoadjuvant vs. adjuvant chemotherapy for cholangiocarcinoma: A propensity score matched analysis. Eur. J. Surg. Oncol. 2019, 45, 1432–1438. [Google Scholar] [CrossRef]
- Rizzo, A.; Brandi, G. Neoadjuvant therapy for cholangiocarcinoma: A comprehensive literature review. Cancer Treat. Res. Commun. 2021, 27, 100354. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, B.; Gelli, M.; Pittau, G.; Allard, M.A.; Pereira, B.; Serji, B.; Vibert, E.; Castaing, D.; Adam, R.; Cherqui, D.; et al. Neoadjuvant chemotherapy for initially unresectable intrahepatic cholangiocarcinoma. Br. J. Surg. 2018, 105, 839–847. [Google Scholar] [CrossRef]
- Maithel, S.K.; Keilson, J.M.; Cao, H.S.T.; Rupji, M.; Mahipal, A.; Lin, B.S.; Javle, M.M.; Cleary, S.P.; Akce, M.; Switchenko, J.M.; et al. NEO-GAP: A Single-Arm, Phase II Feasibility Trial of Neoadjuvant Gemcitabine, Cisplatin, and Nab-Paclitaxel for Resectable, High-Risk Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2023, 30, 6558–6566. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Gemcitabine, Cisplatin, and Nab-Paclitaxel Before Surgery in Patients with High-Risk Liver Bile Duct Cancer. Available online: https://clinicaltrials.gov/study/NCT03579771 (accessed on 6 May 2025).
- U.S. National Library of Medicine. Durvalumab with Gemcitabine and Cisplatin for the Treatment of High-Risk Resectable Liver Cancer Before Surgery. Available online: https://clinicaltrials.gov/study/NCT06050252 (accessed on 2 May 2025).
- U.S. National Library of Medicine. A Single-Arm Study of Pembrolizumab with Gemcitabine and Cisplatin as Perioperative Therapy for Potentially Resectable Intrahepatic Cholangiocarcinoma. Available online: https://clinicaltrials.gov/study/NCT05967182 (accessed on 2 May 2025).
- U.S. National Library of Medicine. Gemcitabine/Cisplatin/Nab-Paclitaxel and Rilvegostomig in Resectable iCCA (NEOLANGIO). Available online: https://clinicaltrials.gov/study/NCT06569225 (accessed on 2 May 2025).
- Lowery, M.A.; Ptashkin, R.; Jordan, E.; Berger, M.F.; Zehir, A.; Capanu, M.; Kemeny, N.E.; O’Reilly, E.M.; El-Dika, I.; Jarnagin, W.R.; et al. Comprehensive Molecular Profiling of Intrahepatic and Extrahepatic Cholangiocarcinomas: Potential Targets for Intervention. Clin. Cancer Res. 2018, 24, 4154–4161. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Sahai, V.; Hollebecque, A.; Vaccaro, G.; Melisi, D.; Al-Rajabi, R.; Paulson, A.S.; Borad, M.J.; Gallinson, D.; Murphy, A.G.; et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: A multicentre, open-label, phase 2 study. Lancet Oncol. 2020, 21, 671–684. [Google Scholar] [CrossRef]
- Goyal, L.; Meric-Bernstam, F.; Hollebecque, A.; Valle, J.W.; Morizane, C.; Karasic, T.B.; Abrams, T.A.; Furuse, J.; Kelley, R.K.; Cassier, P.A.; et al. Futibatinib for FGFR2-Rearranged Intrahepatic Cholangiocarcinoma. N. Engl. J. Med. 2023, 388, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Macarulla, T.; Javle, M.M.; Kelley, R.K.; Lubner, S.J.; Adeva, J.; Cleary, J.M.; Catenacci, D.V.T.; Borad, M.J.; Bridgewater, J.A.; et al. Final Overall Survival Efficacy Results of Ivosidenib for Patients with Advanced Cholangiocarcinoma with IDH1 Mutation: The Phase 3 Randomized Clinical ClarIDHy Trial. JAMA Oncol. 2021, 7, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.S.; Wo, J.Y.; Yeap, B.Y.; Ben-Josef, E.; McDonnell, E.I.; Blaszkowsky, L.S.; Kwak, E.L.; Allen, J.N.; Clark, J.W.; Goyal, L.; et al. Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients with Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J. Clin. Oncol. 2016, 34, 460–468. [Google Scholar] [CrossRef]
- Tao, R.; Krishnan, S.; Bhosale, P.R.; Javle, M.M.; Aloia, T.A.; Shroff, R.T.; Kaseb, A.O.; Bishop, A.J.; Swanick, C.W.; Koay, E.J.; et al. Ablative Radiotherapy Doses Lead to a Substantial Prolongation of Survival in Patients with Inoperable Intrahepatic Cholangiocarcinoma: A Retrospective Dose Response Analysis. J. Clin. Oncol. 2016, 34, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.H.; Urrunaga, N.H.; Siddiqui, O.; Wu, A.; Schliep, M.; Mossahebi, S.; Shetty, K.; Regine, W.F.; Molitoris, J.K.; Lominadze, Z. Proton beam stereotactic body radiotherapy and hypofractionated therapy with pencil beam scanning is safe and effective for advanced hepatocellular carcinoma and intrahepatic cholangiocarcinoma: A single center experience. J. Radiosurg. SBRT 2023, 9, 43–52. [Google Scholar]
- Bourien, H.; Pircher, C.C.; Guiu, B.; Lamarca, A.; Valle, J.W.; Niger, M.; Edeline, J. Locoregional Treatment in Intrahepatic Cholangiocarcinoma: Which Treatment for Which Patient? Cancers 2023, 15, 4217. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.Y.; Zhou, G.H.; Zhang, Y.L.; Nie, C.H.; Zhu, T.Y.; Wang, H.L.; Chen, S.Q.; Wang, B.Q.; Yu, Z.N.; Wu, L.M.; et al. Drug-eluting beads transarterial chemoembolization with CalliSpheres microspheres for treatment of unresectable intrahepatic cholangiocarcinoma. J. Cancer 2020, 11, 4534–4541. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, J.H.; Yoon, H.J.; Lee, I.S.; Yoon, H.K.; Kim, K.P. Transarterial chemoembolization versus supportive therapy in the palliative treatment of unresectable intrahepatic cholangiocarcinoma. Clin. Radiol. 2011, 66, 322–328. [Google Scholar] [CrossRef]
- Vogl, T.J.; Naguib, N.N.; Nour-Eldin, N.E.; Bechstein, W.O.; Zeuzem, S.; Trojan, J.; Gruber-Rouh, T. Transarterial chemoembolization in the treatment of patients with unresectable cholangiocarcinoma: Results and prognostic factors governing treatment success. Int. J. Cancer 2012, 131, 733–740. [Google Scholar] [CrossRef]
- Kiefer, M.V.; Albert, M.; McNally, M.; Robertson, M.; Sun, W.; Fraker, D.; Olthoff, K.; Christians, K.; Pappas, S.; Rilling, W.; et al. Chemoembolization of intrahepatic cholangiocarcinoma with cisplatinum, doxorubicin, mitomycin C, ethiodol, and polyvinyl alcohol: A 2-center study. Cancer 2011, 117, 1498–1505. [Google Scholar] [CrossRef]
- Martin, R.C.G., 2nd; Simo, K.A.; Hansen, P.; Rocha, F.; Philips, P.; McMasters, K.M.; Tatum, C.M.; Kelly, L.R.; Driscoll, M.; Sharma, V.R.; et al. Drug-Eluting Bead, Irinotecan Therapy of Unresectable Intrahepatic Cholangiocarcinoma (DELTIC) with Concomitant Systemic Gemcitabine and Cisplatin. Ann. Surg. Oncol. 2022, 29, 5462–5473. [Google Scholar] [CrossRef] [PubMed]
- Edeline, J.; Touchefeu, Y.; Guiu, B.; Farge, O.; Tougeron, D.; Baumgaertner, I.; Ayav, A.; Campillo-Gimenez, B.; Beuzit, L.; Pracht, M.; et al. Radioembolization Plus Chemotherapy for First-line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Schartz, D.A.; Porter, M.; Schartz, E.; Kallas, J.; Gupta, A.; Butani, D.; Cantos, A. Transarterial Yttrium-90 Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. J. Vasc. Interv. Radiol. 2022, 33, 679–686. [Google Scholar] [CrossRef]
- Chan, S.L.; Chotipanich, C.; Choo, S.P.; Kwang, S.W.; Mo, F.; Worakitsitisatorn, A.; Tai, D.; Sundar, R.; Ng, D.C.E.; Loke, K.S.H.; et al. Selective Internal Radiation Therapy with Yttrium-90 Resin Microspheres Followed by Gemcitabine plus Cisplatin for Unresectable Intrahepatic Cholangiocarcinoma: A Phase 2 Single-Arm Multicenter Clinical Trial. Liver Cancer 2022, 11, 451–459. [Google Scholar] [CrossRef]
- Moris, D.; Palta, M.; Kim, C.; Allen, P.J.; Morse, M.A.; Lidsky, M.E. Advances in the treatment of intrahepatic cholangiocarcinoma: An overview of the current and future therapeutic landscape for clinicians. CA Cancer J. Clin. 2023, 73, 198–222. [Google Scholar] [CrossRef] [PubMed]
- Massani, M.; Bonariol, L.; Stecca, T. Hepatic Arterial Infusion Chemotherapy for Unresectable Intrahepatic Cholangiocarcinoma, a Comprehensive Review. J. Clin. Med. 2021, 10, 2552. [Google Scholar] [CrossRef]
- Boehm, L.M.; Jayakrishnan, T.T.; Miura, J.T.; Zacharias, A.J.; Johnston, F.M.; Turaga, K.K.; Gamblin, T.C. Comparative effectiveness of hepatic artery based therapies for unresectable intrahepatic cholangiocarcinoma. J. Surg. Oncol. 2015, 111, 213–220. [Google Scholar] [CrossRef]
- Konstantinidis, I.T.; Groot Koerkamp, B.; Do, R.K.; Gönen, M.; Fong, Y.; Allen, P.J.; D’Angelica, M.I.; Kingham, T.P.; DeMatteo, R.P.; Klimstra, D.S.; et al. Unresectable intrahepatic cholangiocarcinoma: Systemic plus hepatic arterial infusion chemotherapy is associated with longer survival in comparison with systemic chemotherapy alone. Cancer 2016, 122, 758–765. [Google Scholar] [CrossRef]
- Cercek, A.; Boerner, T.; Tan, B.R.; Chou, J.F.; Gönen, M.; Boucher, T.M.; Hauser, H.F.; Do, R.K.G.; Lowery, M.A.; Harding, J.J.; et al. Assessment of Hepatic Arterial Infusion of Floxuridine in Combination with Systemic Gemcitabine and Oxaliplatin in Patients with Unresectable Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 60–67. [Google Scholar] [CrossRef]
- Zhao, R.; Zhou, J.; Miao, Z.; Xiong, X.; Wei, W.; Li, S.; Guo, R. Efficacy and safety of lenvatinib plus durvalumab combined with hepatic arterial infusion chemotherapy for unresectable intrahepatic cholangiocarcinoma. Front. Immunol. 2024, 15, 1397827. [Google Scholar]
- Mayo, S.C.; Patel, R.K.; Walker, B.S.; Eil, R.; Wong, M.; Fung, A.; Brody, J.R.; Anand, S.; Corless, C.L.; Hansen, L.; et al. A phase II trial of induction systemic mFOLFIRINOX followed by hepatic arterial infusion of floxuridine and dexamethasone given concurrently with systemic mFOLFIRI as a first-line therapy in patients with unresectable liver-dominant intrahepatic cholangiocarcinoma (HELIX-1). J. Clin. Oncol. 2024, 42, 511. [Google Scholar]
- Zhu, M.; Jin, M.; Zhao, X.; Shen, S.; Chen, Y.; Xiao, H.; Wei, G.; He, Q.; Li, B.; Peng, Z. Anti-PD-1 antibody in combination with radiotherapy as first-line therapy for unresectable intrahepatic cholangiocarcinoma. BMC Med. 2024, 22, 165. [Google Scholar] [CrossRef]
- Victory, J.H.; Smith, E.C.; Ryan, C.E.; Lambdin, J.; Sarvestani, A.L.; Friedman, L.R.; Eade, A.V.; Larrain, C.; Pu, T.; Luberice, K.; et al. Hepatic artery infusion pump (HAIP) therapy in combination with targeted delivery of IL-12 for patients with metastatic colorectal cancer or intrahepatic cholangiocarcinoma: A phase II trial protocol. J. Gastrointest. Oncol. 2024, 15, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Hendricks-Wenger, A.; Weber, P.; Simon, A.; Saunier, S.; Coutermarsh-Ott, S.; Grider, D.; Vidal-Jove, J.; Allen, I.C.; Luyimbazi, D.; Vlaisavljevich, E. Histotripsy for the Treatment of Cholangiocarcinoma Liver Tumors: In Vivo Feasibility and Ex Vivo Dosimetry Study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2953–2964. [Google Scholar] [CrossRef]
- Sun, D.; Lv, G.; Dong, J. Liver Transplantation for Intrahepatic Cholangiocarcinoma: What Are New Insights and What Should We Follow? Front. Oncol. 2021, 11, 841694. [Google Scholar] [CrossRef]
- Kodali, S.; Connor, A.A.; Thabet, S.; Brombosz, E.W.; Ghobrial, R.M. Liver transplantation as an alternative for the treatment of intrahepatic cholangiocarcinoma: Past, present, and future directions. Hepatobiliary Pancreat. Dis. Int. 2024, 23, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Penn, I. Hepatic transplantation for primary and metastatic cancers of the liver. Surgery 1991, 110, 726–734, discussion 734–735. [Google Scholar]
- Borakati, A.; Froghi, F.; Bhogal, R.H.; Mavroeidis, V.K. Liver transplantation in the management of cholangiocarcinoma: Evolution and contemporary advances. World J. Gastroenterol. 2023, 29, 1969–1981. [Google Scholar] [CrossRef]
- Sapisochin, G.; de Lope, C.R.; Gastaca, M.; de Urbina, J.O.; Suarez, M.A.; Santoyo, J.; Castroagudín, J.F.; Varo, E.; López-Andujar, R.; Palacios, F.; et al. “Very early” intrahepatic cholangiocarcinoma in cirrhotic patients: Should liver transplantation be reconsidered in these patients? Am. J. Transplant. 2014, 14, 660–667. [Google Scholar] [CrossRef]
- Sapisochin, G.; Facciuto, M.; Rubbia-Brandt, L.; Marti, J.; Mehta, N.; Yao, F.Y.; Vibert, E.; Cherqui, D.; Grant, D.R.; Hernandez-Alejandro, R.; et al. Liver transplantation for “very early” intrahepatic cholangiocarcinoma: International retrospective study supporting a prospective assessment. Hepatology 2016, 64, 1178–1188. [Google Scholar] [CrossRef]
- De Martin, E.; Rayar, M.; Golse, N.; Dupeux, M.; Gelli, M.; Gnemmi, V.; Allard, M.A.; Cherqui, D.; Sa Cunha, A.; Adam, R.; et al. Analysis of Liver Resection Versus Liver Transplantation on Outcome of Small Intrahepatic Cholangiocarcinoma and Combined Hepatocellular-Cholangiocarcinoma in the Setting of Cirrhosis. Liver Transpl. 2020, 26, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Sempoux, C.; Jibara, G.; Ward, S.C.; Fan, C.; Qin, L.; Roayaie, S.; Fiel, M.I.; Schwartz, M.; Thung, S.N. Intrahepatic cholangiocarcinoma: New insights in pathology. Semin. Liver Dis. 2011, 31, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Chu, K.J.; Lu, C.D.; Dong, H.; Fu, X.H.; Zhang, H.W.; Yao, X.P. Hepatitis B virus-related combined hepatocellular-cholangiocarcinoma: Clinicopathological and prognostic analysis of 390 cases. Eur. J. Gastroenterol. Hepatol. 2014, 26, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Lunsford, K.E.; Court, C.; Lee, Y.S.; Lu, D.S.; Naini, B.V.; Harlander-Locke, M.P.; Busuttil, R.W.; Agopian, V.G. Propensity-Matched Analysis of Patients with Mixed Hepatocellular-Cholangiocarcinoma and Hepatocellular Carcinoma Undergoing Liver Transplantation. Liver Transpl. 2018, 24, 1384–1397. [Google Scholar] [CrossRef]
- Dageforde, L.A.; Vachharajani, N.; Tabrizian, P.; Agopian, V.; Halazun, K.; Maynard, E.; Croome, K.; Nagorney, D.; Hong, J.C.; Lee, D.; et al. Multi-Center Analysis of Liver Transplantation for Combined Hepatocellular Carcinoma-Cholangiocarcinoma Liver Tumors. J. Am. Coll. Surg. 2021, 232, 361–371. [Google Scholar] [CrossRef]
- Hong, J.C.; Jones, C.M.; Duffy, J.P.; Petrowsky, H.; Farmer, D.G.; French, S.; Finn, R.; Durazo, F.A.; Saab, S.; Tong, M.J.; et al. Comparative analysis of resection and liver transplantation for intrahepatic and hilar cholangiocarcinoma: A 24-year experience in a single center. Arch. Surg. 2011, 146, 683–689. [Google Scholar] [CrossRef]
- Lunsford, K.E.; Javle, M.; Heyne, K.; Shroff, R.T.; Abdel-Wahab, R.; Gupta, N.; Mobley, C.M.; Saharia, A.; Victor, D.W.; Nguyen, D.T.; et al. Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: A prospective case-series. Lancet Gastroenterol. Hepatol. 2018, 3, 337–348. [Google Scholar] [CrossRef]
- McMillan, R.R.; Javle, M.; Kodali, S.; Saharia, A.; Mobley, C.; Heyne, K.; Hobeika, M.J.; Lunsford, K.E.; Victor, D.W., 3rd; Shetty, A.; et al. Survival following liver transplantation for locally advanced, unresectable intrahepatic cholangiocarcinoma. Am. J. Transplant. 2022, 22, 823–832. [Google Scholar] [CrossRef]
- Semaan, S.; Connor, A.A.; Saharia, A.; Kodali, S.; Elaileh, A.; Patel, K.; Soliman, N.; Basra, T.; Victor, D.W., 3rd; Simon, C.J.; et al. Transplantation for Peri-Hilar and Intrahepatic Cholangiocarcinoma with mTOR Immunosuppression. Transplant. Proc. 2025, 57, 255–263. [Google Scholar] [CrossRef]
- Yaqub, S.; Busund, S.; Smedman, T.M.; Syversveen, T.; Khan, A.; Solheim, J.M.; Folseraas, T.; Wiencke, K.; Lassen, K.; Dueland, S.; et al. Liver transplantation for locally advanced non-resectable intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: Early results from the TESLA trial. Br. J. Surg. 2025, 112, znaf054. [Google Scholar] [CrossRef]
- Fernandes, E.S.M.; Mello, F.P.T.; Andrade, R.O.; Girão, C.L.; Cesar, C.; Pimentel, L.S.; Coelho, H.S.M.; Basto, S.T.; Siqueira, M.; Brito, A.; et al. Living donor liver transplant for intrahepatic cholangiocarcinoma. An initial brazilian experience. Arq. Bras. Cir. Dig. 2024, 37, e1839. [Google Scholar] [CrossRef] [PubMed]
- Byrne, M.M.; Dunne, R.F.; Melaragno, J.I.; Chávez-Villa, M.; Hezel, A.; Liao, X.; Ertreo, M.; Al-Judaibi, B.; Orloff, M.; Hernandez-Alejandro, R.; et al. Neoadjuvant pemigatinib as a bridge to living donor liver transplantation for intrahepatic cholangiocarcinoma with FGFR2 gene rearrangement. Am. J. Transplant. 2025, 25, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Butler, J.R.; Noguchi, D.; Ha, M.; Aziz, A.; Agopian, V.G.; DiNorcia, J., 3rd; Yersiz, H.; Farmer, D.G.; Busuttil, R.W.; et al. A 3-Decade, Single-Center Experience of Liver Transplantation for Cholangiocarcinoma: Impact of Era, Tumor Size, Location, and Neoadjuvant Therapy. Liver Transpl. 2022, 28, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Maspero, M.; Sposito, C.; Bongini, M.A.; Cascella, T.; Flores, M.; Maccauro, M.; Chiesa, C.; Niger, M.; Pietrantonio, F.; Leoncini, G.; et al. Liver Transplantation for Intrahepatic Cholangiocarcinoma After Chemotherapy and Radioembolization: An Intention-To-Treat Study. Transpl. Int. 2024, 37, 13641. [Google Scholar] [CrossRef]
- Teixeira, C.; Viamonte, B.; Graça, L.; Pinto Marques, H.; Rego, I.; Ribeiro, M.J. Liver Transplant After Neoadjuvant Treatment for Long-Term Survivors with Intrahepatic Cholangiocarcinoma: Does It Have a Role? Cureus 2024, 16, e75935. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Liver Transplantation for Early Intrahepatic Cholangiocarcinoma (LT for iCCA). Available online: https://clinicaltrials.gov/study/NCT02878473 (accessed on 6 May 2025).
- U.S. National Library of Medicine. Liver Transplant for Stable, Advanced Intrahepatic Cholangiocarcinoma. Available online: https://clinicaltrials.gov/study/NCT04195503 (accessed on 6 May 2025).
- U.S. National Library of Medicine. Liver Transplantation for Non-Resectable Intrahepatic Cholangiocarcinoma: A Prospective Exploratory Trial (TESLA Trial). Available online: https://clinicaltrials.gov/study/NCT04556214 (accessed on 6 May 2025).
- U.S. National Library of Medicine. Liver Transplantation in Intrahepatic Cholangiocarcinoma. Available online: https://clinicaltrials.gov/study/NCT06140134 (accessed on 6 May 2025).
- U.S. National Library of Medicine. LIver Transplantation for Non-Resectable Intrahepatic CholAngiocarcinoma (LIRICA) (LIRICA). Available online: https://clinicaltrials.gov/study/NCT06098547 (accessed on 6 May 2025).
- U.S. National Library of Medicine. Liver Transplantation for Unresectable Intrahepatic Colangiocarcinoma After Sustained Response to Neoadjuvant Treatments (iCOLA). Available online: https://clinicaltrials.gov/study/NCT06862934 (accessed on 6 May 2025).
- U.S. National Library of Medicine. Living Donor Liver Transplantation for Intrahepatic Cholangiocarcinoma (LIVINCA). Available online: https://clinicaltrials.gov/study/NCT06539377 (accessed on 6 May 2025).
- Bowlus, C.L.; Arrivé, L.; Bergquist, A.; Deneau, M.; Forman, L.; Ilyas, S.I.; Lunsford, K.E.; Martinez, M.; Sapisochin, G.; Shroff, R.; et al. AASLD practice guidance on primary sclerosing cholangitis and cholangiocarcinoma. Hepatology 2023, 77, 659–702. [Google Scholar] [CrossRef]
- EASL-ILCA Clinical Practice Guidelines on the management of intrahepatic cholangiocarcinoma. J. Hepatol. 2023, 79, 181–208. [CrossRef]
- National Liver Review Board (NLRB). Updates Related to Transplant Oncology—Public Comment Proposal; Organ Procurement and Transplantation Network Liver & Intestinal Organ Transplantation Committee: Washington, DC, USA, 2024. [Google Scholar]
- Andraus, W.; Ochoa, G.; de Martino, R.B.; Pinheiro, R.S.N.; Santos, V.R.; Lopes, L.D.; Júnior, R.M.A.; Waisberg, D.R.; Santana, A.C.; Tustumi, F.; et al. The role of living donor liver transplantation in treating intrahepatic cholangiocarcinoma. Front. Oncol. 2024, 14, 1404683. [Google Scholar] [CrossRef]
Reference | Intervention | Study | Status | Endpoint | Results |
---|---|---|---|---|---|
Maithel 2023 [28] | Gemcitabine/cisplatin/nab-paclitaxel + resection | Multi-institutional, phase II | Complete | Primary: completion of both preoperative chemotherapy + resection Secondary: AEs, radiologic response, RFS and OS | Primary: 30 completed preoperative chemotherapy and 22 were resected Secondary: 90% with disease control, 23% with partial response Median OS 24 months Median RFS 7.1 months |
NCT03579771 [29] | Gemcitabine/cisplatin/nab-paclitaxel + FGFR2 inhibitor (for patients with FGFR2 fusion or rearrangement) + resection | Single-arm, phase II | Active, notrecruiting | Primary: completion of all preoperative + operative therapy, safety Secondary: radiological response, RFS, OS | - |
NCT06050252 [30] | Gemcitabine/cisplatin/durvalumab + resection | Multi- institutional, phase II | Actively recruiting | Primary: completion rate of neoadjuvant treatment + resection Secondary: major pathologic response | - |
NCT05967182 [31] | Gemcitabine/ cisplatin/ pembrolizumab + resection | Single-arm, phase II trial | Actively recruiting | Primary: RFS and major pathologic response | - |
NCT06569225 [32] | Gemcitabine/ cisplatin/ nab-paclitaxel/ rilvegostomig + resection | Multi- institutional, phase II | Not yet recruiting | Primary: major pathologic response Secondary: radiologic objective response rate, AEs, rate of R0 | - |
Reference | Intervention | Study | n | Median OS | Median PFS |
---|---|---|---|---|---|
Hong 2016 [37] | High-dose hypofractionated proton beam therapy | Phase II, multi-institutional single-arm study | 37 | 22.5 months (95% CI 12.4–49.7) | 8.4 months (95% CI 5.0–15.7) |
Martin 2022 [45] | DEBIRI TACE + Gem/Cis | Phase II, multicenter randomized study | 48 | 33.7 months (95% CI 13.5–54.5) | 31.9 months (95% CI 8.5–75.3) |
Edeline 2020 [46] | TARE + Gem/Cis | Phase II, multicenter clinical trial | 41 | 22 months (95% CI 14–52) | 14 months (95% CI 8–17 months) |
Chan 2022 [48] | TARE + Gem/Cis | Phase II, multicenter single-arm clinical trial | 16 | 21.6 months (95% CI 7.3–25.2) | 9 months (95% CI 3.2–13.1) |
Cercek 2020 [53] | HAI floxuridine + systemic Gem/Ox | Phase II, single-arm clinical trial | 38 | 25 months (95% CI, 20.60 not reached) | 11.7 months (1-sided 95% CI 11.1) |
Reference | Study Design | Population | Intervention | Key Outcomes |
---|---|---|---|---|
Penn 1991 [61] | Retrospective | iCCA patients | LT | 2- and 5-yr OS: 30%, 17% Recurrence: 44% |
Sapisochin 2014 [63] | Retrospective multicenter | 29 iCCA patients with cirrhosis (8 with “very early” iCCA ≤ 2 cm) | LT | In “very early” subgroup: Recurrence: 0% OS 1-, 3-, 5-yr: 100%, 73%, 73% |
Sapisochin 2016 [64] | Retrospective multicenter | “Very early” iCCA (≤2 cm) vs. advanced iCCA (>2 cm or multifocal) | LT | Recurrence at 1, 3, and 5 yrs: 7%, 18%, 18% (“very early”) vs. 30%, 47%, 61%; OS: 93%, 84%, 65% vs. 79%, 50%, 45% |
De Martin 2020 [65] | Retrospective multicenter | Cirrhotic patients with iCCA or combined HCC and cholangiocarcinoma ≤ 5 cm | LT vs. resection | 5-yr RFS: 75% (LT) vs. 36% (resection) For tumors 2–5 cm: recurrence 21% (LT) vs. 48% (resection); RFS 74% vs. 40% |
Hong 2011 [70] | Retrospective | iCCA and pCCA patients | LT ± neoadjuvant/adjuvant therapy | 5-yr RFS: 47% (neoadjuvant + adjuvant) vs. 33% (adjuvant only) vs. 20% (none) |
Lunsford 2018 [71] | Prospective case series | Unresectable iCCA, 6 patients | LT after >6 months disease stability | 1-, 3-, 5-yr OS: 100%, 83.3%, 83.3% RFS: 50% |
McMillan 2022 [72] | Prospective case series follow-up | Unresectable iCCA, 18 patients | LT after >6 months disease stability | 1-, 3-, 5-yr OS: 100%, 71%, 57% 1-, 3-yr RFS: 72%, 52% |
Semaan 2025 [73] | Retrospective single-center | Unresectable iCCA, 26 patients | Neoadjuvant treatment + LT | 1-, 3-yr OS: 96%, 82.7% 1-, 3-yr RFS: 70.8%, 56.3% |
Yaqub 2025 [74] | Prospective single-center | Unresectable locally advanced iCCA with prior response to neoadjuvant therapy | LT | 5 patients underwent LT 2 had recurrence at 12 and 13 months |
Teixeira 2024 [79] | Case report | Unresectable locally advanced iCCA | Y90 TARE + Gem/Cis + FOLFOX + LT | Recurrence-free at 16-month follow-up |
Fernandes 2024 [75] | Case reports | Unresectable locally advanced iCCA | Gemcitabine/cisplatin OR gemcitabine/cisplatin/durvalumab + LT | Recurrence-free at 23-month and 6-month follow-up |
Byrne 2025 [76] | Case report | Unresectable iCCA | Y90 TARE + Gem/Cis + Pemigatinib + LT | Recurrence-free at 1-year follow-up |
Ito 2022 [77] | Retrospective | 30 iCCA patients | LT ± neoadjuvant/systemic + LRT | 1-, 3-, and 5-yr OS: 73%, 46%, 42% 1-, 3-, 5-yr OS (for patients transplanted 2008–2019): 100%, 86%, 69%100% 5-yr OS and RFS (for patients treated with systemic + LRT) |
Maspero 2024 [78] | Prospective single-center | 13 iCCA patients, 4 patients transplanted | Gem/Cis + TARE + LT | 5-yr OS: 100% (LT) vs. 0% (no LT) |
Reference | Location | Description | Neoadjuvant | Study Type | Status |
---|---|---|---|---|---|
NCT02878473 [80] | Toronto, Canada | 5-year overall survival; LT for pts with cirrhosis and unresectable iCCA ≤2 cm confirmed by biopsy | None or LRT | Multicenter clinical trial, not randomized, phase 2 | Terminated |
NCT04195503 [81] | Toronto, Canada | 5-year overall survival; LDLT for locally advanced unresectable iCCA with no distant mets, LN, or vascular invasion | >6 months stability CTX Alone | Prospective single-center | Recruiting |
NCT04556214 [82] | Oslo, Norway | 5-year overall survival; LT for locally advanced unresectable iCCA with no distant mets, LN, or vascular invasion | >6 months stability CTX or LRT | Prospective single-center | Recruiting |
NCT06140134 [83] | New Jersey, USA | 5-year overall survival; LT for locally advanced unresectable iCCA with no distant mets, LN, or vascular invasion | >6 months stability CTX ± IO ± TARE | Multicenter clinical trial, not randomized, phase 2 | Recruiting |
NCT06098547 [84] | Padova, Italy | 3-year overall survival; with matched retrospective comparison to CTX alone; LT for locally advanced unresectable iCCA with no distant mets, LN, or vascular invasion | >6 months stability CTX Alone | Prospective single-center | Recruiting |
NCT06862934 [85] | Milan, Italy | 3-year overall survival; LT for locally advanced unresectable iCCA with no distant mets, LN, or vascular invasion | >6 months stability CTX+IO+TARE | Prospective single-center | Recruiting |
NCT06539377 [86] | Jena, Germany | 5-year overall survival; LDLT for locally advanced unresectable G1/G2 iCCA or HCC/CCA unresectable iCCA with no distant mets, LN, or vascular invasion | >6 months stability CTX + TARE | Prospective single-center | Not yet recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopiano, S.; Guarrera, J.V.; Lunsford, K.E. Therapeutic Advances in Initially Unresectable Locally Advanced Intrahepatic Cholangiocarcinoma: Emerging Treatments and the Role of Liver Transplantation. Curr. Oncol. 2025, 32, 293. https://doi.org/10.3390/curroncol32060293
Lopiano S, Guarrera JV, Lunsford KE. Therapeutic Advances in Initially Unresectable Locally Advanced Intrahepatic Cholangiocarcinoma: Emerging Treatments and the Role of Liver Transplantation. Current Oncology. 2025; 32(6):293. https://doi.org/10.3390/curroncol32060293
Chicago/Turabian StyleLopiano, Sofia, James V. Guarrera, and Keri E. Lunsford. 2025. "Therapeutic Advances in Initially Unresectable Locally Advanced Intrahepatic Cholangiocarcinoma: Emerging Treatments and the Role of Liver Transplantation" Current Oncology 32, no. 6: 293. https://doi.org/10.3390/curroncol32060293
APA StyleLopiano, S., Guarrera, J. V., & Lunsford, K. E. (2025). Therapeutic Advances in Initially Unresectable Locally Advanced Intrahepatic Cholangiocarcinoma: Emerging Treatments and the Role of Liver Transplantation. Current Oncology, 32(6), 293. https://doi.org/10.3390/curroncol32060293