Approaches to Reduce Toxicity in Pediatric Brain Tumors
Abstract
:1. Introduction
2. Ototoxicity
Agent | Indications | Chemical Class | Benefits | Adverse Effects | Dose |
---|---|---|---|---|---|
Amifostine | Should not be routinely used to prevent cisplatin-induced hearing loss [23] | Organic thiophosphate compound | Did not reduce hearing loss in pooled analyses [23] | Hypocalcaemia, nausea, hypotension [23] | 600 mg/m2 IV pre-cisplatin infusion and three hours into cisplatin infusion [24] |
Sodium thiosulfate | Prevention of cisplatin-induced hearing loss for children, adolescents, and young adults with non-metastatic solid tumors | Antioxidant | Significant reduction of hearing loss by approximately 50% [29,30] | Nausea, vomiting, nephrotoxicity, cytopenia, electrolyte imbalance (hypernatremia, hypermagnesemia, hypophosphatemia, hypokalemia) [26,29,32] | 10–20 g/m2 IV over 15 min, six hours after the end of the cisplatin infusion [27] |
3. Neurocognitive Toxicity
4. Vascular Complications
5. Radiation Necrosis
6. De-Escalation of Therapy to Reduce Toxicity
7. Fertility Preservation
8. Importance of Surveillance and Follow Up
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rickert, C.H.; Paulus, W. Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Child’s Nerv. Syst. 2001, 17, 503–511. [Google Scholar] [CrossRef]
- Coltin, H.; Johnston, D.; Larouche, V. Epidemiology of Pediatric Primary Central Nervous System Tumors. In Pediatric Neuro-Oncology; Scheinemann, K., Bouffet, E., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 11–15. [Google Scholar]
- Price, M.; Ballard, C.; Benedetti, J.; Neff, C.; Cioffi, G.; A Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S.; Ostrom, Q.T. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2017–2021. Neuro-Oncology 2024, 26, vi1–vi85. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, N.; Liu, Q.; Ness, K.K.; Baassiri, M.; Eissa, H.; Yeo, F.; Chemaitilly, W.; Ehrhardt, M.J.; Bass, J.; Bishop, M.W.; et al. The cumulative burden of surviving childhood cancer: An initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 2017, 390, 2569–2582. [Google Scholar] [CrossRef] [PubMed]
- Yeh, J.M.; Ward, Z.; Chaudhry, A.; Liu, Q.; Yasui, Y.; Armstrong, G.T.; Gibson, T.M.; Howell, R.; Hudson, M.M.; Krull, K.R.; et al. Life Expectancy of Adult Survivors of Childhood Cancer Over 3 Decades. JAMA Oncol. 2020, 6, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Coltin, H.; Pequeno, P.; Liu, N.; Tsang, D.S.; Gupta, S.; Taylor, M.D.; Bouffet, E.; Nathan, P.C.; Ramaswamy, V. The Burden of Surviving Childhood Medulloblastoma: A Population-Based, Matched Cohort Study in Ontario, Canada. J. Clin. Oncol. 2023, 41, 2372–2381. [Google Scholar] [CrossRef]
- Meijer, A.J.M.; van der Heuvel-Eibrink, M.M.; Brooks, B.; Am Zehnhoff-Dinnesen, A.G.; Knight, K.R.; Freyer, D.R.; Chang, K.W.; Hero, B.; Papadakis, V.; Frazier, A.L.; et al. Recommendations for Age-Appropriate Testing, Timing, and Frequency of Audiologic Monitoring During Childhood Cancer Treatment: An International Society of Paediatric Oncology Supportive Care Consensus Report. JAMA Oncol. 2021, 7, 1550–1558. [Google Scholar] [CrossRef]
- Moke, D.J.; Luo, C.; Millstein, J.; Knight, K.R.; Rassekh, S.R.; Brooks, B.; Ross, C.J.D.; Wright, M.; Mena, V.; Rushing, T.; et al. Prevalence and risk factors for cisplatin-induced hearing loss in children, adolescents, and young adults: A multi-institutional North American cohort study. Lancet Child Adolesc. Health 2021, 5, 274–283. [Google Scholar] [CrossRef]
- Schreiber, J.E.; Gurney, J.G.; Palmer, S.L.; Bass, J.K.; Wang, M.; Chen, S.; Zhang, H.; Swain, M.; Chapieski, M.L.; Bonner, M.J.; et al. Examination of risk factors for intellectual and academic outcomes following treatment for pediatric medulloblastoma. Neuro-Oncology 2014, 16, 1129–1136. [Google Scholar] [CrossRef]
- Olivier, T.W.; Bass, J.K.; Ashford, J.M.; Beaulieu, R.; Scott, S.M.; Schreiber, J.E.; Palmer, S.; Mabbott, D.J.; Swain, M.A.; Bonner, M.; et al. Cognitive Implications of Ototoxicity in Pediatric Patients With Embryonal Brain Tumors. J. Clin. Oncol. 2019, 37, 1566–1575. [Google Scholar] [CrossRef]
- Bass, J.K.; Liu, W.; Banerjee, P.; Brinkman, T.M.; Mulrooney, D.A.; Gajjar, A.; Pappo, A.S.; Merchant, T.E.; Armstrong, G.T.; Srivastava, D.; et al. Association of Hearing Impairment With Neurocognition in Survivors of Childhood Cancer. JAMA Oncol. 2020, 6, 1363–1371. [Google Scholar] [CrossRef]
- Grewal, S.; Merchant, T.; Reymond, R.; McInerney, M.; Hodge, C.; Shearer, P. Auditory late effects of childhood cancer therapy: A report from the Children’s Oncology Group. Pediatrics 2010, 125, e938–e950. [Google Scholar] [CrossRef] [PubMed]
- Knight, K.R.G.; Kraemer, D.F.; Neuwelt, E.A. Ototoxicity in children receiving platinum chemotherapy: Underestimating a commonly occurring toxicity that may influence academic and social development. J. Clin. Oncol. 2005, 23, 8588–8596. [Google Scholar] [CrossRef] [PubMed]
- Moxon-Emre, I.; Dahl, C.; Ramaswamy, V.; Bartels, U.; Tabori, U.; Huang, A.; Cushing, S.L.; Papaioannou, V.; Laperriere, N.; Bouffet, E.; et al. Hearing loss and intellectual outcome in children treated for embryonal brain tumors: Implications for young children treated with radiation sparing approaches. Cancer Med. 2021, 10, 7111–7125. [Google Scholar] [CrossRef]
- Strebel, S.; Baust, K.; Grabow, D.; Byrne, J.; Langer, T.; Zehnhoff-Dinnesen, A.A.; Kuonen, R.; Weiss, A.; Kepak, T.; Kruseova, J.; et al. Auditory complications among childhood cancer survivors and health-related quality of life: A PanCareLIFE study. J. Cancer Surviv. 2023, 19, 162–173. [Google Scholar] [CrossRef]
- Brinkman, T.M.; Bass, J.K.; Li, Z.; Ness, K.K.; Gajjar, A.; Pappo, A.S.; Armstrong, G.T.; Merchant, T.E.; Srivastava, D.K.; Robison, L.L.; et al. Treatment-induced hearing loss and adult social outcomes in survivors of childhood CNS and non-CNS solid tumors: Results from the St. Jude Lifetime Cohort Study. Cancer 2015, 121, 4053–4061. [Google Scholar] [CrossRef]
- Whelan, K.; Stratton, K.; Kawashima, T.; Leisenring, W.; Hayashi, S.; Waterbor, J.; Blatt, J.; Sklar, C.A.; Packer, R.; Mitby, P.; et al. Auditory complications in childhood cancer survivors: A report from the childhood cancer survivor study. Pediatr. Blood Cancer 2011, 57, 126–134. [Google Scholar] [CrossRef]
- Murphy, B.; Jackson, A.; Bass, J.K.; Tsang, D.S.; Ronckers, C.M.; Kremer, L.; Baliga, S.; Olch, A.; Zureick, A.H.; Jee, K.-W.; et al. Modeling the Risk of Hearing Loss From Radiation Therapy in Childhood Cancer Survivors: A PENTEC Comprehensive Review. Int. J. Radiat. Oncol. 2023, 119, 446–456. [Google Scholar] [CrossRef]
- Bass, J.K.; Hua, C.-H.; Huang, J.; Onar-Thomas, A.; Ness, K.K.; Jones, S.; White, S.; Bhagat, S.P.; Chang, K.W.; Merchant, T.E. Hearing Loss in Patients Who Received Cranial Radiation Therapy for Childhood Cancer. J. Clin. Oncol. 2016, 34, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Tsang, D.S.; Kim, L.; Liu, Z.A.; Janzen, L.; Khandwala, M.; Bouffet, E.; Laperriere, N.; Dama, H.; Keilty, D.; Craig, T.; et al. Intellectual changes after radiation for children with brain tumors: Which brain structures are most important? Neuro-Oncology 2021, 23, 487–497. [Google Scholar] [CrossRef]
- Keilty, D.; Khandwala, M.; Liu, Z.A.; Papaioannou, V.; Bouffet, E.; Hodgson, D.; Yee, R.; Cushing, S.; Laperriere, N.; Ahmed, S.; et al. Hearing Loss After Radiation and Chemotherapy for CNS and Head-and-Neck Tumors in Children. J. Clin. Oncol. 2021, 39, 3813–3821. [Google Scholar] [CrossRef]
- Meijer, A.J.M.; Diepstraten, F.A.; Langer, T.; Broer, L.; Domingo, I.K.; Clemens, E.; Uitterlinden, A.G.; de Vries, A.C.H.; van Grotel, M.; Vermeij, W.P.; et al. TCERG1L allelic variation is associated with cisplatin-induced hearing loss in childhood cancer, a PanCareLIFE study. NPJ Precis. Oncol. 2021, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Freyer, D.R.; Brock, P.R.; Chang, K.W.; Dupuis, L.; Epelman, S.; Knight, K.; Mills, D.; Phillips, R.; Potter, E.; Risby, D.; et al. Prevention of cisplatin-induced ototoxicity in children and adolescents with cancer: A clinical practice guideline. Lancet Child Adolesc. Health 2020, 4, 141–150. [Google Scholar] [CrossRef]
- Gurney, J.G.; Bass, J.K.; Onar-Thomas, A.; Huang, J.; Chintagumpala, M.; Bouffet, E.; Hassall, T.; Gururangan, S.; Heath, J.A.; Kellie, S.; et al. Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro-Oncology 2014, 16, 848–855. [Google Scholar] [CrossRef] [PubMed]
- Ohlsen, T.J.D.; Collier, W.H.; Ramdas, J.; Sung, L.; Freyer, D.R. Otoprotective Effects of Sodium Thiosulfate by Demographic and Clinical Characteristics: A Report From Children’s Oncology Group Study ACCL0431. Pediatr. Blood Cancer 2024, 72, e31479. [Google Scholar] [CrossRef]
- Meijer, A.J.; Diepstraten, F.A.; Ansari, M.; Bouffet, E.; Bleyer, A.; Fresneau, B.; Geller, J.I.; Huitema, A.D.; Kogner, P.; Maibach, R.; et al. Use of Sodium Thiosulfate as an Otoprotectant in Patients With Cancer Treated With Platinum Compounds: A Review of the Literature. J. Clin. Oncol. 2024, 42, 2219–2232. [Google Scholar] [CrossRef]
- Dhillon, S. Sodium Thiosulfate: Pediatric First Approval. Pediatr. Drugs 2022, 25, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Bijarnia, R.K.; Bachtler, M.; Chandak, P.G.; van Goor, H.; Pasch, A. Sodium thiosulfate ameliorates oxidative stress and preserves renal function in hyperoxaluric rats. PLoS ONE 2015, 10, e0124881. [Google Scholar] [CrossRef]
- Freyer, D.R.; Chen, L.; Krailo, M.D.; Knight, K.; Villaluna, D.; Bliss, B.; Pollock, B.H.; Ramdas, J.; Lange, B.; Van Hoff, D.; et al. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): A multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 63–74. [Google Scholar] [CrossRef]
- Brock, P.; Meijer, A.; Kogner, P.; Ansari, M.; Capra, M.; Geller, J.; Heuvel-Eibrink, M.v.D.; Knight, K.; Kruger, M.; Lindemulder, S.; et al. Sodium thiosulfate as cisplatin otoprotectant in children: The challenge of when to use it. Pediatr. Blood Cancer 2023, 70, e30248. [Google Scholar] [CrossRef]
- Orgel, E.; Villaluna, D.; Krailo, M.D.; Esbenshade, A.; Sung, L.; Freyer, D.R. Sodium thiosulfate for prevention of cisplatin-induced hearing loss: Updated survival from ACCL0431. Lancet Oncol. 2022, 23, 570–572. [Google Scholar] [CrossRef]
- Brock, P.R.; Maibach, R.; Childs, M.; Rajput, K.; Roebuck, D.; Sullivan, M.; Laithier, V.; Ronghe, M.; Dall’Igna, P.; Hiyama, E.; et al. Sodium Thiosulfate for Protection from Cisplatin-Induced Hearing Loss. N. Engl. J. Med. 2018, 378, 2376–2385. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.T.; Conklin, H.M.; Huang, S.; Srivastava, D.; Sanford, R.; Ellison, D.W.; Merchant, T.E.; Hudson, M.M.; Hoehn, M.E.; Robison, L.L.; et al. Survival and long-term health and cognitive outcomes after low-grade glioma. Neuro-Oncology 2010, 13, 223–234. [Google Scholar] [CrossRef]
- Di Pinto, M.; Conklin, H.M.; Li, C.; Merchant, T.E. Learning and memory following conformal radiation therapy for pediatric craniopharyngioma and low-grade glioma. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, e363–e369. [Google Scholar] [CrossRef] [PubMed]
- Ris, M.D.; Walsh, K.; Wallace, D.; Armstrong, F.D.; Holmes, E.; Gajjar, A.; Zhou, T.; Packer, R.J. Intellectual and academic outcome following two chemotherapy regimens and radiotherapy for average-risk medulloblastoma: COG A9961. Pediatr. Blood Cancer 2013, 60, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Weaver, L.; Samkari, A. Neurological Complications of Childhood Cancer. Semin. Pediatr. Neurol. 2017, 24, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.W.; Haser, J.K. Neurocognitive effects of treatment for childhood cancer. Ment. Retard. Dev. Disabil. Res. Rev. 2006, 12, 184–191. [Google Scholar] [CrossRef]
- Heitzer, A.M.; Kahalley, L.S.; Minard, C.G.; Stafford, C.; Grosshans, D.R.; Okcu, M.F.; Raghubar, K.P.; Gragert, M.; McCurdy, M.; Warren, E.H.; et al. Treatment age and neurocognitive outcomes following proton beam radiotherapy for pediatric low- and intermediate-grade gliomas. Pediatr. Blood Cancer 2021, 68, e29096. [Google Scholar] [CrossRef]
- Stavinoha, P.L.; Askins, M.A.; Powell, S.K.; Smiley, N.P.; Robert, R.S. Neurocognitive and Psychosocial Outcomes in Pediatric Brain Tumor Survivors. Bioengineering 2018, 5, 73. [Google Scholar] [CrossRef]
- Ullrich, N.J.; Embry, L. Neurocognitive dysfunction in survivors of childhood brain tumors. Semin. Pediatr. Neurol. 2012, 19, 35–42. [Google Scholar] [CrossRef]
- Yock, T.I.; Yeap, B.Y.; Ebb, D.H.; Weyman, E.; Eaton, B.R.; Sherry, N.A.; Jones, R.M.; MacDonald, S.M.; Pulsifer, M.B.; Lavally, B.; et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: A phase 2 single-arm study. Lancet Oncol. 2016, 17, 287–298. [Google Scholar] [CrossRef]
- Mabbott, D.J.; Spiegler, B.J.; Greenberg, M.L.; Rutka, J.T.; Hyder, D.J.; Bouffet, E. Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. J. Clin. Oncol. 2005, 23, 2256–2263. [Google Scholar] [CrossRef] [PubMed]
- Zammit, A.R.; Ezzati, A.; Zimmerman, M.E.; Lipton, R.B.; Lipton, M.L.; Katz, M.J. Roles of hippocampal subfields in verbal and visual episodic memory. Behav. Brain Res. 2017, 317, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Cui, D.; Zhang, L.; Zhang, S.; Zhao, Y.; Liu, X.; Liu, C.; Li, Z.; Zhang, D.; Shi, L.; et al. The Volume of Hippocampal Subfields in Relation to Decline of Memory Recall Across the Adult Lifespan. Front. Aging Neurosci. 2018, 10, 320. [Google Scholar] [CrossRef]
- Brown, P.D.; Pugh, S.; Laack, N.N.; Wefel, J.S.; Khuntia, D.; Meyers, C.; Choucair, A.; Fox, S.; Suh, J.H.; Roberge, D.; et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: A randomized, double-blind, placebo-controlled trial. Neuro-Oncology 2013, 15, 1429–1437. [Google Scholar] [CrossRef]
- Ayoub, R.; Ruddy, R.M.; Cox, E.; Oyefiade, A.; Derkach, D.; Laughlin, S.; Ades-Aron, B.; Shirzadi, Z.; Fieremans, E.; MacIntosh, B.J.; et al. Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nat. Med. 2020, 26, 1285–1294. [Google Scholar] [CrossRef]
- Lundorff, L.; Jønsson, B.; Sjøgren, P. Modafinil for attentional and psychomotor dysfunction in advanced cancer: A double-blind, randomised, cross-over trial. Palliat. Med. 2009, 23, 731–738. [Google Scholar] [CrossRef]
- Kohli, S.; Fisher, S.G.; Tra, Y.; Adams, M.J.; Mapstone, M.E.; Wesnes, K.A.; Roscoe, J.A.; Morrow, G.R. The effect of modafinil on cognitive function in breast cancer survivors. Cancer 2009, 115, 2605–2616. [Google Scholar] [CrossRef]
- Gehring, K.; Patwardhan, S.Y.; Collins, R.; Groves, M.D.; Etzel, C.J.; Meyers, C.A.; Wefel, J.S. A randomized trial on the efficacy of methylphenidate and modafinil for improving cognitive functioning and symptoms in patients with a primary brain tumor. J. Neuro-Oncol. 2011, 107, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Boele, F.W.; Douw, L.; de Groot, M.; van Thuijl, H.F.; Cleijne, W.; Heimans, J.J.; Taphoorn, M.J.; Reijneveld, J.C.; Klein, M. The effect of modafinil on fatigue, cognitive functioning, and mood in primary brain tumor patients: A multicenter randomized controlled trial. Neuro-Oncology 2013, 15, 1420–1428. [Google Scholar] [CrossRef]
- Bowers, D.C.; Liu, Y.; Leisenring, W.; McNeil, E.; Stovall, M.; Gurney, J.G.; Robison, L.L.; Packer, R.J.; Oeffinger, K.C. Late-occurring stroke among long-term survivors of childhood leukemia and brain tumors: A report from the Childhood Cancer Survivor Study. J. Clin. Oncol. 2006, 24, 5277–5282. [Google Scholar] [CrossRef]
- Fullerton, H.J.; Stratton, K.; Mueller, S.; Leisenring, W.W.; Armstrong, G.T.; Weathers, R.E.; Stovall, M.; Sklar, C.A.; Goldsby, R.E.; Robison, L.L.; et al. Recurrent stroke in childhood cancer survivors. Neurology 2015, 85, 1056–1064. [Google Scholar] [CrossRef]
- Mueller, S.; Fullerton, H.J.; Stratton, K.; Leisenring, W.; Weathers, R.E.; Stovall, M.; Armstrong, G.T.; Goldsby, R.E.; Packer, R.J.; Sklar, C.A.; et al. Radiation, atherosclerotic risk factors, and stroke risk in survivors of pediatric cancer: A report from the Childhood Cancer Survivor Study. Int. J. Radiat. Oncol. 2013, 86, 649–655. [Google Scholar] [CrossRef]
- Mueller, S.; Kline, C.N.; Buerki, R.A.; Chen, Y.; Yasui, Y.; Howell, R.; Oeffinger, K.C.; Leisenring, W.M.; Robison, L.L.; Armstrong, G.T.; et al. Stroke impact on mortality and psychologic morbidity within the Childhood Cancer Survivor Study. Cancer 2019, 126, 1051–1059. [Google Scholar] [CrossRef]
- Verbruggen, L.C.; Kok, J.L.; Kremer, L.C.M.; Janssens, G.O.; Nederkoorn, P.J.; Penson, A.; Versluijs, A.B.; de Vries, A.C.H.; Reedijk, A.M.J.; Bresters, D.; et al. Long-term risk and characteristics of cerebrovascular events after upper body radiotherapy among childhood cancer survivors in the DCCSS-LATER cohort. Int. J. Cancer 2024, 156, 1858–1872. [Google Scholar] [CrossRef]
- Bottinor, W.; Im, C.; Doody, D.R.; Armenian, S.H.; Arynchyn, A.; Hong, B.; Howell, R.M.; Jacobs, D.R.; Ness, K.K.; Oeffinger, K.C.; et al. Mortality After Major Cardiovascular Events in Survivors of Childhood Cancer. J. Am. Coll. Cardiol. 2024, 83, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Kenney, L.B.; Ames, B.L.; Huang, M.S.; Yock, T.; Bowers, D.C.; Nekhlyudov, L.; Williams, D.; Hudson, M.M.; Ullrich, N.J. Consensus Recommendations for Managing Childhood Cancer Survivors at Risk for Stroke After Cranial Irradiation. Neurology 2022, 99, E1755–E1766. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.R.; Cooper, S. Neurological Complications of the Treatment of Pediatric Neoplastic Disorders. Pediatr. Neurol. 2018, 85, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- Children’s Oncology Group. Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent and Young Adult Cancers, version 6.0; Monorovia, CA Children’s Oncology Group: Monorovia, CA, USA, 2023. Available online: www.survivorshipguidelines.org (accessed on 12 May 2025).
- Bryce, Y.; Whitton, J.A.; Stratton, K.L.; Leisenring, W.M.; Chow, E.J.; Armstrong, G.; Weil, B.; Dieffenbach, B.; Howell, R.M.; Oeffinger, K.C.; et al. Prevalence of carotid ultrasound screening in survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. Cancer 2024, 131, e35591. [Google Scholar] [CrossRef]
- Kralik, S.; Ho, C.; Finke, W.; Buchsbaum, J.; Haskins, C.; Shih, C.-S. Radiation Necrosis in Pediatric Patients with Brain Tumors Treated with Proton Radiotherapy. Am. J. Neuroradiol. 2015, 36, 1572–1578. [Google Scholar] [CrossRef]
- Liao, G.; Khan, M.; Zhao, Z.; Arooj, S.; Yan, M.; Li, X. Bevacizumab Treatment of Radiation-Induced Brain Necrosis: A Systematic Review. Front. Oncol. 2021, 11, 593449. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.K.; Foreman, N.K.; Gaspar, L.E.; Trinidad, E.; Handler, M.H. Maximally safe resection followed by hypofractionated re-irradiation for locally recurrent ependymoma in children. Pediatr. Blood Cancer 2009, 52, 804–807. [Google Scholar] [CrossRef]
- Carbonara, R.; Di Rito, A.; Monti, A.; Rubini, G.; Sardaro, A. Proton versus Photon Radiotherapy for Pediatric Central Nervous System Malignancies: A Systematic Review and Meta-Analysis of Dosimetric Comparison Studies. J. Oncol. 2019, 2019, 1–17. [Google Scholar] [CrossRef]
- Baroni, L.V.; Alderete, D.; Solano-Paez, P.; Rugilo, C.; Freytes, C.; Laughlin, S.; Fonseca, A.; Bartels, U.; Tabori, U.; Bouffet, E.; et al. Bevacizumab for pediatric radiation necrosis. Neuro-Oncol. Pract. 2020, 7, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, A.; Robinson, G.W.; Smith, K.S.; Lin, T.; Merchant, T.E.; Chintagumpala, M.; Mahajan, A.; Su, J.; Bouffet, E.; Bartels, U.; et al. Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03). J. Clin. Oncol. 2021, 39, 822–835. [Google Scholar] [CrossRef] [PubMed]
- Finlay, J.; da Silva, N.S.; Lavey, R.; Bouffet, E.; Kellie, S.J.; Shaw, E.; Saran, F.; Matsutani, M. The management of patients with primary central nervous system (CNS) germinoma: Current controversies requiring resolution. Pediatr. Blood Cancer 2008, 51, 313–316. [Google Scholar] [CrossRef]
- Alapetite, C.; Brisse, H.; Patte, C.; Raquin, M.A.; Gaboriaud, G.; Carrie, C.; Habrand, J.L.; Thiesse, P.; Cuilliere, J.C.; Bernier, V.; et al. Pattern of relapse and outcome of non-metastatic germinoma patients treated with chemotherapy and limited field radiation: The SFOP experience. Neuro-Oncology 2010, 12, 1318–1325. [Google Scholar] [CrossRef]
- Matsutani, M. The Japanese Pediatric Brain Tumor Study Group Combined chemotherapy and radiation therapy for CNS germ cell tumors – the Japanese experience. J. Neuro-Oncol. 2001, 54, 311–316. [Google Scholar] [CrossRef]
- Matsutani, M.; Ushio, Y.; Abe, H.; Yamashita, J.; Shibui, S.; Fujimaki, T.; Takakura, K.; Nomura, K.; Tanaka, R.; Fukui, M.; et al. Combined chemotherapy and radiation therapy for central nervous system germ cell tumors: Preliminary results of a Phase II study of the Japanese Pediatric Brain Tumor Study Group. Neurosurg. Focus 1998, 5, E9. [Google Scholar] [CrossRef]
- Calaminus, G.; Bison, B.; Conter, C.F.; Frappaz, D.; Peyrl, A.; Gerber, N.U.; Müller, J.-E.; Ajithkumar, T.; Morana, G.; Cross, J.; et al. GCT-11. 24 Gy whole ventricular radiotherapy alone is sufficient for disease control in localised germinoma in CR after initial chemotherapy—Final of the SIOP CNS GCT II study. Neuro-Oncology 2022, 24, i56. [Google Scholar] [CrossRef]
- Salloum, R.; Chen, Y.; Yasui, Y.; Packer, R.; Leisenring, W.; Wells, E.; King, A.; Howell, R.; Gibson, T.M.; Krull, K.R.; et al. Late Morbidity and Mortality Among Medulloblastoma Survivors Diagnosed Across Three Decades: A Report From the Childhood Cancer Survivor Study. J. Clin. Oncol. 2019, 37, 731–740. [Google Scholar] [CrossRef]
- Helgadottir, H.; Matikas, A.; Fernebro, J.; Frödin, J.-E.; Ekman, S.; Rodriguez-Wallberg, K.A. Fertility and reproductive concerns related to the new generation of cancer drugs and the clinical implication for young individuals undergoing treatments for solid tumors. Eur. J. Cancer 2024, 202, 114010. [Google Scholar] [CrossRef] [PubMed]
- Loren, A.W.; Mangu, P.B.; Beck, L.N.; Brennan, L.; Magdalinski, A.J.; Partridge, A.H.; Quinn, G.; Wallace, W.H.; Oktay, K. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 2013, 31, 2500–2510. [Google Scholar] [CrossRef] [PubMed]
- Pape, J.; Gudzheva, T.; Beeler, D.; Weidlinger, S.; Vidal, A.; Furtwängler, R.; Karrer, T.; von Wolff, M. Long-term effects on fertility after central nervous system cancer: A systematic review and meta-analysis. Neuro-Oncol. Pract. 2024, 11, 691–702. [Google Scholar] [CrossRef]
- Stern, E.; Ben-Ami, M.; Gruber, N.; Toren, A.; Caspi, S.; Abebe-Campino, G.; Lurye, M.; Yalon, M.; Modan-Moses, D. Hypothalamic-pituitary-gonadal function, pubertal development, and fertility outcomes in male and female medulloblastoma survivors: A single-center experience. Neuro-Oncology 2023, 25, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Felker, J.; Bjornard, K.; Close, A.; Chavez, J.; Chow, E.J.; Meacham, L.R.; Burns, K. Fertility preservation in pediatric central nervous system tumors: A report from the Children’s Oncology Group. Pediatr. Blood Cancer 2024, 71, e31246. [Google Scholar] [CrossRef]
- Nassau, D.E.; Ramasamy, R. Sperm retrieval options for men with spinal cord injury. Fertil. Steril. 2021, 115, 1190. [Google Scholar] [CrossRef]
- Mulder, R.L.; Font-Gonzalez, A.; Hudson, M.M.; van Santen, H.M.; Loeffen, E.A.H.; Burns, K.C.; Quinn, G.P.; Broeder, E.v.D.-D.; Byrne, J.; Haupt, R.; et al. Fertility preservation for female patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021, 22, e45–e56. [Google Scholar] [CrossRef]
- Duncan, F.E.; Pavone, M.E.; Gunn, A.H.; Badawy, S.; Gracia, C.; Ginsberg, J.P.; Lockart, B.; Gosiengfiao, Y.; Woodruff, T.K. Pediatric and Teen Ovarian Tissue Removed for Cryopreservation Contains Follicles Irrespective of Age, Disease Diagnosis, Treatment History, and Specimen Processing Methods. J. Adolesc. Young Adult Oncol. 2015, 4, 174–183. [Google Scholar] [CrossRef]
- Kebodeaux, C.A.; Pruett, M.; Gomez-Lobo, V.; Nahata, L.; Saraf, A.J.; Hoefgen, H.R. Ovarian Tissue Cryopreservation in Pediatric Centers across the United States: Practice Patterns and Barriers. J. Pediatr. Adolesc. Gynecol. 2024, 38, 161–166. [Google Scholar] [CrossRef]
- Campbell, P.; Riazzi, A.; Spitznagel, E.; Schulte, M.; Frias, O.; Daugherty, M.; Vanderbrink, B.; DeFoor, W.; Minevich, E.; Reddy, P.; et al. Time to therapy and safety of testicular tissue cryopreservation in children undergoing gonadotoxic treatment or hematopoietic stem cell transplant. J. Pediatr. Urol. 2024, 20, 747.e1–747.e7. [Google Scholar] [CrossRef] [PubMed]
- Cacciotti, C.; Fleming, A.; Duckworth, J.; Tseitlin, H.; Anderson, L.; Marjerrison, S. Late effects care for childhood brain Tumor Survivors: A Quality-Improvement Initiative. Pediatr. Hematol. Oncol. 2021, 39, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, G.T.; Liu, Q.; Yasui, Y.; Huang, S.; Ness, K.K.; Leisenring, W.; Hudson, M.M.; Donaldson, S.S.; King, A.A.; Stovall, M.; et al. Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study. JNCI J. Natl. Cancer Inst. 2009, 101, 946–958. [Google Scholar] [CrossRef] [PubMed]
- Oeffinger, K.C.; Mertens, A.C.; Hudson, M.M.; Gurney, J.G.; Casillas, J.; Chen, H.; Whitton, J.; Yeazel, M.; Yasui, Y.; Robison, L.L. Health care of young adult survivors of childhood cancer: A report from the Childhood Cancer Survivor Study. Ann. Fam. Med. 2004, 2, 61–70. [Google Scholar] [CrossRef]
- Nathan, P.C.; Greenberg, M.L.; Ness, K.K.; Hudson, M.M.; Mertens, A.C.; Mahoney, M.C.; Gurney, J.G.; Donaldson, S.S.; Leisenring, W.M.; Robison, L.L.; et al. Medical care in long-term survivors of childhood cancer: A report from the childhood cancer survivor study. J. Clin. Oncol. 2008, 26, 4401–4409. [Google Scholar] [CrossRef]
Nonpharmacological | Nonpharmacological Intervention | ||||
Reduce or limit CNS radiation
| |||||
Control HTN and diabetes | |||||
Reduce or limit exposure to alcohol | |||||
Smoking cessation | |||||
Pharmacological | Drug Name | Mechanism of Action | Which Patients to Consider | Evidence | Toxicity |
Memantine [44] | Binds to NMDA receptors and prevents calcium ion influx, which in turn prevents disruption of synaptic plasticity | Patients with CNS tumors receiving radiation therapy | Phase III RCT memantine initiated within 3 days of RT and continued for 24 weeks. Memantine found to have benefits, with reduced probability of cognitive failure and longer time to cognitive decline, higher executive function, and delayed recognition Current trials: -NCT03194906 -ACCL2031 | Most common adverse effects include fatigue, alopecia, nausea, and headaches | |
Metformin [42,43,45] | Improves working memory by acting on neural stem cells in subventricular zone and dentate gyrus, restoring neurogenesis following RT | Patients with CNS tumors receiving radiation therapy | Early-phase RCT demonstrated enhanced auditory-verbal recall and working memory in pediatric patients | Mild gastrointestinal side effects such as diarrhea most common | |
Modafinil [46,47,48,49] | Dopaminergic CNS stimulant | Patients with CNS tumors receiving radiation therapy | Improvement in attention, psychomotor speed, and memory. Current trials: ACCL0922 | Most commonly insomnia, headaches, nausea, and anxiety |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coltin, H.; Coleman, C.; Cacciotti, C. Approaches to Reduce Toxicity in Pediatric Brain Tumors. Curr. Oncol. 2025, 32, 281. https://doi.org/10.3390/curroncol32050281
Coltin H, Coleman C, Cacciotti C. Approaches to Reduce Toxicity in Pediatric Brain Tumors. Current Oncology. 2025; 32(5):281. https://doi.org/10.3390/curroncol32050281
Chicago/Turabian StyleColtin, Hallie, Christina Coleman, and Chantel Cacciotti. 2025. "Approaches to Reduce Toxicity in Pediatric Brain Tumors" Current Oncology 32, no. 5: 281. https://doi.org/10.3390/curroncol32050281
APA StyleColtin, H., Coleman, C., & Cacciotti, C. (2025). Approaches to Reduce Toxicity in Pediatric Brain Tumors. Current Oncology, 32(5), 281. https://doi.org/10.3390/curroncol32050281