Preoperative Omega-6/Omega-3 Fatty Acid Ratio Could Predict Postoperative Outcomes in Patients with Surgically Resected Non-Small-Cell Lung Cancer
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design
2.1.1. Inclusion Criteria
- Adult patients (aged 18 years or older), male or female, of any race/ethnicity;
- Patients who gave informed consent to participate;
- Patients with early-stage non-small-cell lung cancer who were candidates for surgical treatment, diagnosed before or during surgery.
2.1.2. Exclusion Criteria
- Patients who did not consent to participate in any of the study phases;
- Aged younger than 18 years;
- Locally advanced lung cancer on neoadjuvant treatment;
- History of rheumatologic, systemic or hepatic disease, or immunodeficiency;
- Infection prior to surgery requiring treatment with a specific antibiotic;
- Patients who declined surgery.
2.1.3. Sample Size
2.2. Data Collection and Analysis
2.2.1. Assessment of Inflammatory Status
2.2.2. Nutritional Assessment
2.2.3. Quantification of Blood Omega 6/3 Ratio
2.3. Statistical Analysis
3. Results
Omega 6/3 Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.; Xie, X.; De Koning, H.; Mali, W.; Vliegenthart, R.; Oudkerk, M. NELSON lung cancer screening study. Cancer Imaging 2011, 11, S79–S84. [Google Scholar] [CrossRef]
- Cancer. 2022. Available online: https://www.who.int/news-room/factsheets/detail/cancer#:~:text=Cancer%20is%20a%20leading%20cause,and%20rectum%20and%20prostate%20cancers (accessed on 1 August 2022).
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.; Comber, H.; Forman, D.; Bray, F. Cancer inci-dence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [PubMed]
- Chirlaque, M.D.; Salmerón, D.; Galceran, J.; Ameijide, A.; Mateos, A.; Torrella, A.; Jiménez, R.; Larrañaga, N.; Marcos-Gragera, R.; REDECAN Working Group; et al. Cancer survival in adult patients in Spain. Results from nine population-based cancer registries. Clin. Transl. Oncol. 2017, 20, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Green, A.; Hauge, J.; Iachina, M.; Jakobsen, E. The mortality after surgery in primary lung cancer: Results from the Danish Lung Cancer Registry. Eur. J. Cardio-Thorac. Surg. 2015, 49, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.; Nadal, E.; Peiró, I.; Masuet-Aumatell, C.; Macia, I.; Rivas, F.; Rosado, G.; Rodriguez, P.; Ureña, A.; Padrones, S.; et al. Preoperative nutritional status assessment predicts postoperative outcomes in patients with surgically resected non-small cell lung cancer. Eur. J. Surg. Oncol. (EJSO) 2018, 44, 1419–1424. [Google Scholar] [CrossRef]
- Cholewski, M.; Tomczykowa, M.; Tomczyk, M. A Comprehensive Review of Chemistry, Sources and Bioavailability of Omega-3 Fatty Acids. Nutrients 2018, 10, 1662. [Google Scholar] [CrossRef]
- Bang, H.O.; Dyerberg, J. Plasma Lipids and Lipoproteins in Greenlandic West Coast Eskimos. Acta Med. Scand. 1972, 192, 85–94. [Google Scholar] [CrossRef]
- Matsuyama, W.; Mitsuyama, H.; Watanabe, M.; Oonakahara, K.; Higashimoto, I.; Osame, M.; Arimura, K. Effects of omega-3 pol-yunsaturated fatty acids on inflammatory markers in COPD. Chest 2005, 128, 3817–3827. [Google Scholar] [CrossRef]
- Kaya, S.O.; Akcam, T.I.; Ceylan, K.C.; Samancılar, O.; Ozturk, O.; Usluer, O. Is preoperative protein-rich nutrition effective on post-operative outcome in non-small cell lung cancer surgery? A prospective randomized study. J. Cardiothorac Surg. 2016, 11, 14. [Google Scholar] [CrossRef]
- Thomas, P.; Berbis, J.; Falcoz, P.-E.; Le Pimpec-Barthes, F.; Bernard, A.; Jougon, J.; Porte, H.; Alifano, M.; Dahan, M.; Alauzen, M.; et al. National perioperative outcomes of pulmonary lobectomy for cancer: The influence of nutritional status. Eur. J. Cardio-Thorac. Surg. 2013, 45, 652–659. [Google Scholar] [CrossRef] [Green Version]
- Jagoe, R.; Goodship, T.H.; Gibson, G. The influence of nutritional status on complications after operations for lung cancer. Ann. Thorac. Surg. 2001, 71, 936–943. [Google Scholar] [CrossRef]
- Bagan, P.; Berna, P.; De Dominicis, F.; Pereira, J.C.D.N.; Mordant, P.; De La Tour, B.; Le Pimpec-Barthes, F.; Riquet, M. Nutritional Status and Postoperative Outcome After Pneumonectomy for Lung Cancer. Ann. Thorac. Surg. 2013, 95, 392–396. [Google Scholar] [CrossRef]
- Fiorelli, A.; Vicidomini, G.; Mazzella, A.; Messina, G.; Milione, R.; Di Crescenzo, V.G.; Santini, M. The Influence of Body Mass Index and Weight Loss on Outcome of Elderly Patients Undergoing Lung Cancer Resection. Thorac. Cardiovasc. Surg. 2014, 62, 578–587. [Google Scholar] [CrossRef]
- Harada, H.; Yamashita, Y.; Misumi, K.; Tsubokawa, N.; Nakao, J.; Matsutani, J.; Yamasaki, M.; Ohkawachi, T.; Taniyama, K. Multidis-ciplinary team-based approach for comprehensive preoperative pulmonary rehabilitation including intensive nutri-tional support for lung cancer patients. PLoS ONE 2013, 8, e59566. [Google Scholar] [CrossRef]
- McDaniel, J.C.; Belury, M.; Ahijevych, K.; Blakely, W. Omega-3 fatty acids effect on wound healing. Wound Repair Regen. 2008, 16, 337–345. [Google Scholar] [CrossRef]
- Da Rocha, C.M.; Kac, G. High dietary ratio of omega-6 to omega-3 polyunsaturated acids during pregnancy and prevalence of post-partum depression. Matern. Child Nutr. 2010, 8, 36–48. [Google Scholar] [CrossRef]
- Harris, W.S.; Miller, M.; Tighe, A.P.; Davidson, M.H.; Schaefer, E.J. Omega-3 fatty acids and coronary heart disease risk: Clinical and mechanistic perspectives. Atherosclerosis 2008, 197, 12–24. [Google Scholar] [CrossRef]
- Liu, G.; Bibus, D.M.; Bode, A.M.; Ma, W.-Y.; Holman, R.T.; Dong, Z. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proc. Natl. Acad. Sci. USA 2001, 98, 7510–7515. [Google Scholar] [CrossRef]
- Vega, O.M.; Abkenari, S.; Tong, Z.; Tedman, A.; Huerta-Yepez, S. Omega-3 Polyunsaturated Fatty Acids and Lung Cancer: Nutrition or Pharmacology? Nutr. Cancer 2021, 73, 541–561. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, S.; Ning, C.; Huo, Q. Omega-3 Fatty Acids Supplementation Improve Nutritional Status and Inflammatory Response in Patients with Lung Cancer: A Randomized Clinical Trial. Front. Nutr. 2021, 8, 686752. [Google Scholar] [CrossRef]
- Bardell, T.; Petsikas, D. What keeps postpulmonary resection patients in hospital? Can. Respir. J. 2003, 10, 86–89. [Google Scholar] [CrossRef]
- Varela, G.; Jimenez, M.F.; Novoa, N.; Aranda, J.L. Estimating hospital costs attributable to prolonged air leak in pulmonary lobec-tomy. Eur. J. Cardiothorac Surg. 2005, 27, 329–333. [Google Scholar] [CrossRef]
- Pan, H.; Chang, R.; Zhou, Y.; Gao, Y.; Cheng, Y.; Zhang, C. Risk factors associated with prolonged air leak after video-assisted thoracic surgery pulmonary resection: A predictive model and meta-analysis. Ann. Transl. Med. 2019, 7, 103. [Google Scholar] [CrossRef]
- Dugan, K.C.; Laxmanan, B.; Murgu, S.; Hogarth, D.K. Incidence of persistent air leaks. Chest 2017, 152, 417–423. [Google Scholar] [CrossRef]
- Murakami, K.; Maehara, S.; Shimada, Y.; Makino, Y.; Hagiwara, M.; Kakihana, M.; Kajiwara, N.; Ohira, T.; Ikeda, N. The Correlation Between Fissureless Technique and Prolonged Air Leak for Patients Undergoing Video-Assisted Right Upper Lobectomy. World J. Surg. 2021, 45, 1569–1574. [Google Scholar] [CrossRef]
- Lam, C.N.; Watt, A.E.; Isenring, E.A.; de van der Schueren, M.A.E.; van der Meij, B.S. The effect of oral omega-3 polyunsa-turated fatty acid supplementation on muscle maintenance and quality of life in patients with cancer: A systematic review and me-ta-analysis. Clin. Nutr. 2021, 40, 3815–3826. [Google Scholar] [CrossRef]
Variable | N (%) |
---|---|
Age | 64.25 (±9.74) * |
Male sex | 50 (73.52%) |
Active smoker | 18 (26.47%) |
Never smoker | 9 (13.245) |
Exsmoker | 22 (32.35%) |
Year packages | 34.36 (±21.14) |
Diabetes | 19 (27.94%) |
COPD | 19 (27.94%) |
Ischemic heart disease | 6 (8.82%) |
With previous pulmonary neoplasia | 1 (1.47%) |
Without previous pulmonary neoplasia | 21 (30.88%) |
Cerebral vascular accident (CVA) | 3 (4.41%) |
Peripheral vasculopathy | 6 (8.82%) |
Previous cardiac surgery | 1 (1.47%) |
Nephropathy | 4 (5.88%) |
Dyslipidemia | 28 (41.18%) |
Hypertension | 35 (51.47%) |
Charlson Index | |
0 | 2 (2.94%) |
1 | 6 (8.82%) |
2 | 11 (16.18%) |
3 | 13 (19.12%) |
4 | 14 (29.59%) |
5 | 12 (17.65%) |
6 or more | 10 (14.71%) |
Thoracoscore (predicted mortality) | 3.95 (±0.99) |
Maximal expiratory volume in the first second (FEV1) | 100.44 (±94.95) * |
Histology | |
Adenocarcinoma | 43 (63.24%) |
Squamous cell carcinoma | 12 (17.65%) |
Carcinoide tumor | 2 (2.94%) |
Large cell | 4 (5.88%) |
Benign | 6 (8.82%) |
Metastasis CCR | 3 (4.41%) |
Pathological staging | |
Ia1 | 3 (4.41%) |
Ia2 | 11(16.17%) |
Ia3 | 6 (8.82%) |
Ib | 16 (23.52%) |
IIa | 3 (4.41%) |
IIb | 13 (19.12%) |
IIIa | 7 (10.29%) |
IIIb | 2 (2.94%) |
Surgery | |
Lobectomy | 59 (86.76%) |
Wedge | 8 (11.76%) |
Bilobectomy | 1 (1.47%) |
Approach | |
Thoracotomy | 35 (51.47%) |
Thoracoscopy | 31 (45.59%) |
RATS (robotic-assisted thoracic surgery) | 2 (2.94%) |
Variable | Mean or Median (SD or IQR) |
---|---|
Height | 1.66 (±0.09) |
Weight | 75.61 (±14.22) |
PhA grades | 6.46 (±2.10) * |
BCMI (body cell mass index) | 11 (±2.33) |
BCM (body composition monitor) (kg) | 30.29 (±8.01) |
FFM (fat-free mass) (kg) | 54.6 (±9.92) |
FM (fat mass) (kg) | 19.52 (±8.92) |
MST (multistage testing) | 12 (±17.65) |
Adherence to the Mediterranean diet test | 40 (±58.82) |
BMI (body mass index) | 27.06 (±4.96) |
IPN (prognostic nutritional index) | 47.1 (±5.85) |
Preoperative Plasmatic Test | |
Albumin | 39.63 (±3.75) * |
Prealbumin | 225.05 (±67.69) * |
Cholesterol | 34.64 (117.91) |
Vitamin D | 35.78 (±21.05) * |
Ácidos Grasos | |
Ratio omega 6/3 | 17.39 (±9.45) |
EPA | 0.36 (±0.29) |
DHA | 1.23 (±0.71) |
Linolenic acid | 0.41 (±0.27) |
ARA | 6.33 (±1.90) |
Linoleic acid | 24.07 (±7.40) |
Inflammatory Parameters | |
Neutrophils | 4720.44 (±2398.10) |
Lymphocytes | 1561.03 (±779.70) |
Platelets | 205,177.94 (±79,743.10) |
Monocytes | 525.59 (±206.60) |
Ratio neutrophils/lymphocytes | 3.91 (±3.64) |
Ratio platelets/lymphocytes | 152.32 (±70.36) |
Ratio lymphocytes/monocytes | 3.3 (±1.64) |
Transferrin | 41.66 (±58.30) |
PCR | 9.04 (±16.22) |
Fibrinogen | 4.05 (±51.63) * |
SII (systemic immune-inflammation index) | 12,162.21 (±581,087.45) |
Variable | N (%) |
---|---|
Any complication | 27 (39.71%) |
Atelectasis | 2 (2.94%) |
Pneumonia | 3 (4.41%) |
Respiratory insufficiency | 7 (10.29%) |
Atrial fibrillation | 3 (4.41%) |
Sepsis | 2 (2.94%) |
Fever (without pneumonia) | 1 (1.47%) |
Urinary infection | 1 (1.47%) |
Surgical complication | 4 (5.885%) |
Prolonged air leak (more than 5 days) | 16 (23.54%) |
Empyema | 3 (4.41%) |
Surgical wound infection | 5 (7.35%) |
Drainage days | 4.70 (±8.16) |
Length of stay | 5.73 (±4.68) * |
Recurrence | 15 (21.15%) |
Exitus | 5 (7.4%) |
Clavien–Dindo Classification | |
None | 41 (60.29%) |
Grade I | 23 (33.82%) |
Grade II | 2 (2.94%) |
Grade IIIa | 2 (2.94%) |
Grade IIIb or higher | 0 |
Ratio Omega 6/3 | <21 (n = 35) | ≥21 (n = 24) | p-Value | |||
---|---|---|---|---|---|---|
N | % | N | % | |||
Complications | No | 27 | 77.1 | 10 | 41.7 | 0.006 |
Yes | 8 | 22.9 | 14 | 58.3 | ||
Atelectasis | No | 35 | 100 | 23 | 95.8 | 0.223 |
Yes | 0 | 0 | 1 | 4.2 | ||
Pneumonia | No | 34 | 97.1 | 22 | 91.7 | 0.347 |
Yes | 1 | 2.9 | 2 | 8.3 | ||
Respiratory insufficiency | No | 32 | 91.4 | 22 | 91.7 | 0.974 |
Yes | 3 | 8.6 | 2 | 8.3 | ||
Atrial fibrillation | No | 33 | 94.3 | 23 | 95.8 | 0.790 |
Yes | 2 | 5.7 | 1 | 4.2 | ||
Sepsis | No | 34 | 97.1 | 23 | 95.8 | 0.785 |
Yes | 1 | 2.9 | 1 | 4.2 | ||
Fever (without pneumonia) | No | 34 | 97.1 | 24 | 100 | 0.404 |
Yes | 1 | 2.9 | 0 | 0 | ||
Surgical complication | No | 33 | 94.3 | 22 | 91.7 | 0.694 |
Yes | 2 | 5.7 | 2 | 8.3 | ||
Prolonged air leak (more than 5 days) | No | 33 | 94.3 | 14 | 58.3 | 0.001 |
Yes | 2 | 5.7 | 10 | 41.7 | ||
Empyema | No | 34 | 97.1 | 22 | 91.7 | 0.347 |
Yes | 1 | 2.9 | 2 | 8.3 | ||
Surgical wound infection | No | 33 | 94.3 | 21 | 87.5 | 0.358 |
Yes | 2 | 5.7 | 3 | 12.5 |
Ratio Omega 6/3 | <21 (n = 35) | ≥21 (n = 24) | ||
---|---|---|---|---|
Mean or Median (SD or IQR) | Mean or Median (SD or IQR) | p-Value | ||
Age | 65 (45) | 64.5 (34) | 0.877 | |
Sex | Female | 13 (37.1) | 3 (12.5) | 0.036 |
Male | 22 (62.9) | 21 (87.5) | ||
Smoker | No | 28 (80) | 14 (58.3) | 0.071 |
Yes | 7 (20) | 10 (41.7) | ||
Never smoked | No | 27 (77.1) | 24 (100) | 0.012 |
Yes | 8 (22.9) | 0.0 | ||
Exsmoker | No | 28 (80) | 16 (66.7) | 0.248 |
Yes | 7 (20) | 8 (33.3) | ||
Year packages | 26 (21) | 45 (26) | 0.005 | |
Diabetes | No | 24 (68.6) | 17 (70.8) | 0.853 |
Yes | 11 (31.4) | 7 (29.2) | ||
COPD | No | 30 (85.7) | 14 (58.3) | 0.018 |
Yes | 5 (14.3) | 10 (41.7) | ||
Ischemic heart disease | No | 32 (91.4) | 22 (91.7) | 0.974 |
Yes | 3 (8.6) | 2 (8.3) | ||
With previous pulmonary neoplasia | No | 34 (97.1) | 24 (100) | 0.404 |
Yes | 1 (2.9) | 0.0 | ||
Without previous pulmonary neoplasia | No | 22 (62.9) | 17 (70.8) | 0.525 |
Yes | 13 (37.1) | 7 (29.2) | ||
Cerebral vascular accident (CVA) | No | 34 (97.1) | 22 (91.7) | 0.347 |
Yes | 1 (2.9) | 2 (8.3) | ||
Peripheral vasculopathy | No | 33 (94.3) | 22 (91.7) | 0.694 |
Yes | 2 (5.7) | 2 (8.3) | ||
Previous cardiac surgery | No | 35 (100) | 23 (95.8) | 0.223 |
Yes | 0.0 | 1 (4.2) | ||
Nephropathy | No | 33 (94.3) | 23 (95.8) | 0.79 |
Yes | 2 (5.7) | 1 (4.2) | ||
Dyslipidemia | No | 18 (51.4) | 18 (75) | 0.068 |
Yes | 17 (48.6) | 6 (25) | ||
Hypertension | No | 15 (42.9) | 15 (62.5) | 0.138 |
Yes | 20 (57.1) | 9 (37.5) | ||
Charlson Index | 0 | 1 (2.9) | 1 (4.2) | 0.266 |
1 | 4 (11.4) | 1 (4.2) | ||
2 | 5 (14.3) | 4 (16.7) | ||
3 | 5 (14.3) | 5 (20.8) | ||
4 | 7 (20) | 6 (25) | ||
5 | 10 (28.6) | 1 (4.2) | ||
6 | 2 (5.7) | 2 (8.3) | ||
7 | 1 (2.9) | 2 (8.3) | ||
8 | 0.0 | 2 (8.3) | ||
VEMS | 97 (501) | 91.25 (629) | 0.067 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Déniz, C.; Raba-Parodi, C.; García-Raimundo, E.; Macía, I.; Rivas, F.; Ureña, A.; Muñoz, A.; Moreno, C.; Serratosa, I.; Masuet-Aumatell, C.; et al. Preoperative Omega-6/Omega-3 Fatty Acid Ratio Could Predict Postoperative Outcomes in Patients with Surgically Resected Non-Small-Cell Lung Cancer. Curr. Oncol. 2022, 29, 7086-7098. https://doi.org/10.3390/curroncol29100556
Déniz C, Raba-Parodi C, García-Raimundo E, Macía I, Rivas F, Ureña A, Muñoz A, Moreno C, Serratosa I, Masuet-Aumatell C, et al. Preoperative Omega-6/Omega-3 Fatty Acid Ratio Could Predict Postoperative Outcomes in Patients with Surgically Resected Non-Small-Cell Lung Cancer. Current Oncology. 2022; 29(10):7086-7098. https://doi.org/10.3390/curroncol29100556
Chicago/Turabian StyleDéniz, Carlos, Carla Raba-Parodi, Eva García-Raimundo, Iván Macía, Francisco Rivas, Anna Ureña, Anna Muñoz, Camilo Moreno, Ines Serratosa, Cristina Masuet-Aumatell, and et al. 2022. "Preoperative Omega-6/Omega-3 Fatty Acid Ratio Could Predict Postoperative Outcomes in Patients with Surgically Resected Non-Small-Cell Lung Cancer" Current Oncology 29, no. 10: 7086-7098. https://doi.org/10.3390/curroncol29100556
APA StyleDéniz, C., Raba-Parodi, C., García-Raimundo, E., Macía, I., Rivas, F., Ureña, A., Muñoz, A., Moreno, C., Serratosa, I., Masuet-Aumatell, C., Escobar, I., & Ramos, R. (2022). Preoperative Omega-6/Omega-3 Fatty Acid Ratio Could Predict Postoperative Outcomes in Patients with Surgically Resected Non-Small-Cell Lung Cancer. Current Oncology, 29(10), 7086-7098. https://doi.org/10.3390/curroncol29100556