Lack of Association Between BsmI and FokI Polymorphisms of the VDR Gene and Sporadic Colorectal Cancer in a Romanian Cohort—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. SNP Genotyping
2.3. Statistical Analysis
3. Results
Post Hoc Power Analysis
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- De Menezes-Júnior, L.A.A.; Sabião, T.D.S.; de Moura, S.S.; Batista, A.P.; de Menezes, M.C.; Carraro, J.C.C.; Machado-Coelho, G.L.L.; Meireles, A.L. The role of interaction between vitamin D and VDR FokI gene polymorphism (rs2228570) in sleep quality of adults. Sci. Rep. 2024, 14, 8141. [Google Scholar] [CrossRef]
- World Health Organization. The Global Cancer Observatory: Romania: International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today/data/factsheets/populations/642-romania-fact-sheets.pdf (accessed on 17 September 2023).
- Diori Karidio, I.; Sanlier, S.H. Reviewing cancer’s biology: An eclectic approach. J. Egypt. Natl. Cancer Inst. 2021, 33, 32. [Google Scholar] [CrossRef]
- Puneet; Kazmi, H.R.; Kumari, S.; Tiwari, S.; Khanna, A.; Narayan, G. Epigenetic Mechanisms and Events in Gastric Cancer-Emerging Novel Biomarkers. Pathol. Oncol. Res. 2018, 24, 757–770. [Google Scholar] [CrossRef]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef]
- Hubner, R.A.; Muir, K.R.; Liu, J.-F.; Logan, R.F.A.; Grainge, M.J.; Houlston, R.S.; Members of UKCAP Consortium. Dairy products, polymorphisms in the vitamin D receptor gene and colorectal adenoma recurrence. Int. J. Cancer 2008, 123, 586–593. [Google Scholar] [CrossRef]
- Serrano, D.; Gnagnarella, P.; Raimondi, S.; Gandini, S. Meta-analysis on vitamin D receptor and cancer risk: Focus on the role of TaqI, ApaI, and Cdx2 polymorphisms. Eur. J. Cancer Prev. 2015, 25, 85–96. [Google Scholar] [CrossRef]
- Gnagnarella, P.; Pasquali, E.; Serrano, D.; Raimondi, S.; Disalvatore, D.; Gandini, S. Vitamin D receptor polymorphism FokI and cancer risk: A comprehensive meta-analysis. Carcinogenesis 2014, 35, 1913–1919. [Google Scholar] [CrossRef]
- Di Rosa, M.; Malaguarnera, M.; Zanghì, A.; Passaniti, A.; Malaguarnera, L. Vitamin D3 insufficiency and colorectal cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 594–612. [Google Scholar] [CrossRef]
- Tuoresmäki, P.; Väisänen, S.; Neme, A.; Heikkinen, S.; Carlberg, C. Patterns of genome-wide VDR locations. PLoS ONE 2014, 9, e96105. [Google Scholar] [CrossRef]
- Yang, M.; Ji, W.; Xu, N.; Zong, C.; Gu, J.; Guo, X.; Zhang, L. Association of vitamin D receptor polymorphisms with colorectal cancer susceptibility: A systematic meta-analysis. Medicine 2023, 102, e32575. [Google Scholar] [CrossRef]
- Tang, C.; Chen, N.; Wu, M.; Yuan, H.; Du, Y. Fok1 polymorphism of vitamin D receptor gene contributes to breast cancer susceptibility: A meta-analysis. Breast Cancer Res. Treat. 2009, 117, 391–399. [Google Scholar] [CrossRef]
- Kampman, E.; Slattery, M.L.; Caan, B.; Potter, J.D. Calcium, vitamin D, sunshine exposure, dairy products and colon cancer risk (United States). Cancer Causes Control 2000, 11, 459–466. [Google Scholar] [CrossRef]
- Kulie, T.; Groff, A.; Redmer, J.; Hounshell, J.; Schrager, S. Vitamin D: An Evidence-Based Review. J. Am. Board Fam. Med. 2009, 22, 698–706. [Google Scholar] [CrossRef]
- Vaughan-Shaw, P.G.; Buijs, L.F.; Blackmur, J.P.; Theodoratou, E.; Zgaga, L.; Din, F.V.N.; Farrington, S.M.; Dunlop, M.G. The effect of vitamin D supplementation on survival in patients with colorectal cancer: Systematic review and meta-analysis of randomised controlled trials. Br. J. Cancer 2020, 123, 1705–1712. [Google Scholar] [CrossRef]
- Grant, W.B. Epidemiology of disease risks in relation to vitamin D insufficiency. Prog. Biophys. Mol. Biol. 2006, 92, 65–79. [Google Scholar] [CrossRef]
- Boughanem, H.; Canudas, S.; Hernandez-Alonso, P.; Becerra-Tomás, N.; Babio, N.; Salas-Salvadó, J.; Macias-Gonzalez, M. Vitamin D Intake and the Risk of Colorectal Cancer: An Updated Meta-Analysis and Systematic Review of Case-Control and Prospective Cohort Studies. Cancers 2021, 13, 2814. [Google Scholar] [CrossRef]
- Valdivielso, J.M.; Fernandez, E. Vitamin D receptor polymorphisms and diseases. Clin. Chim. Acta 2006, 371, 1–12. [Google Scholar] [CrossRef]
- Flügge, J.; Krusekopf, S.; Goldammer, M.; Osswald, E.; Terhalle, W.; Malzahn, U.; Roots, I. Vitamin D receptor haplotypes protect against development of colorectal cancer. Eur. J. Clin. Pharmacol. 2007, 63, 997–1005. [Google Scholar] [CrossRef]
- Bai, Y.H.; Lu, H.; Hong, D.; Lin, C.C.; Yu, Z.; Chen, B.C. Vitamin D receptor gene polymorphisms and colorectal cancer risk: A systematic meta-analysis. World J. Gastroenterol. 2012, 18, 1672–1679. [Google Scholar] [CrossRef]
- Latacz, M.; Rozmus, D.; Fiedorowicz, E.; Snarska, J.; Jarmołowska, B.; Kordulewska, N.; Savelkoul, H.; Cieślińska, A. Vitamin D Receptor (VDR) Gene Polymorphism in Patients Diagnosed with Colorectal Cancer. Nutrients 2021, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.J.; Vincze, T.; Posfai, J.; Macelis, D. REBASE—A database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Res. 2015, 43, D298–D299. [Google Scholar] [CrossRef] [PubMed]
- Szybalski, W.; Kim, S.C.; Hasan, N.; Podhajska, A.J. Class-IIS restriction enzymes—A review. Gene 1991, 100, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Pernstich, C.; Halford, S.E. Illuminating the reaction pathway of the FokI restriction endonuclease by fluorescence resonance energy transfer. Nucleic Acids Res. 2012, 40, 1203–1213. [Google Scholar] [CrossRef]
- Chang, H.-W.; Yang, C.-H.; Chang, P.-L.; Cheng, Y.-H.; Chuang, L.-Y. SNP-RFLPing: Restriction enzyme mining for SNPs in genomes. BMC Genom. 2006, 7, 30. [Google Scholar] [CrossRef]
- Kennedy, M.A.; Hosford, C.J.; Azumaya, C.M.; Luyten, Y.A.; Chen, M.; Morgan, R.D.; Stoddard, B.L. Structures, activity and mechanism of the Type IIS restriction endonuclease PaqCI. Nucleic Acids Res. 2023, 51, 4467–4487. [Google Scholar] [CrossRef]
- Gross, C.; Eccleshall, T.R.; Malloy, P.J.; Villa, M.L.; Marcus, R.; Feldman, D. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women. J. Bone Miner. Res. 1996, 11, 1850–1855. [Google Scholar] [CrossRef]
- Xu, Y.; Shibata, A.; McNeal, J.E.; Stamey, T.A.; Feldman, D.; Peehl, D.M. Vitamin D Receptor Start Codon Polymorphism (FokI) and Prostate Cancer Progression1. Cancer Epidemiol. Biomark. Prev. 2003, 12, 23–27. [Google Scholar]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.; Pols, H.A.; Van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef]
- Alimirah, F.; Peng, X.; Murillo, G.; Mehta, R.G. Functional significance of vitamin D receptor FokI polymorphism in human breast cancer cells. PLoS ONE 2011, 6, e16024. [Google Scholar] [CrossRef]
- Randerson-Moor, J.A.; Taylor, J.C.; Elliott, F.; Chang, Y.M.; Beswick, S.; Kukalizch, K.; Affleck, P.; Leake, S.; Haynes, S.; Karpavicius, B.; et al. Vitamin D receptor gene polymorphisms, serum 25-hydroxyvitamin D levels, and melanoma: UK case–control comparisons and a meta-analysis of published VDR data. Eur. J. Cancer 2009, 45, 3271–3281. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.H.; Stoddard, B.L.; Xu, S.Y. Natural and engineered nicking endonucleases—From cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res. 2011, 39, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Touvier, M.; Chan, D.S.; Lau, R.; Aune, D.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Riboli, E.; Hercberg, S.; Norat, T. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms, and colorectal cancer risk. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Aran, V.; Victorino, A.P.; Thuler, L.C.S.; Ferreira, C.G. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clin. Color. Cancer 2016, 15, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Gandini, S.; Gnagnarella, P.; Serrano, D.; Pasquali, E.; Raimondi, S. Vitamin D receptor polymorphisms and cancer. Adv. Exp. Med. Biol. 2014, 810, 69–105. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, Y.G.; Lu, R.; Xia, Y.; Zhou, D.; Petrof, E.O.; Claud, E.C.; Chen, D.; Chang, E.B.; Carmeliet, G.; et al. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 2015, 64, 1082–1094. [Google Scholar] [CrossRef]
- Wang, J.; Thingholm, L.B.; Skiecevičienė, J.; Rausch, P.; Kummen, M.; Hov, J.R.; Degenhardt, F.; Heinsen, F.A.; Rühlemann, M.C.; Szymczak, S.; et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 2016, 48, 1396–1406. [Google Scholar] [CrossRef]
- Sun, J. The Role of Vitamin D and Vitamin D Receptors in Colon Cancer. Clin. Transl. Gastroenterol. 2017, 8, e103. [Google Scholar] [CrossRef]
- Yuan, C.; Song, M.; Zhang, Y.; Wolpin, B.M.; Meyerhardt, J.A.; Ogino, S.; Hollis, B.W.; Chan, A.T.; Fuchs, C.S.; Wu, K.; et al. Prediagnostic Circulating Concentrations of Vitamin D Binding Protein and Survival among Patients with Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2323–2331. [Google Scholar] [CrossRef]
- Köstner, K.; Denzer, N.; Müller, C.S.; Klein, R.; Tilgen, W.; Reichrath, J. The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: A review of the literature. Anticancer Res. 2009, 29, 3511–3536. [Google Scholar]
- RAI, V.; Abdo, J.; Agrawal, S.; Agrawal, D.K. Vitamin D Receptor Polymorphism and Cancer: An Update. Anticancer Res. 2017, 37, 3991–4003. [Google Scholar] [PubMed]
- Xu, Y.; He, B.; Pan, Y.; Deng, Q.; Sun, H.; Li, R.; Gao, T.; Song, G.; Wang, S. Systematic review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Tumor Biol. 2014, 35, 4153–4169. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.H.; Chiu, Y.C.; Hu, T.H.; Chen, C.H.; Lu, S.N.; Huang, C.M.; Wang, J.H.; Lee, C.M. Significance of vitamin d receptor gene polymorphisms for risk of hepatocellular carcinoma in chronic hepatitis C. Transl. Oncol. 2014, 7, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Laczmanska, I.; Laczmanski, L.; Bebenek, M.; Karpinski, P.; Czemarmazowicz, H.; Ramsey, D.; Milewicz, A.; Sasiadek, M.M. Vitamin D receptor gene polymorphisms in relation to the risk of colorectal cancer in the Polish population. Tumor Biol. 2014, 35, 12397–12401. [Google Scholar] [CrossRef]
- Sarkissyan, M.; Wu, Y.; Chen, Z.; Mishra, D.K.; Sarkissyan, S.; Giannikopoulos, I.; Vadgama, J.V. Vitamin D receptor FokI gene polymorphisms may be associated with colorectal cancer among African American and Hispanic participants. Cancer 2014, 120, 1387–1393. [Google Scholar] [CrossRef]
- Jenab, M.; McKay, J.; Bueno-de-Mesquita, H.B.; van Duijnhoven, F.J.; Ferrari, P.; Slimani, N.; Jansen, E.H.; Pischon, T.; Rinaldi, S.; Tjønneland, A.; et al. Vitamin D receptor and calcium sensing receptor polymorphisms and the risk of colorectal cancer in European populations. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2485–2491. [Google Scholar] [CrossRef]
- Zeidan, N.M.S.; Lateef, H.M.A.E.; Selim, D.M.; Razek, S.A.; Abd-Elrehim, G.A.B.; Nashat, M.; ElGyar, N.; Waked, N.M.; Soliman, A.A.; Elhewala, A.A.; et al. Vitamin D deficiency and vitamin D receptor FokI polymorphism as risk factors for COVID-19. Pediatr. Res. 2023, 93, 1383–1390. [Google Scholar] [CrossRef]
- Triantos, C.; Aggeletopoulou, I.; Kalafateli, M.; Spantidea, P.I.; Vourli, G.; Diamantopoulou, G.; Tapratzi, D.; Michalaki, M.; Manolakopoulos, S.; Gogos, C.; et al. Prognostic significance of vitamin D receptor (VDR) gene polymorphisms in liver cirrhosis. Sci. Rep. 2018, 8, 14065. [Google Scholar] [CrossRef]
- Alkhayal, K.A.; Awadalia, Z.H.; Vaali-Mohammed, M.A.; Al Obeed, O.A.; Al Wesaimer, A.; Halwani, R.; Zubaidi, A.M.; Khan, Z.; Abdulla, M.H. Association of Vitamin D Receptor Gene Polymorphisms with Colorectal Cancer in a Saudi Arabian Population. PLoS ONE 2016, 11, e0155236. [Google Scholar] [CrossRef]
- Cho, Y.A.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Vitamin D receptor FokI polymorphism and the risks of colorectal cancer, inflammatory bowel disease, and colorectal adenoma. Sci. Rep. 2018, 8, 12899. [Google Scholar] [CrossRef]
- Messaritakis, I.; Koulouridi, A.; Sfakianaki, M.; Vogiatzoglou, K.; Gouvas, N.; Athanasakis, E.; Tsiaoussis, J.; Xynos, E.; Mavroudis, D.; Tzardi, M.; et al. The Role of Vitamin D Receptor Gene Polymorphisms in Colorectal Cancer Risk. Cancers 2020, 12, 1379. [Google Scholar] [CrossRef] [PubMed]
- Suksawatamnuay, S.; Sriphoosanaphan, S.; Aumpansub, P.; Aniwan, S.; Thanapirom, K.; Tanasanvimon, S.; Thaimai, P.; Wiangngoen, S.; Ponauthai, Y.; Sumdin, S.; et al. Association between Vitamin D Receptor Single-Nucleotide Polymorphisms and Colorectal Cancer in the Thai Population: A Case-Control Study. BioMed Res. Int. 2020, 2020, 7562958. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, T.; Karimi, K.; Mohebbi, S.R.; Fatemi, S.R.; Zali, M.R. Start codon FokI and intron 8 BsmI variants in the vitamin D receptor gene and susceptibility to colorectal cancer. Mol. Biol. Rep. 2011, 38, 4765–4770. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Chen, M.; Hu, X.; Wang, H.; Yang, J.; Zhang, C.; Pan, F.; Sun, G. Associations between VDR gene polymorphisms and colorectal cancer susceptibility: An updated meta-analysis based on 39 case-control studies. Oncotarget 2018, 9, 13068–13076. [Google Scholar] [CrossRef]
- Vidigal, V.M.; Silva, T.D.; de Oliveira, J.; Pimenta, C.A.M.; Felipe, A.V.; Forones, N.M. Genetic polymorphisms of vitamin D receptor (VDR), CYP27B1 and CYP24A1 genes and the risk of colorectal cancer. Int. J. Biol. Markers 2017, 32, e224–e230. [Google Scholar] [CrossRef]
- Takeshige, N.; Yin, G.; Ohnaka, K.; Kono, S.; Ueki, T.; Tanaka, M.; Maehara, Y.; Okamura, T.; Ikejiri, K.; Maekawa, T.; et al. Associations between vitamin D receptor (VDR) gene polymorphisms and colorectal cancer risk and effect modifications of dietary calcium and vitamin D in a Japanese population. Asian Pac. J. Cancer Prev. 2015, 16, 2019–2026. [Google Scholar] [CrossRef]
- Yu, K.; Yang, J.; Jiang, Y.; Song, R.; Lu, Q. Vitamin D receptor BsmI polymorphism and colorectal cancer risk: An updated analysis. Asian Pac. J. Cancer Prev. 2014, 15, 4801–4807. [Google Scholar] [CrossRef]
- Raimondi, S.; Pasquali, E.; Gnagnarella, P.; Serrano, D.; Disalvatore, D.; Johansson, H.A.; Gandini, S. BsmI polymorphism of vitamin D receptor gene and cancer risk: A comprehensive meta-analysis. Mutat. Res. Mol. Mech. Mutagen. 2014, 769, 17–34. [Google Scholar] [CrossRef]
- Vernia, F.; Longo, S.; Stefanelli, G.; Viscido, A.; Latella, G. Dietary Factors Modulating Colorectal Carcinogenesis. Nutrients 2021, 13, 143. [Google Scholar] [CrossRef]
- Tagliabue, E.; Raimondi, S.; Gandini, S. Vitamin D, Cancer Risk, and Mortality. Adv. Food Nutr. Res. 2015, 75, 1–52. [Google Scholar] [CrossRef]
Variable | Colorectal Cancer | Control | p Value |
---|---|---|---|
Number. of cases | 166 | 275 | |
Male/Female | 108/58 | 176/99 | 0.357 * |
Age (years), mean ± SD | 65 ± 9.65 | 59 ± 11.6 | 0.33 * |
Location | |||
| 27 | ||
| 71 | ||
| 68 | ||
Tumor stage—Dukes’ stage | |||
| 115 | ||
| 51 | ||
Differentiation grade | |||
| 55 | ||
| 95 | ||
| 16 |
SNP | MAF * | χ2 | p |
---|---|---|---|
FokI rs2228570 C>T | 0.35 | 0.34 | 0.56 |
BsmI rs1544410 C>T | 0.41 | 3.79 | 0.051 |
SNP | MAF * | χ2 | p |
---|---|---|---|
FokI rs2228570 C>T | 0.35 | 0.45 | 0.50 |
BsmI rs1544410 C>T | 0.41 | 3.95 | 0.05 |
SNP | CRC (n = 166) | Control (n = 275) | OR (95%CI) | p Value |
---|---|---|---|---|
FokI rs2228570 C>T | ||||
Codominant | ||||
CC (FF) | 74 (44.58%) | 113 (41.09%) | Reference | - |
CT (Ff) | 72 (43.37%) | 130 (47.27%) | 0.85 (0.56–1.28) | 0.42 |
TT (ff) | 20 (12.05%) | 32 (11.64%) | 0.95 (0.51–1.79) | 0.89 |
Dominant | ||||
CC | 74 (44.58%) | 113 (41.09%) | Reference | - |
CT + TT | 92 (55.42%) | 162 (58.91%) | 0.87 (0.59–1.28) | 0.47 |
Recessive | ||||
CC (FF) + CT (Ff) | 146 (87.95%) | 243 (88.36%) | Reference | - |
TT (ff) | 20 (12.05%) | 32 (11.64%) | 1.04 (0.57–1.89) | 0.90 |
Allelic | ||||
C (F) | 220 (66.27%) | 356 (64.73%) | Reference | - |
T (f) | 112 (33.73%) | 194 (35.27%) | 0.93 (0.70–1.24) | 0.64 |
BsmI rs1544410 C>T | ||||
Codominant | ||||
CC (BB) | 63 (37.95%) | 105 (38.18%) | Reference | - |
CT (Bb) | 68 (40.96%) | 117 (42.55%) | 0.97 (0.63–1.49) | 0.88 |
TT (bb) | 35 (21.09%) | 53 (19.27%) | 1.10 (0.65–1.87) | 0.72 |
Dominant | ||||
CC (BB) | 63 (37.95%) | 105 (38.18%) | Reference | - |
CT (Bb) + TT (bb) | 103 (62.05%) | 170 (61.82%) | 1.01 (0.68–1.50) | 0.96 |
Recessive | ||||
CC (BB) + CT (Bb) | 131 (78.91%) | 222 (80.73%) | Reference | - |
TT (bb) | 35 (21.09%) | 53 (19.27%) | 1.12 (0.69–1.81) | 0.65 |
Allelic | ||||
C (B) | 194 (58.43%) | 327 (59.45%) | Reference | - |
T (b) | 138 (41.57%) | 223 (40.55%) | 1.04 (0.79–1.38) | 0.76 |
Polymorphism | Proximal CRC | Distal CRC | Rectal CRC | |||
---|---|---|---|---|---|---|
N = 27 | OR (95%CI); p | N = 71 | OR (95%CI); p | N = 68 | OR (95%CI); p | |
rs2228570 C>T | ||||||
(FokI) | ||||||
CC | 10 | Reference | 28 | Reference | 36 | Reference |
CT | 15 | 1.30 (0.56–3.01); 0.53 | 30 | 0.93 (0.53–1.65); 0.81 | 27 | 0.65 (0.37–1.14); 0.13 |
TT | 2 | 0.71 (0.15–3.39); 0.65 | 13 | 1.64 (0.76–3.53); 0.21 | 5 | 0.49 (0.18–1.35); 0.14 |
T carriers | 17 | 1.19 (0.52–2.69); 0.49 | 43 | 1.07 (0.63–1.83); 0.80 | 32 | 0.62 (0.36–1.06); 0.08 |
rs1544410 C>T | ||||||
(BsmI) | ||||||
CC | 11 | Reference | 24 | Reference | 28 | Reference |
CT | 8 | 0.65 (0.25–1.68); 0.37 | 30 | 1.12 (0.62–2.04); 0.71 | 30 | 0.96 (0.54–1.71); 0.89 |
TT | 8 | 1.44 (0.55–3.79); 0.46 | 17 | 1.40 (0.69–2.84); 0.35 | 10 | 0.71 (0.32–1.56); 0.38 |
T carriers | 16 | 0.90 (0.40–2.01); 0.79 | 47 | 1.21 (0.69–2.09); 0.49 | 40 | 0.88 (0.51–1.51); 0.65 |
Polymorphism | N = 98 | CRC OR (95%CI); p | N = 68 | Rectal OR (95%CI); p |
---|---|---|---|---|
rs2228570 C>T | ||||
(FokI) | ||||
C | 38 | Reference | 36 | Reference |
CT | 45 | 1.03 (0.62–1.70); 0.91 | 27 | 0.65 (0.37–1.14); 0.13 |
TT | 15 | 1.39 (0.68–2.85); 0.37 | 5 | 0.49 (0.18–1.35); 0.14 |
T carriers | 60 | 1.10 (0.69–1.77); 0.69 | 32 | 0.62 (0.36–1.06); 0.08 |
rs1544410 C>T | ||||
(BsmI) | ||||
CC | 35 | Reference | 28 | Reference |
CT | 38 | 0.97 (0.57–1.65); 0.92 | 30 | 0.96 (0.54–1.71); 0.89 |
TT | 25 | 1.41 (0.77–2.61); 0.27 | 10 | 0.71 (0.32–1.56); 0.38 |
T carriers | 63 | 1.11 (0.69–1.79); 0.66 | 40 | 0.88 (0.51–1.51); 0.65 |
Polymorphism | Tumor Stage I + II (A + B) n = 115 (%) | OR (95%CI); p | Tumor Stage III + IV (C + D) n = 51 (n %) | OR (95%CI); p |
---|---|---|---|---|
rs2228570 C>T | ||||
(FokI) | ||||
CC (FF) | 58 (50.44%) | Reference | 16 (31.37%) | Reference |
CT (Ff) | 45 (39.13%) | 0.67 (0.42–1.07); 0.09 | 27 (52.94%) | 1.47 (0.75–2.86); 0.26 |
TT (ff) | 12 (10.43%) | 0.73 (0.35–1.52); 0.40 | 8 (15.69%) | 1.77 (0.69–4.50); 0.24 |
T carriers | 57 (49.57%) | 0.68 (0.44–1.06); 0.09 | 35 (68.83%) | 1.53 (0.81–2.89); 0.19 |
rs1544410 C>T | ||||
(BsmI) | ||||
CC | 44 (38.26%) | Reference | 19 (37.25%) | Reference |
CT | 44 (38.26%) | 0.89 (0.55–1.47); 0.67 | 24 (47.06%) | 1.13 (0.59–2.19); 0.71 |
TT | 27 (23.48%) | 1.22 (0.68–2.18); 0.51 | 8 (15.69%) | 0.83 (0.34–2.03); 0.69 |
T carriers | 71 (61.74%) | 0.99 (0.64–1.56); 0.99 | 32 (62.75%) | 1.04 (0.56–1.93); 0.90 |
Polymorphism | G1 | G2 | G3 | |||
---|---|---|---|---|---|---|
N = 55 | OR (95%CI); p | N = 95 | OR (95%CI); p | N = 16 | OR (95%CI); p | |
rs2228570 C>T | ||||||
(FokI) | ||||||
CC (FF) | 22 | Reference | 45 | Reference | 7 | Reference |
CT(Ff) | 27 | 1.07 (0.58–1.98); 0.84 | 38 | 0.73 (0.44–1.21); 0.22 | 7 | 0.87 (0.30–2.55); 0.80 |
TT(ff) | 6 | 0.96 (0.36–2.58); 0.94 | 12 | 0.94 (0.45–1.99); 0.87 | 2 | 1.01 (0.20–5.09); 0.99 |
T carriers | 33 | 1.05 (0.58–1.89); 0.88 | 50 | 0.77 (0.48–1.24); 0.29 | 9 | 0.89 (0.32–2.48); 0.83 |
rs1544410 C>T | ||||||
(BsmI) | ||||||
CC | 20 | Reference | 36 | Reference | 7 | Reference |
CT | 22 | 0.98 (0.51–1.91); 0.97 | 40 | 0.99 (0.59–1.68); 0.99 | 5 | 0.64 (0.19–2.08); 0.46 |
TT | 13 | 1.29 (0.60–2.79); 0.52 | 19 | 1.05 (0.55–1.99); 0.89 | 4 | 1.13 (0.32–4.04); 0.85 |
T carriers | 34 | 1.08 (0.59–1.97); 0.80 | 60 | 1.01 (0.63–1.64); 0.96 | 9 | 0.79 (0.29–2.19); 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petre-Mandache, B.; Burada, E.; Cucu, M.G.; Atasie, D.; Riza, A.-L.; Streață, I.; Mitruț, R.; Pleșea, R.; Dobrescu, A.; Pîrvu, A.; et al. Lack of Association Between BsmI and FokI Polymorphisms of the VDR Gene and Sporadic Colorectal Cancer in a Romanian Cohort—A Preliminary Study. Curr. Oncol. 2024, 31, 6406-6418. https://doi.org/10.3390/curroncol31100476
Petre-Mandache B, Burada E, Cucu MG, Atasie D, Riza A-L, Streață I, Mitruț R, Pleșea R, Dobrescu A, Pîrvu A, et al. Lack of Association Between BsmI and FokI Polymorphisms of the VDR Gene and Sporadic Colorectal Cancer in a Romanian Cohort—A Preliminary Study. Current Oncology. 2024; 31(10):6406-6418. https://doi.org/10.3390/curroncol31100476
Chicago/Turabian StylePetre-Mandache, Bianca, Emilia Burada, Mihai Gabriel Cucu, Diter Atasie, Anca-Lelia Riza, Ioana Streață, Radu Mitruț, Răzvan Pleșea, Amelia Dobrescu, Andrei Pîrvu, and et al. 2024. "Lack of Association Between BsmI and FokI Polymorphisms of the VDR Gene and Sporadic Colorectal Cancer in a Romanian Cohort—A Preliminary Study" Current Oncology 31, no. 10: 6406-6418. https://doi.org/10.3390/curroncol31100476
APA StylePetre-Mandache, B., Burada, E., Cucu, M. G., Atasie, D., Riza, A. -L., Streață, I., Mitruț, R., Pleșea, R., Dobrescu, A., Pîrvu, A., Popescu-Hobeanu, G., Mitruț, P., & Burada, F. (2024). Lack of Association Between BsmI and FokI Polymorphisms of the VDR Gene and Sporadic Colorectal Cancer in a Romanian Cohort—A Preliminary Study. Current Oncology, 31(10), 6406-6418. https://doi.org/10.3390/curroncol31100476