Prebiotics from Seaweeds: An Ocean of Opportunity?
Abstract
:1. Introduction
2. Complex Polysaccharides
2.1. Brown Seaweed Polysaccharides
2.1.1. Alginate
2.1.2. Laminarin
2.1.3. Fucoidan
2.2. Red Seaweed Polysaccharides
2.2.1. Galactans (Carrageenan, Agar, and Porphyran)
2.2.2. Xylan
2.3. Green Seaweed Polysaccharides
Ulvan
2.4. Future Prospective–Obtaining Oligosaccharides
3. Polyphenols
4. Other Seaweed Phytochemicals
4.1. Carotenoids
4.2. Polyunsaturated Fatty Acids (PUFAs)
5. Fermented Foods
6. Seaweeds and Animal Health
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, E.S.; Allsopp, P.J.; Magee, P.J.; Gill, C.I.; Nitecki, S.; Strain, C.R.; McSorley, E.M. Seaweed and human health. Nutr. Rev. 2014, 72, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and benefits of consuming edible seaweeds. Nutr. Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Raposo, M.F.; de Morais, A.M.; de Morais, R.M. Emergent sources of prebiotics: Seaweeds and microalgae. Mar. Drugs 2016, 14, 27. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Schippa, S.; Conte, M.P. Dysbiotic events in gut microbiota: Impact on human health. Nutrients 2014, 6, 5786–5805. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, J.W.; Roach, J.; Azcarate-Peril, M.A. Emerging technologies for gut microbiome research. Trends Microbiol. 2016, 24, 887–901. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P.G.; Hughes, H.; Gardiner, G.E. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar] [CrossRef]
- Zaporozhets, T.S.; Besednova, N.N.; Kuznetsova, T.A.; Zvyagintseva, T.N.; Makarenkova, I.D.; Kryzhanovsky, S.P.; Melnikov, V.G. The prebiotic potential of polysaccharides and extracts of seaweeds. Russ. J. Mar. Biol. 2014, 40, 1–9. [Google Scholar] [CrossRef]
- Devillé, C.; Damas, J.; Forget, P.; Dandrifosse, G.; Peulen, O. Laminarin in the dietary fibre concept. J. Sci. Food Agric. 2004, 84, 1030–1038. [Google Scholar] [CrossRef]
- Ramnani, P.; Chitarrari, R.; Tuohy, K.; Grant, J.; Hotchkiss, S.; Philp, K.; Campbell, R.; Gill, C.; Rowland, I. In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe 2012, 18, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Dong, S.; Gao, J.; Jiang, C. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. Int. J. Biol. Macromol. 2016, 91, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Bajury, D.M.; Rawi, M.H.; Sazali, I.H.; Abdullah, A.; Sarbini, S.R. Prebiotic evaluation of red seaweed (Kappaphycus alvarezii) using in vitro colon model. Int. J. Food Sci. Nutr. 2017, 68, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Devillé, C.; Gharbi, M.; Dandrifosse, G.; Peulen, O. Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J. Sci. Food Agric. 2007, 87, 1717–1725. [Google Scholar] [CrossRef]
- Liu, J.; Kandasamy, S.; Zhang, J.; Kirby, C.W.; Karakach, T.; Hafting, J.; Critchley, A.T.; Evans, F.; Prithiviraj, B.J.B.C.; Medicine, A. Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligo-saccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complement. Altern. Med. 2015, 15, 279. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.J.; Keshavarzian, A.; Patterson, J.A.; Venkatachalam, M.; Gillevet, P.; Hamaker, B.R. Starch-entrapped microspheres extend in vitro fecal fermentation, increase butyrate production, and influence microbiota pattern. Mol. Nutr. Food Res. 2009, 53, S121–S130. [Google Scholar] [CrossRef] [PubMed]
- Timm, D.A.; Stewart, M.L.; Hospattankar, A.; Slavin, J.L. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro. J. Med. Food 2010, 13, 961–966. [Google Scholar] [CrossRef]
- Belenguer, A.; Duncan, S.H.; Calder, A.G.; Holtrop, G.; Louis, P.; Lobley, G.E.; Flint, H.J. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 2006, 72, 3593–3599. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; de los Reyes-Gavilán, C.G.; Salazar, N. Intestinal short chain fatty acids and their link with diet and human health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef]
- Byrne, C.S.; Chambers, E.S.; Morrison, D.J.; Frost, G. The role of short chain fatty acids in appetite regulation and energy homeostasis. Int. J. Obes. (2005) 2015, 39, 1331–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunness, P.; Gidley, M.J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 2010, 1, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.-J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasse, L.; Bercovici, J.; Pizzut-Serin, S.; Robe, P.; Tap, J.; Klopp, C.; Cantarel, B.L.; Coutinho, P.M.; Henrissat, B.; Leclerc, M.; et al. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res. 2010, 20, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Kaoutari, A.; Armougom, F.; Leroy, Q.; Vialettes, B.; Million, M.; Raoult, D.; Henrissat, B. Development and validation of a microarray for the investigation of the CAZymes encoded by the human gut microbiome. PLoS ONE 2013, 8, e84033. [Google Scholar] [CrossRef] [PubMed]
- Ndeh, D.; Gilbert, H.J. Biochemistry of complex glycan depolymerisation by the human gut microbiota. FEMS Microbiol. Rev. 2018, 42, 146–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecchini, D.A.; Laville, E.; Laguerre, S.; Robe, P.; Leclerc, M.; Doré, J.; Henrissat, B.; Remaud-Siméon, M.; Monsan, P.; Potocki-Véronèse, G. Functional metagenomics reveals novel pathways of prebiotic breakdown by human gut bacteria. PLoS ONE 2013, 8, e72766. [Google Scholar] [CrossRef] [PubMed]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef]
- Benitez-Paez, A.; Gomez Del Pulgar, E.M.; Sanz, Y. the glycolytic versatility of bacteroides uniformis CECT 7771 and its genome response to oligo and polysaccharides. Front. Cell. Infect. Microbiol. 2017, 7, 383. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Thomas, F.; Barbeyron, T.; Tonon, T.; Genicot, S.; Czjzek, M.; Michel, G. Characterization of the first alginolytic operons in a marine bacterium: From their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ. Microbiol. 2012, 14, 2379–2394. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, I.A.; Allen, A.; Pearson, J.P.; Dettmar, P.W.; Havler, M.E.; Atherton, M.R.; Onsoyen, E. Alginate as a source of dietary fiber. Crit. Rev. Food Sci. Nutr. 2005, 45, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Chen, H.; Zhu, L.; Liu, W.; Yu, H.D.; Wang, X.; Yin, Y. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota. PLoS ONE 2017, 12, e0171576. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shang, Q.; Li, G.; Wang, X.; Yu, G. Degradation of marine algae-derived carbohydrates by bacteroidetes isolated from human gut microbiota. Mar. Drugs 2017, 15, 92. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, S.; Touvrey-Loiodice, M.; Poulet, L.; Drouillard, S.; Vincentelli, R.; Henrissat, B.; Skjåk-Bræk, G.; Helbert, W. Ancient acquisition of “alginate utilization loci” by human gut microbiota. Sci. Rep. 2018, 8, 8075. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, G.; Shang, Q.; Chen, X.; Liu, W.; Pi, X.; Zhu, L.; Yin, Y.; Yu, G.; Wang, X. In vitro fermentation of alginate and its derivatives by human gut microbiota. Anaerobe 2016, 39, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Zhang, Q.B.; Wang, J.; Shi, X.L.; Zhang, Z.S. Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC. Chin. J. Oceanol. Limnol. 2009, 27, 578–582. [Google Scholar] [CrossRef]
- Salyers, A.A.; Palmer, J.K.; Wilkins, T.D. Laminarinase (beta-glucanase) activity in Bacteroides from the human colon. Appl. Environ. Microbiol. 1977, 33, 1118–1124. [Google Scholar] [Green Version]
- Dousip, A.; Matanjun, P.; Sulaiman, M.R.; Tan, T.S.; Ooi, Y.B.H.; Lim, T.P.J.J.o.A.P. Effect of seaweed mixture intake on plasma lipid and antioxidant profile of hyperholesterolaemic rats. J. Appl. Phycol. 2014, 26, 999–1008. [Google Scholar] [CrossRef]
- Lahaye, M.; Rochas, C. Chemical-structure and physicochemical properties of agar. Hydrobiologia 1991, 221, 137–148. [Google Scholar] [CrossRef]
- Hehemann, J.H.; Correc, G.; Barbeyron, T.; Helbert, W.; Czjzek, M.; Michel, G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010, 464, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Rebuffet, E.; Groisillier, A.; Thompson, A.; Jeudy, A.; Barbeyron, T.; Czjzek, M.; Michel, G. Discovery and structural characterization of a novel glycosidase family of marine origin. Environ. Microbiol. 2011, 13, 1253–1270. [Google Scholar] [CrossRef] [PubMed]
- Weiner, M.L. Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies. Crit. Rev. Toxicol. 2014, 44, 244–269. [Google Scholar] [CrossRef] [PubMed]
- Hehemann, J.H.; Kelly, A.G.; Pudlo, N.A.; Martens, E.C.; Boraston, A.B. Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc. Natl. Acad. Sci. USA 2012, 109, 19786–19791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.B.; Qi, H.M.; Zhao, T.T.; Deslandes, E.; Ismaeli, N.M.; Molloy, F.; Critchley, A.T. Chemical characteristics of a polysaccharide from Porphyra capensis (Rhodophyta). Carbohydr. Res. 2005, 340, 2447–2450. [Google Scholar] [CrossRef] [PubMed]
- Usov, A.I. Polysaccharides of the Red Algae. Adv. Carbohydr. Chem. Biochem. 2011, 65, 115–217. [Google Scholar] [CrossRef] [PubMed]
- Mirande, C.; Kadlecikova, E.; Matulova, M.; Capek, P.; Bernalier-Donadille, A.; Forano, E.; Bera-Maillet, C. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human intestine. J. Appl. Microbiol. 2010, 109, 451–460. [Google Scholar] [CrossRef]
- Hong, P.Y.; Iakiviak, M.; Dodd, D.; Zhang, M.L.; Mackie, R.I.; Cann, I. Two new xylanases with different substrate specificities from the human gut bacterium bacteroides intestinalis DSM 17393. Appl. Environ. Microbiol. 2014, 80, 2084–2093. [Google Scholar] [CrossRef]
- Despres, J.; Forano, E.; Lepercq, P.; Comtet-Marre, S.; Jubelin, G.; Chambon, C.; Yeoman, C.J.; Miller, M.E.B.; Fields, C.J.; Martens, E.; et al. Xylan degradation by the human gut Bacteroides xylanisolvens XB1A(T) involves two distinct gene clusters that are linked at the transcriptional level. BMC Genom. 2016, 17. [Google Scholar] [CrossRef]
- Munoz-Munoz, J.; Cartmell, A.; Terrapon, N.; Henrissat, B.; Gilbert, H.J. Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proc. Natl. Acad. Sci. USA 2017, 114, 4936–4941. [Google Scholar] [CrossRef] [Green Version]
- Lahaye, M.; Robic, A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.-S.; Liu, T.C.; Chang, C.-J.; Pan, C.-L. Bioactivity of β-1,3-xylan Extracted from Caulerpa lentillifera by Using Escherichia coli ClearColi BL21(DE3)-β-1,3-xylanase XYLII. J. Food Nutr. Res. 2015, 3, 437–444. [Google Scholar] [CrossRef]
- Usman, A.; Khalid, S.; Usman, A.; Hussain, Z.; Wang, Y. Chapter 5—algal polysaccharides, novel application, and outlook. In Algae Based Polymers, Blends, and Composites, 1st ed.; Zia, K.M., Zuber, M., Ali, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 115–153. [Google Scholar] [CrossRef]
- Huebbe, P.; Nikolai, S.; Schloesser, A.; Herebian, D.; Campbell, G.; Glüer, C.-C.; Zeyner, A.; Demetrowitsch, T.; Schwarz, K.; Metges, C.C.; et al. An extract from the Atlantic brown algae Saccorhiza polyschides counteracts diet-induced obesity in mice via a gut related multi-factorial mechanisms. Oncotarget 2017, 8, 73501–73515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Cao, C.; Ren, B.; Zhang, B.; Huang, Q.; Li, C. Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota. Carbohydr. Polym. 2018, 183, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Charoensiddhi, S.; Conlon, M.A.; Vuaran, M.S.; Franco, C.M.M.; Zhang, W. Polysaccharide and phlorotannin-enriched extracts of the brown seaweed Ecklonia radiata influence human gut microbiota and fermentation in vitro. J. Appl. Phycol. 2017, 29, 2407–2416. [Google Scholar] [CrossRef]
- Charoensiddhi, S.; Conlon, M.A.; Vuaran, M.S.; Franco, C.M.M.; Zhang, W. Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. J. Funct. Foods 2016, 24, 221–230. [Google Scholar] [CrossRef]
- Vera, J.; Castro, J.; Gonzalez, A.; Moenne, A. Seaweed polysaccharides and derived oligosaccharides stimulate defense responses and protection against pathogens in plants. Mar. Drugs 2011, 9, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- García-Ríos, V.; Ríos-Leal, E.; Robledo, D.; Freile-Pelegrin, Y. Polysaccharides composition from tropical brown seaweeds. Phycol. Res. 2012, 60, 305–315. [Google Scholar] [CrossRef]
- Maeda-Yamamoto, M. Development of functional agricultural products and use of a new health claim system in Japan. Trends Food Sci. Technol. 2017, 69, 324–332. [Google Scholar] [CrossRef]
- Jonathan, M.C.; Bosch, G.; Schols, H.A.; Gruppen, H. Separation and identification of individual alginate oligosaccharides in the feces of alginate-fed pigs. J. Agric. Food Chem. 2013, 61, 553–560. [Google Scholar] [CrossRef]
- Jonathan, M.; Souza da Silva, C.; Bosch, G.; Schols, H.; Gruppen, H. In vivo degradation of alginate in the presence and in the absence of resistant starch. Food Chem. 2015, 172, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Terada, A.; Hara, H.; Mitsuoka, T. Effect of dietary alginate on the fecal microbiota and fecal metabolic activity in humans. Microb. Ecol. Health Dis. 1995, 8, 259–266. [Google Scholar] [CrossRef]
- Wang, Y.; Han, F.; Hu, B.; Li, J.; Yu, W. In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr. Res. 2006, 26, 597–603. [Google Scholar] [CrossRef]
- Han, W.; Gu, J.; Cheng, Y.; Liu, H.; Li, Y.; Li, F. Novel Alginate Lyase (Aly5) from a Polysaccharide-degrading marine bacterium, Flammeovirga sp. Strain MY04: Effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties. Appl. Environ. Microbiol. 2016, 82, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.-L.; Dong, S.; Xu, F.; Dong, F.; Li, P.-Y.; Zhang, X.-Y.; Zhou, B.-C.; Zhang, Y.-Z.; Xie, B.-B. Characterization of a New Cold-Adapted and Salt-Activated Polysaccharide Lyase Family 7 Alginate Lyase from Pseudoalteromonas sp. SM0524. Front. Microbiol. 2016, 7, 1120. [Google Scholar] [CrossRef]
- Dong, Q.; Ruan, L.; Shi, H. Genome sequence of a high agarase-producing strain Flammeovirga sp. SJP92. Stand. Genom. Sci. 2017, 12, 13. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Dong, F.; Wang, P.; Cao, H.Y.; Li, C.Y.; Li, P.Y.; Pang, X.H.; Zhang, Y.Z.; Chen, X.L. Novel molecular insights into the catalytic mechanism of marine bacterial alginate lyase AlyGC from polysaccharide lyase family 6. J. Biol. Chem. 2017, 292, 4457–4468. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, Y.; Ni, F.; Ning, L.; Yao, Z. Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03. Int. J. Biol. Macromol. 2018, 108, 1140–1147. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, Y.; Gu, J.; Wang, Y.; Li, J.; Li, F.; Han, W. Draft genome sequence of Paenibacillus sp. Strain MY03, a terrestrial bacterium capable of degrading multiple marine-derived polysaccharides. Genome Announc. 2017, 5. [Google Scholar] [CrossRef]
- Mathieu, S.; Henrissat, B.; Labre, F.; Skjåk-Bræk, G.; Helbert, W. Functional exploration of the polysaccharide lyase family PL6. PLoS ONE 2016, 11, e0159415. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Lombard, V.; Henrissat, B. Complex carbohydrate utilization by the healthy human microbiome. PLoS ONE 2012, 7, e28742. [Google Scholar] [CrossRef] [PubMed]
- Hehemann, J.-H.; Boraston, A.B.; Czjzek, M. A sweet new wave: Structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr. Opin. Struct. Biol. 2014, 28, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Barbeyron, T.; Martin, R.; Portetelle, D.; Michel, G.; Vandenbol, M. The cultivable surface microbiota of the brown alga Ascophyllum nodosum is enriched in macroalgal-polysaccharide-degrading bacteria. Front Microbiol 2015, 6, 1487. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Reddy, C.R.K. Unraveling the functions of the macroalgal microbiome. Front. Microbiol. 2015, 6, 1488. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, T.; Ghosh, T.S.; Mande, S.S. global profiling of carbohydrate active enzymes in human gut microbiome. PLoS ONE 2015, 10, e0142038. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, Y.; Itoh, T.; Kaneko, A.; Nishitani, Y.; Mikami, B.; Hashimoto, W.; Murata, K. Structure of a Bacterial ABC Transporter Involved in the Import of an Acidic Polysaccharide Alginate. Structure 2015, 23, 1643–1654. [Google Scholar] [CrossRef] [Green Version]
- Kadam, S.U.; O’Donnell, C.P.; Rai, D.K.; Hossain, M.B.; Burgess, C.M.; Walsh, D.; Tiwari, B.K. Laminarin from Irish Brown Seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound Assisted Extraction, Characterization and Bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef]
- Seong, H.; Bae, J.-H.; Seo, J.S.; Kim, S.-A.; Kim, T.-J.; Han, N.S. Comparative analysis of prebiotic effects of seaweed polysaccharides laminaran, porphyran, and ulvan using in vitro human fecal fermentation. J. Funct. Foods 2019, 57, 408–416. [Google Scholar] [CrossRef]
- Brownlee, I.A.; Havler, M.E.; Dettmar, P.W.; Allen, A.; Pearson, J.P. Colonic mucus: Secretion and turnover in relation to dietary fibre intake. Proc. Nutr. Soc. 2003, 62, 245–249. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016, 167, 1339–1353. [Google Scholar] [CrossRef]
- Salyers, A.A.; Vercellotti, J.R.; West, S.E.; Wilkins, T.D. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl. Environ. Microbiol. 1977, 33, 319–322. [Google Scholar] [Green Version]
- Salyers, A.A.; West, S.E.; Vercellotti, J.R.; Wilkins, T.D. Fermentation of mucins and plant polysaccharides by anaerobic bacteria from the human colon. Appl. Environ. Microbiol. 1977, 34, 529–533. [Google Scholar] [PubMed]
- Tailford, L.E.; Crost, E.H.; Kavanaugh, D.; Juge, N. Mucin glycan foraging in the human gut microbiome. Front. Genet. 2015, 6, 81. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, L.; Zhu, C.; Wu, J.; Yuan, Y.; Yu, L.; Xu, Y.; Xu, J.; Wang, T.; Liao, Z.; et al. Laminarin counteracts diet-induced obesity associated with glucagon-like peptide-1 secretion. Oncotarget 2017, 8, 99470–99481. [Google Scholar] [CrossRef]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef]
- Everard, A.; Cani, P.D. Gut microbiota and GLP-1. Rev. Endocr. Metab. Disord. 2014, 15, 189–196. [Google Scholar] [CrossRef]
- Dabek, M.; McCrae, S.I.; Stevens, V.J.; Duncan, S.H.; Louis, P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol. Ecol. 2008, 66, 487–495. [Google Scholar] [CrossRef]
- Gloux, K.; Berteau, O.; El oumami, H.; Béguet, F.; Leclerc, M.; Doré, J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc. Natl. Acad. Sci. USA 2011, 108, 4539–4546. [Google Scholar] [CrossRef]
- Michalska, K.; Tan, K.; Li, H.; Hatzos-Skintges, C.; Bearden, J.; Babnigg, G.; Joachimiak, A. GH1-family 6-P-β-glucosidases from human microbiome lactic acid bacteria. Acta Crystallogr. Sect. D Biol. Crystallogr. 2013, 69, 451–463. [Google Scholar] [CrossRef]
- McNulty, N.P.; Wu, M.; Erickson, A.R.; Pan, C.; Erickson, B.K.; Martens, E.C.; Pudlo, N.A.; Muegge, B.D.; Henrissat, B.; Hettich, R.L.; et al. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol. 2013, 11, e1001637. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Hemsworth, G.R.; Déjean, G.; Rogers, T.E.; Pudlo, N.A.; Urs, K.; Jain, N.; Davies, G.J.; Martens, E.C.; Brumer, H. Molecular mechanism by which prominent human gut bacteroidetes utilize mixed-linkage beta-glucans, major health-promoting cereal polysaccharides. Cell Rep. 2017, 21, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Lu, F.; Wei, X.; Zhao, R. Fucoidan: Structure and Bioactivity. Molecules 2008, 13, 1671–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196–223. [Google Scholar] [CrossRef] [PubMed]
- Shang, Q.; Shan, X.; Cai, C.; Hao, J.; Li, G.; Yu, G. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct. 2016, 7, 3224–3232. [Google Scholar] [CrossRef]
- An, C.; Yazaki, T.; Takahashi, H.; Kuda, T.; Kimura, B. Diet-induced changes in alginate- and laminaran-fermenting bacterial levels in the caecal contents of rats. J. Funct. Foods 2013, 5, 389–394. [Google Scholar] [CrossRef]
- Collins, K.G.; Fitzgerald, G.F.; Stanton, C.; Ross, R.P. Looking beyond the terrestrial: The potential of seaweed derived bioactives to treat non-communicable diseases. Mar. Drugs 2016, 14. [Google Scholar] [CrossRef]
- Rodrigues, D.; Walton, G.; Sousa, S.; Rocha-Santos, T.A.P.; Duarte, A.C.; Freitas, A.C.; Gomes, A.M.P. In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT Food Sci. Technol. 2016, 73, 131–139. [Google Scholar] [CrossRef]
- Chen, L.; Xu, W.; Chen, D.; Chen, G.; Liu, J.; Zeng, X.; Shao, R.; Zhu, H. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. Int. J. Biol. Macromol. 2018, 112, 1055–1061. [Google Scholar] [CrossRef]
- Strain, C.R.; Collins, K.C.; Naughton, V.; McSorley, E.M.; Stanton, C.; Smyth, T.J.; Soler-Vila, A.; Rea, M.C.; Ross, P.R.; Cherry, P.; et al. Effects of a polysaccharide-rich extract derived from Irish-sourced Laminaria digitata on the composition and metabolic activity of the human gut microbiota using an in vitro colonic model. Eur. J. Nutr. 2019. [Google Scholar] [CrossRef]
- Hu, B.; Gong, Q.; Wang, Y.; Ma, Y.; Li, J.; Yu, W. Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose. Anaerobe 2006, 12, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, G.; Zhu, L.; Yin, Y.; Zhao, X.; Xiang, C.; Yu, G.; Wang, X. Isolation and characterization of an agaro-oligosaccharide (AO)-hydrolyzing bacterium from the gut microflora of Chinese individuals. PLoS ONE 2014, 9, e91106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, N.; Liu, X.; Zhao, Z.; Li, Z.; Xu, Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res. 2004, 339, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, T.; Ishihara, K.; Oyamada, C.; Kunitake, H.; Hirayama, I.; Kimura, T. Fermentation Properties of Low-Quality Red Alga Susabinori Porphyra yezoensis by Intestinal Bacteria. Biosci. Biotechnol. Biochem. 2008, 72, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.-E.; Turgeon, S.L.; Beaulieu, M. Effect of season on the composition of bioactive polysaccharides from the brown seaweed Saccharina longicruris. Phytochemistry 2009, 70, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, A.O.; Byankina Barabanova, A.O.; Glazunov, V.P.; Yakovleva, I.M.; Yermak, I.M. Seasonal variations in a polysaccharide composition of Far Eastern red seaweed Ahnfeltiopsis flabelliformis (Phyllophoraceae). J. Appl. Phycol. 2018, 30, 535–545. [Google Scholar] [CrossRef]
- Skriptsova, A.V. Seasonal variations in the fucoidan content of brown algae from Peter the Great Bay, Sea of Japan. Russ. J. Mar. Biol. 2016, 42, 351–356. [Google Scholar] [CrossRef]
- Medcalf, D.G.; Lionel, T.; Brannon, J.H.; Scott, J.R. Seasonal variation in the mucilaginous polysaccharides from Ulva lactuca. Bot. Mar. 1975, 18, 67–70. [Google Scholar] [CrossRef]
- Shang, Q.; Sun, W.; Shan, X.; Jiang, H.; Cai, C.; Hao, J.; Li, G.; Yu, G. Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacterium, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicol. Lett. 2017, 279, 87–95. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Liu, H.; Zhang, Z.; Jam, M.; Dudeja, P.K.; Michel, G.; Linhardt, R.J.; Tobacman, J.K. Carrageenan-induced innate immune response is modified by enzymes that hydrolyze distinct galactosidic bonds. J. Nutr. Biochem. 2010, 21, 906–913. [Google Scholar] [CrossRef] [Green Version]
- Younes, M.; Aggett, P.; Aguilar, F.; Crebelli, R.; Filipič, M.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Kuhnle, K.K.; et al. Re-evaluation of carrageenan (E 407) and processed Eucheuma seaweed (E 407a) as food additives. EFSA J. 2018, 16, e05238. [Google Scholar] [CrossRef]
- Lahaye, M.; Michel, C.; Barry, J.L. Chemical, physicochemical and in-vitro fermentation characteristics of dietary fibres from Palmaria palmata (L.) Kuntze. Food Chem. 1993, 47, 29–36. [Google Scholar] [CrossRef]
- Childs, C.E.; Roytio, H.; Alhoniemi, E.; Fekete, A.A.; Forssten, S.D.; Hudjec, N.; Lim, Y.N.; Steger, C.J.; Yaqoob, P.; Tuohy, K.M.; et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: A double-blind, placebo-controlled, randomised, factorial cross-over study. Br. J. Nutr. 2014, 111, 1945–1956. [Google Scholar] [CrossRef] [PubMed]
- Lecerf, J.M.; Depeint, F.; Clerc, E.; Dugenet, Y.; Niamba, C.N.; Rhazi, L.; Cayzeele, A.; Abdelnour, G.; Jaruga, A.; Younes, H.; et al. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr. 2012, 108, 1847–1858. [Google Scholar] [CrossRef] [PubMed]
- Mirande, C.; Mosoni, P.; Bera-Maillet, C.; Bernalier-Donadille, A.; Forano, E. Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl. Microbiol. Biotechnol. 2010, 87, 2097–2105. [Google Scholar] [CrossRef] [PubMed]
- Di, T.; Chen, G.; Sun, Y.; Ou, S.; Zeng, X.; Ye, H. In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra. J. Funct. Foods 2018, 40, 18–27. [Google Scholar] [CrossRef]
- Andrieux, C.; Hibert, A.; Houari, A.-M.; Bensaada, M.; Popot, F.; Szylit, O. Ulva lactuca is poorly fermented but alters bacterial metabolism in rats inoculated with human fecal flora from methane and non-methane producers. J. Sci. Food Agric. 1998, 77, 25–30. [Google Scholar] [CrossRef]
- Ren, X.; Liu, L.; Gamallat, Y.; Zhang, B.; Xin, Y. Enteromorpha and polysaccharides from enteromorpha ameliorate loperamide-induced constipation in mice. Biomed. Pharmacother. 2017, 96, 1075–1081. [Google Scholar] [CrossRef]
- Charoensiddhi, S.; Conlon, M.A.; Franco, C.M.M.; Zhang, W. The development of seaweed-derived bioactive compounds for use as using enzyme technologies. Trends Food Sci. Technol. 2017, 70, 20–33. [Google Scholar] [CrossRef]
- Kim, W.J.; Park, J.W.; Park, J.K.; Choi, D.J.; Park, Y.I. Purification and Characterization of a Fucoidanase (FNase S) from a Marine Bacterium Sphingomonas paucimobilis PF-1. Mar. Drugs 2015, 13, 4398–4417. [Google Scholar] [CrossRef] [Green Version]
- Coste, O.; Malta, E.-j.; López, J.C.; Fernández-Díaz, C. Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract. Algal Res. 2015, 10, 224–231. [Google Scholar] [CrossRef]
- Barbeyron, T.; Lerat, Y.; Sassi, J.F.; Le Panse, S.; Helbert, W.; Collen, P.N. Persicivirga ulvanivorans sp. nov., a marine member of the family Flavobacteriaceae that degrades ulvan from green algae. Int. J. Syst. Evol. Microbiol. 2011, 61, 1899–1905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, K.R.M.; Valdehuesa, K.N.G.; Nisola, G.M.; Lee, W.K.; Chung, W.J. Identification and characterization of a thermostable endolytic beta-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. New Biotechnol. 2018, 40, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lin, W.; Luo, J. Comparative Phenotype and Genome Analysis of Cellvibrio sp. PR1, a Xylanolytic and Agarolytic Bacterium from the Pearl River. BioMed Res. Int. 2017, 2017, 6304248. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, D.; Gu, J.; Li, J.; Liu, H.; Li, F.; Han, W. Biochemical characteristics and variable alginate-degrading modes of a novel bifunctional endolytic alginate lyase. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [PubMed]
- Kislitsyn, Y.A.; Samygina, V.R.; Dvortsov, I.A.; Lunina, N.A.; Kuranova, I.P.; Velikodvorskaya, G.A. Crystallization and preliminary X-ray diffraction studies of the family 54 carbohydrate-binding module from laminarinase (beta-1,3-glucanase) Lic16A of Clostridium thermocellum. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2015, 71, 217–220. [Google Scholar] [CrossRef]
- Xu, X.Q.; Su, B.M.; Xie, J.S.; Li, R.K.; Yang, J.; Lin, J.; Ye, X.Y. Preparation of bioactive neoagaroligosaccharides through hydrolysis of Gracilaria lemaneiformis agar: A comparative study. Food Chem. 2018, 240, 330–337. [Google Scholar] [CrossRef]
- Charoensiddhi, S.; Conlon, M.A.; Methacanon, P.; Franco, C.M.M.; Su, P.; Zhang, W. Gut health benefits of brown seaweed Ecklonia radiata and its polysaccharides demonstrated in vivo in a rat model. J. Funct. Foods 2017, 37, 676–684. [Google Scholar] [CrossRef]
- Nakata, T.; Kyoui, D.; Takahashi, H.; Kimura, B.; Kuda, T. Inhibitory effects of laminaran and alginate on production of putrefactive compounds from soy protein by intestinal microbiota in vitro and in rats. Carbohydr. Polym. 2016, 143, 61–69. [Google Scholar] [CrossRef]
- Kaewmanee, W.; Suwannaporn, P.; Huang, T.C.; Al-Ghazzewi, F.; Tester, R.F. In vivo prebiotic properties of Ascophyllum nodosum polysaccharide hydrolysates from lactic acid fermentation. J. Appl. Phycol. 2019. [Google Scholar] [CrossRef]
- Gomez-Guzman, M.; Rodriguez-Nogales, A.; Algieri, F.; Galvez, J. potential role of seaweed polyphenols in cardiovascular-associated disorders. Mar. Drugs 2018, 16, 250. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Park, M.Y.; Shim, B.J.; Youn, H.J.; Hwang, H.J.; Shin, H.C.; Jeon, H.K. Effects of Ecklonia cava polyphenol in individuals with hypercholesterolemia: A pilot study. J. Med. Food 2012, 15, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Lopes, G.; Andrade, P.B.; Valentao, P. Phlorotannins: Towards new pharmacological interventions for diabetes mellitus type 2. Molecules 2016, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols. Crit. Rev. Food Sci. Nutr. 2018, 58, 1342–1358. [Google Scholar] [CrossRef] [PubMed]
- Murugan, A.C.; Karim, M.R.; Yusoff, M.B.; Tan, S.H.; Asras, M.F.; Rashid, S.S. New insights into seaweed polyphenols on glucose homeostasis. Pharm. Biol. 2015, 53, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.; Kim, M.; Son, K.T.; Jeong, Y.; Jeon, Y.J. Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. J. Med. Food 2016, 19, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.H.; Kim, Y.M.; Kim, S.K. Antimicrobial effect of phlorotannins from marine brown algae. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 3251–3255. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, N.; Brunton, N.P.; FitzGerald, R.J.; Smyth, T.J. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins. Mar. Drugs 2015, 13, 509–528. [Google Scholar] [CrossRef]
- Melanson, J.E.; MacKinnon, S.L. Characterization of Phlorotannins from Brown Algae by LC-HRMS. Methods Mol. Biol. 2015, 1308, 253–266. [Google Scholar] [CrossRef]
- Montero, L.; Sanchez-Camargo, A.P.; Garcia-Canas, V.; Tanniou, A.; Stiger-Pouvreau, V.; Russo, M.; Rastrelli, L.; Cifuentes, A.; Herrero, M.; Ibanez, E. Anti-proliferative activity and chemical characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on North-Atlantic coasts. J. Chromatogr. A 2016, 1428, 115–125. [Google Scholar] [CrossRef]
- Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of metabolism and bioavailability enhancement of polyphenols. J. Agric. Food Chem. 2013, 61, 12183–12199. [Google Scholar] [CrossRef] [PubMed]
- Opara, E.I.; Chohan, M. culinary herbs and spices: Their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int. J. Mol. Sci. 2014, 15, 19183–19202. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004, 70, 1103–1114. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Clifford, M.N. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochem. Pharmacol. 2017, 139, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Espin, J.C.; Gonzalez-Sarrias, A.; Tomas-Barberan, F.A. The gut microbiota: A key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 2017, 139, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Krumholz, L.R.; Bryant, M.P. Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 1986, 144, 8–14. [Google Scholar] [CrossRef]
- Schneider, H.; Blaut, M. Anaerobic degradation of flavonoids by Eubacterium ramulus. Arch. Microbiol. 2000, 173, 71–75. [Google Scholar] [CrossRef]
- Bang, S.H.; Hyun, Y.J.; Shim, J.; Hong, S.W.; Kim, D.H. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing alpha-l-rhamnosidase from Bifidobacterium dentium. J. Microbiol. Biotechnol. 2015, 25, 18–25. [Google Scholar] [CrossRef]
- Amaretti, A.; Raimondi, S.; Leonardi, A.; Quartieri, A.; Rossi, M. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients 2015, 7, 2788–2800. [Google Scholar] [CrossRef]
- Delgado, S.; Florez, A.B.; Guadamuro, L.; Mayo, B. Genetic and biochemical characterization of an oligo-alpha-1,6-glucosidase from Lactobacillus plantarum. Int. J. Food Microbiol. 2017, 246, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Ji, Y.; Anegboonlap, P.; Hotchkiss, S.; Gill, C.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers. Br. J. Nutr. 2016, 115, 1240–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, G.; Coman, M.M.; Guo, Y.; Hotchkiss, S.; Gill, C.; Yaqoob, P.; Spencer, J.P.E.; Rowland, I. Effect of simulated gastrointestinal digestion and fermentation on polyphenolic content and bioactivity of brown seaweed phlorotannin-rich extracts. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi Ekbatan, S.; Sleno, L.; Sabally, K.; Khairallah, J.; Azadi, B.; Rodes, L.; Prakash, S.; Donnelly, D.J.; Kubow, S. Biotransformation of polyphenols in a dynamic multistage gastrointestinal model. Food Chem. 2016, 204, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Pintado, M. Stability of polyphenols and carotenoids in strawberry and peach yoghurt throughout in vitro gastrointestinal digestion. Food Funct. 2015, 6, 1611–1619. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Nitecki, S.; Pereira-Caro, G.; McDougall, G.J.; Stewart, D.; Rowland, I.; Crozier, A.; Gill, C.I. Comparison of in vivo and in vitro digestion on polyphenol composition in lingonberries: Potential impact on colonic health. BioFactors 2014, 40, 611–623. [Google Scholar] [CrossRef]
- Dueñas, M.; Muñoz-González, I.; Cueva, C.; Jiménez-Girón, A.; Sánchez-Patán, F.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolomé, B. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Res. Int. 2015, 2015, 850902. [Google Scholar] [CrossRef]
- Tomas-Barberan, F.A.; Selma, M.V.; Espin, J.C. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care 2016. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef]
- Nunez-Sanchez, M.A.; Gonzalez-Sarrias, A.; Romo-Vaquero, M.; Garcia-Villalba, R.; Selma, M.V.; Tomas-Barberan, F.A.; Garcia-Conesa, M.T.; Espin, J.C. Dietary phenolics against colorectal cancer--From promising preclinical results to poor translation into clinical trials: Pitfalls and future needs. Mol. Nutr. Food Res. 2015, 59, 1274–1291. [Google Scholar] [CrossRef]
- Ozdal, T.; Sela, D.A.; Xiao, J.; Boyacioglu, D.; Chen, F.; Capanoglu, E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients 2016, 8, 78. [Google Scholar] [CrossRef] [PubMed]
- Van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; van Velzen, E.J.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Dore, J.; et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 4531–4538. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.; Macia, A.; Motilva, M.J. Impact of various factors on pharmacokinetics of bioactive polyphenols: An overview. Curr. Drug Metab. 2014, 15, 62–76. [Google Scholar] [CrossRef] [PubMed]
- Feliciano, R.P.; Mills, C.E.; Istas, G.; Heiss, C.; Rodriguez-Mateos, A. Absorption, metabolism and excretion of cranberry (Poly)phenols in humans: A dose response study and assessment of inter-individual variability. Nutrients 2017, 9, 268. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Cueva, C.; Muñoz-González, I.; Jiménez-Girón, A.; Sánchez-Patán, F.; Santos-Buelga, C.; Moreno-Arribas, M.V.; Bartolomé, B. Studies on modulation of gut microbiota by wine polyphenols: From isolated cultures to omic approaches. Antioxidants 2015, 4, 1–21. [Google Scholar] [CrossRef]
- Rajauria, G.; Foley, B.; Abu-Ghannam, N. Characterization of dietary fucoxanthin from Himanthalia elongata brown seaweed. Food Res. Int. 2017, 99, 995–1001. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Functional properties of carotenoids originating from algae. J. Sci. Food Agric. 2013, 93, 5–11. [Google Scholar] [CrossRef]
- Mikami, K.; Hosokawa, M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds. Int. J. Mol. Sci. 2013, 14, 13763–13781. [Google Scholar] [CrossRef]
- Lopes-Costa, E.; Abreu, M.; Gargiulo, D.; Rocha, E.; Ramos, A.A. Anticancer effects of seaweed compounds fucoxanthin and phloroglucinol, alone and in combination with 5-fluorouracil in colon cells. J. Toxicol. Environ. Health 2017, 80, 776–787. [Google Scholar] [CrossRef]
- Maeda, H.; Tsukui, T.; Sashima, T.; Hosokawa, M.; Miyashita, K. Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac. J. Clin. Nutr. 2008, 17, 196–199. [Google Scholar] [CrossRef]
- Woo, M.N.; Jeon, S.M.; Kim, H.J.; Lee, M.K.; Shin, S.K.; Shin, Y.C.; Park, Y.B.; Choi, M.S. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem. Biol. Interact. 2010, 186, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Kulczyński, B.; Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D. The role of carotenoids in the prevention and treatment of cardiovascular disease–Current state of knowledge. J. Funct. Foods 2017, 38, 45–65. [Google Scholar] [CrossRef]
- Bohn, T.; McDougall, G.J.; Alegria, A.; Alminger, M.; Arrigoni, E.; Aura, A.M.; Brito, C.; Cilla, A.; El, S.N.; Karakaya, S.; et al. Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites—A position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res. 2015, 59, 1307–1323. [Google Scholar] [CrossRef]
- Widjaja-Adhi, M.A.K.; Lobo, G.P.; Golczak, M.; Von Lintig, J. A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption. Hum. Mol. Genet. 2015, 24, 3206–3219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rein, M.J.; Renouf, M.; Cruz-Hernandez, C.; Actis-Goretta, L.; Thakkar, S.K.; da Silva Pinto, M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 2013, 75, 588–602. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Chapter 9 Metabolic Fate of Bioaccessible and Non-bioaccessible Carotenoids. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health, 1st ed.; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; The Royal Society of Chemistry: London, UK, 2018; pp. 165–200. [Google Scholar] [CrossRef]
- Lyu, Y.; Wu, L.; Wang, F.; Shen, X.; Lin, D. Carotenoid supplementation and retinoic acid in immunoglobulin A regulation of the gut microbiota dysbiosis. Exp. Biol. Med. 2018, 243, 613–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiloglu, S.; Capanoglu, E. Chapter 10 models for studying polyphenols and carotenoids digestion, bioaccessibility and colonic fermentation. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health, 1st ed.; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; The Royal Society of Chemistry: London, UK, 2018; pp. 201–219. [Google Scholar] [CrossRef]
- Van Ginneken, V.J.T.; Helsper, J.P.F.G.; de Visser, W.; van Keulen, H.; Brandenburg, W.A. Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids Health Dis. 2011, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.C.; Guihéneuf, F.; Bahar, B.; Schmid, M.; Stengel, D.B.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS)-Stimulated Human THP-1 Macrophages. Mar. Drugs 2015, 13, 5402–5424. [Google Scholar] [CrossRef] [Green Version]
- Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of Omega-3 fatty acids on the gut microbiota. Int. J. Mol. Sci. 2017, 18, 2645. [Google Scholar] [CrossRef]
- Menni, C.; Zierer, J.; Pallister, T.; Jackson, M.A.; Long, T.; Mohney, R.P.; Steves, C.J.; Spector, T.D.; Valdes, A.M. Omega-3 fatty acids correlate with gut microbiome diversity and production of N-carbamylglutamate in middle aged and elderly women. Sci. Rep. 2017, 7, 11079. [Google Scholar] [CrossRef]
- Robertson, R.C.; Kaliannan, K.; Strain, C.R.; Ross, R.P.; Stanton, C.; Kang, J.X. Maternal omega-3 fatty acids regulate offspring obesity through persistent modulation of gut microbiota. Microbiome 2018, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligne, B.; Ganzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Chilton, S.N.; Burton, J.P.; Reid, G. Inclusion of fermented foods in food guides around the world. Nutrients 2015, 7, 390–404. [Google Scholar] [CrossRef] [PubMed]
- Tamang, J.P.; Shin, D.H.; Jung, S.J.; Chae, S.W. Functional properties of microorganisms in fermented foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [PubMed]
- Wilburn, J.R.; Ryan, E.P. Chapter 1—Fermented foods in health promotion and disease prevention: An overview. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 3–19. [Google Scholar] [CrossRef]
- Ko, S.J.; Kim, J.; Han, G.; Kim, S.K.; Kim, H.G.; Yeo, I.; Ryu, B.; Park, J.W. Laminaria japonica combined with probiotics improves intestinal microbiota: A randomized clinical trial. J. Med. Food 2014, 17, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.M.; Lee, B.J.; Kim, J.I.; Nam, B.H.; Cha, J.Y.; Kim, Y.M.; Ahn, C.B.; Choi, J.S.; Choi, I.S.; Je, J.Y. Antioxidant effects of fermented sea tangle (Laminaria japonica) by Lactobacillus brevis BJ20 in individuals with high level of gamma-GT: A randomized, double-blind, and placebo-controlled clinical study. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 1166–1169. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Seo, H.J.; Lee, Y.R.; Kwon, S.J.; Moon, S.H.; Park, S.M.; Sohn, J.H. Characteristics and in vitro Anti-diabetic Properties of the Korean Rice Wine, Makgeolli Fermented with Laminaria japonica. Prev. Nutr. Food Sci. 2014, 19, 98–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shobharani, P.; Nanishankar, V.H.; Halami, P.M.; Sachindra, N.M. Antioxidant and anticoagulant activity of polyphenol and polysaccharides from fermented Sargassum sp. Int. J. Biol. Macromol. 2014, 65, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M.; Miyoshi, T.; Yoshida, G.; Niwa, K.; Mori, M.; Wakabayashi, H. Isolation and characterization of halophilic lactic acid bacteria acting as a starter culture for sauce fermentation of the red alga Nori (Porphyra yezoensis). J. Appl. Microbiol. 2014, 116, 1506–1520. [Google Scholar] [CrossRef]
- Tavares Estevam, A.C.; Alonso Buriti, F.C.; de Oliveira, T.A.; Pereira, E.V.; Florentino, E.R.; Porto, A.L. Effect of Aqueous Extract of the Seaweed Gracilaria domingensis on the Physicochemical, Microbiological, and Textural Features of Fermented Milks. J. Food Sci. 2016, 81, C874–C880. [Google Scholar] [CrossRef]
- Blaszak, B.B.; Gozdecka, G.; Shyichuk, A. Carrageenan as a functional additive in the production of cheese and cheese-like products. Acta Sci. Polonorum. Technol. Aliment. 2018, 17, 107–116. [Google Scholar] [CrossRef]
- Bixler, H.J.; Porse, H.J. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 2011, 23, 321–335. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Overland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2018, 99, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umu, O.C.; Frank, J.A.; Fangel, J.U.; Oostindjer, M.; da Silva, C.S.; Bolhuis, E.J.; Bosch, G.; Willats, W.G.; Pope, P.B.; Diep, D.B. Resistant starch diet induces change in the swine microbiome and a predominance of beneficial bacterial populations. Microbiome 2015, 3, 16. [Google Scholar] [CrossRef] [PubMed]
- Kulshreshtha, G.; Rathgeber, B.; Stratton, G.; Thomas, N.; Evans, F.; Critchley, A.; Hafting, J.; Prithiviraj, B. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult. Sci. 2014, 93, 2991–3001. [Google Scholar] [CrossRef] [PubMed]
- Kulshreshtha, G.; Rathgeber, B.; MacIsaac, J.; Boulianne, M.; Brigitte, L.; Stratton, G.; Thomas, N.A.; Critchley, A.T.; Hafting, J.; Prithiviraj, B. Feed Supplementation with Red Seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, Reduce Salmonella Enteritidis in Laying Hens. Front. Microbiol. 2017, 8, 567. [Google Scholar] [CrossRef] [Green Version]
- Litten-Brown, J.C.; Corson, A.M.; Clarke, L. Porcine models for the metabolic syndrome, digestive and bone disorders: A general overview. Animal 2010, 4, 899–920. [Google Scholar] [CrossRef]
- Machado, L.; Tomkins, N.; Magnusson, M.; Midgley, D.J.; de Nys, R.; Rosewarne, C.P. In Vitro Response of Rumen Microbiota to the Antimethanogenic Red Macroalga Asparagopsis taxiformis. Microb. Ecol. 2018, 75, 811–818. [Google Scholar] [CrossRef]
- Zhou, M.; Hünerberg, M.; Chen, Y.; Reuter, T.; McAllister, T.A.; Evans, F.; Critchley, A.T.; Guan, L.L. Air-Dried Brown Seaweed, Ascophyllum nodosum, Alters the Rumen Microbiome in a Manner That Changes Rumen Fermentation Profiles and Lowers the Prevalence of Foodborne Pathogens. mSphere 2018, 3, e00017-18. [Google Scholar] [CrossRef]
- Orpin, C.G.; Greenwood, Y.; Hall, F.J.; Paterson, I.W. The rumen microbiology of seaweed digestion in Orkney sheep. J. Appl. Bacteriol. 1985, 58, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.G.; Withers, S.; Sutherland, A.D. The potential of bacteria isolated from ruminal contents of seaweed-eating North Ronaldsay sheep to hydrolyse seaweed components and produce methane by anaerobic digestion in vitro. Microb. Biotechnol. 2013, 6, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Heim, G.; O’Doherty, J.V.; O’Shea, C.J.; Doyle, D.N.; Egan, A.M.; Thornton, K.; Sweeney, T. Maternal supplementation of seaweed-derived polysaccharides improves intestinal health and immune status of suckling piglets. J. Nutr. Sci. 2015, 4, e27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, Y.; Hosseindoust, A.; Goel, A.; Lee, S.; Jha, P.K.; Kwon, I.K.; Chae, B.-J. Effects of Ecklonia cava as fucoidan-rich algae on growth performance, nutrient digestibility, intestinal morphology and caecal microflora in weanling pigs. Asian Australas. J. Anim. Sci. 2017, 30, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.; Dal Bello, F.; O’Doherty, J.; Arendt, E.K.; Sweeney, T.; Coffey, A. The effects of liquid versus spray-dried Laminaria digitata extract on selected bacterial groups in the piglet gastrointestinal tract (GIT) microbiota. Anaerobe 2013, 21, 1–8. [Google Scholar] [CrossRef]
- Heim, G.; Walsh, A.M.; Sweeney, T.; Doyle, D.N.; O’Shea, C.J.; Ryan, M.T.; O’Doherty, J.V. Effect of seaweed-derived laminarin and fucoidan and zinc oxide on gut morphology, nutrient transporters, nutrient digestibility, growth performance and selected microbial populations in weaned pigs. Br. J. Nutr. 2014, 111, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.; Dal Bello, F.; O’Doherty, J.; Arendt, E.K.; Sweeney, T.; Coffey, A. Analysis of bacterial community shifts in the gastrointestinal tract of pigs fed diets supplemented with β-glucan from Laminaria digitata, Laminaria hyperborea and Saccharomyces cerevisiae. Animal 2013, 7, 1079–1087. [Google Scholar] [CrossRef]
- Walsh, A.M.; Sweeney, T.; O’Shea, C.J.; Doyle, D.N.; ’Doherty, J.V.O. Effect of supplementing varying inclusion levels of laminarin and fucoidan on growth performance, digestibility of diet components, selected fecal microbial populations and volatile fatty acid concentrations in weaned pigs. Anim. Feed Sci. Technol. 2013, 183, 151–159. [Google Scholar] [CrossRef]
- Belanche, A.; Ramos-Morales, E.; Newbold, C.J. In vitro screening of natural feed additives from crustaceans, diatoms, seaweeds and plant extracts to manipulate rumen fermentation. J. Sci. Food Agric. 2016, 96, 3069–3078. [Google Scholar] [CrossRef]
- Kinley, R.D.; de Nys, R.; Vucko, M.J.; Machado, L.; Tomkins, N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. J. Anim. Prod. Sci. 2016, 56, 282–289. [Google Scholar] [CrossRef]
- Maia, M.R.; Fonseca, A.J.; Oliveira, H.M.; Mendonca, C.; Cabrita, A.R. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci. Rep. 2016, 6, 32321. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.S.; Kim, E.J.; Jin, Y.C.; Lee, J.S.; Choi, Y.J.; Lee, H.G. Effects of supplementing brown seaweed by-products in the diet of Holstein cows during transition on ruminal fermentation, growth performance and endocrine responses. Asian Australas. J. Anim. Sci. 2015, 28, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
Carbohydrate | Carbohydrate-Active Enzyme (CAZyme) | Evidenced Glycolytic Bacteria | Reference | |
---|---|---|---|---|
Alginate | 1,4-β-d-mannuronic acid α-l-guluronic acid | PL6 Alginate lyase PL6 MG-specific alginate lyase | Bacteroides clarus Bacteroides eggerthii | |
PL15 Alginate lyase PL15 Oligoalginate lyase | Bacteroides ovatus Bacteroides thetaiotaomicron Bacteroides xylanisolvens | [31,32,33,34,35,36] | ||
PL17 Alginate lyase PL17 Oligoalginate lyase | Bacteroides clarus Bacteroides eggerthii | |||
Fucoidan | Sulphated 1,2-1,3-1,4-α-l-fucose | GH29 α-l-fucosidase GH29 α-1,3/1,4-l-fucosidase | Not determined | [37] |
GH95 α-l-fucosidase GH95 α-1,2-l-fucosidase | ||||
Laminarin | 1,3-1,6-β-glucose | GH16 β-glucanase GH16 β-1,3-1,4-glucanase GH16 endo-1,3-β-glucanase | Bacteroides distasonis Bacteroides fragilis Bacteroides thetaiotaomicron | [10,38] |
Carbohydrate | Carbohydrate-Active Enzyme (CAZyme) | Evidenced Glycolytic Bacteria | Reference | |
---|---|---|---|---|
Agar (Galactan) | 1,3-β-d-galactose 1,4-3,6-anhydro-α-l-galactose | GH2 β-galactosidase | Bacteroidetes plebeius | [39,40,41,42] |
GH16 β-agarase | ||||
GH86 β-agarase | ||||
GH117 1,3-α-3,6-anhydro-l-galactosidase | ||||
Carrageenan (Galactan) | 1,4-β-d-galactose 1,3-α-d-galactose 3,6-anhydro-d-galactose | GH2 β-galactosidase | Bacteroides plebeius | [41,43] |
GH117 1,3-α-3,6-anhydro-l-galactosidase | ||||
Porphyran (Galactan) | Sulphated 1,3-β-d-galactose 1,4-α-l-galactose-6-sulfate 3,6-anhydro-α-l-galactose | GH16 β-porphyranase GH86 β-porphyranase | Bacteroides plebeius | [41,44,45] |
Xylan | 1,3-1,4-β-d-xylose | GH3 xylan 1,4-β-xylosidase | Not determined | [46,47,48,49] |
GH5 endo-1,4-β-xylanase | ||||
GH10 endo-1,4-β-xylanase | ||||
GH10 endo-1,3-β-xylanase | ||||
GH11 endo-β-1,4-xylanase | ||||
GH11 endo-β-1,3-xylanase | ||||
GH43 β-xylosidase | ||||
GH43 xylanase | ||||
GH43 β-1,3-xylosidase | ||||
GH67 xylan α-1,2-glucuronidase | ||||
GH115 xylan α-1,2-glucuronidase | ||||
CE1−CE7 and CE12 acetyl xylanesterases |
Carbohydrate | Carbohydrate-Active Enzyme (CAZyme) | Evidenced Glycolytic Bacteria | Reference | |
---|---|---|---|---|
Ulvan | Sulphated 1,4-β-d-Glucuronic acid α-l-Rhamnose 1,4-β-d-xyloglucan | GH78 α-l-rhamnosidase | Not determined | [50,51] |
GH145 α-l-rhamnosidase | ||||
Xylan | 1,3-β-d-xylose | GH10 endo-1,3-β-xylanase, | Not determined | [52] |
GH11 endo-β-1,3-xylanase | ||||
GH43 β-1,3-xylosidase |
Seaweed | Substrate | Dose | Use of a Simulated In Vitro Digestion Before Fermentation? | Experimental Parameters | Microbial Enumeration | Microbial Changes | Metabolomics Analysis Technique | Metabolite Changes | Reference |
---|---|---|---|---|---|---|---|---|---|
Ecklonia radiata | Crude fraction (CF) Phlorotannin-enriched fraction (PF) Low-molecular weight polysaccharide fraction (LPF) High-molecular weight polysaccharide fraction (HPF) | 1.5% (w/v) | Yes CF = 71.5% digestible PF = 87.3% digestible LPF = 86.1% digestible HPF = non-digestible | 10% (w/v) pooled inoculum (n = 3) 24 h | qPCR | ↑Bifidobacterium↑Lactobacillus (LPF) ↑F. prausnitzii↑C. coccoides ↑Firmicutes (CF, LPF) ↑Bacteroidetes↑E. coli (CF, PF, LPF, HPF) ↓Enterococcus (CF, PF) | GC-FID | ↑Acetate (CF) ↑Propionate (CF, LPF, HPF) ↑ Butyrate (CF, LPF, HPF) ↑ Total SCFA (CF, LPF, HPF) | [56] |
Ecklonia radiata | Water extract (WE) Acid extract (AE) Celluclast enzyme extract (CEE) Alcalase enzyme extract (AEE) Free sugar fraction (FF) Polysaccharide fraction (PF) Seaweed residue (SR) Seaweed powder (SP) | 1.5% (w/v) | No–digestibility unknown | 10% (w/v) pooled inoculum (n = 3) 24 h | qPCR | = F. prausnitzii = C. leptum = R. bromii ↑ Total bacteria (CEE, AEE, WE, FF) ↑ Bifidobacterium ↑ Bacteroidetes ↑ Lactobacillus ↑ C. coccoides (CEE) ↑ E. coli ↑ Enterocccus (WE, AE, CEE, AEE, FF, PF, SP) | GC-FID | ↑ Acetate ↑ Propionate ↑ Butyrate (WE, AE, CEE, AEE, FF, PF, SP) ↑ Total SCFA | [57] |
Sargassum muticum | Sargassum muticum Alcalase enzyme extract (SAE) | 1% (w/v) | Yes–non-digestible (% digestible undisclosed) | 10% (w/v) single inoculum 24 h | FISH | = Bifidobacterium = Lactobacillus = Clostridium histolticum ↑ Bacteroides/Prevotella ↓ C.coccoides/E.rectale | HPLC | ↑ Total SCFA | [99] |
Sargassum thunbergii | Polysaccharide extract | 0.3% (w/v) | No–digestibility unknown | 20% (w/v) pooled inoculum (n = 3) 24 h | 16S rRNA NGS | ↑ Bacteroidetes ↑Bacteroidetes:Firmicutes ratio ↑ Bifidobacterium ↑ Roseburia ↑ Parasutterella ↑ Fusicatenibacter ↑ Coprococcus ↑ Fecalibacterium | GC-MS | ↑ Acetate ↑ Propionate ↑ Butyrate ↑ Valerate ↑ Total SCFA | [55] |
- | Alginate | 5% (w/v) | No–digestibility unknown | 10% (w/v) single inoculum 72 h | 16S rRNA DGGE 16S rRNA NGS | ↑Bacteroides | GC-FID | ↑ Propionate ↑ Butyrate ↑ Total SCFA | [33] |
- | Alginate (A) Mannuronic acid oligosaccharides (MO) Guluronic acid oligosaccharides (GO) Propylene glycol alginate sodium sulphate (PSS) | 5 g/L (A) 8 g/L (MO, GO, PSS) | No–digestibility unknown | 10% (w/v) single inoculum 48 h | 16S rRNA DGGE | Detection of Bacteroides xylanisolvens, Clostridium clostridioforme/Clostridium symbiosum, Bacteroides finegoldii, Shigella flexneri/E.coli, E.fergusonii, and Bacteroides ovatus | HPLC | A, MO, GO: ↑ Acetate ↑ Propionate ↑ Butyrate ↑ Total SCFA | [36] |
Ascophyllum nodosum | Sulphated polysaccharide extract | 9 mg/mL | Yes–non-digestible (% digestible undisclosed) | 10% (w/v) pooled inoculum (n = 4) 24 h | 16S rRNA NGS | ↑Bacteroides ↑Phascolarctobacterium ↑Oscillospira ↑Fecalibacterium | GC-FID | ↑ Acetate ↑ Propionate ↑ Butyrate ↑ Total SCFA | [100] |
Laminaria digitata | Crude polysaccharide extract (CE) Depolymerised crude polysaccharide extract (DE) | 1% (w/v) | Yes–non-digestible (% digestible undisclosed) | 20% (w/v) pooled inoculum (n = 3) 48 h | 16S rRNA NGS | ↑Parabacteroides (CE, DE) ↑ Fibrobacter (CE) ↓ Streptococcus ↓ Ruminococcus ↑ Lachnospiraceae UC (DE) ↓ Peptostreptococcaceae IS (DE) ↑ Dialister (CE, DE) ↑ γ B38UC (CE) | GC-FID | ↑ Acetate (CE, DE) ↑ Propionate (CE, DE) ↑ Butyrate (CE, DE) ↑ Total SCFA (CE, DE) | [101] |
- | Laminarin | 1% (w/v) | No–digestibility unknown | 10% (w/v) pooled inoculum (n = 5) 24 h | qPCR | ↑Bifidobacterium ↑Bacteroides | HPLC | ↑ Acetate ↑ Propionate ↑ Total SCFA | [79] |
Seaweed | Substrate | Dose | Use of a Simulated in vitro Digestion Before Fermentation? | Experimental Parameters | Microbial Enumeration | Microbial Changes | Metabolomics Analysis Technique | Metabolite Changes | Reference |
---|---|---|---|---|---|---|---|---|---|
Kappaphycus alvarezii | Whole Seaweed (WS) | 1% (w/v) | Yes–non-digestible (% digestible undisclosed) | 10% (w/v) single inoculum 24 h | FISH | ↑Bifidobacterium ↓Clostridium coccoides/ Eubacterium rectale | HPLC | ↑ Total SCFA | [13] |
Osmundea pinnatifida | Osmundea pinnatifida Viscozyme extract (OVE) | 1% (w/v) | Yes–non-digestible (% digestible undisclosed) | 10% (w/v) single inoculum 24 h | FISH | = Bifidobacterium = Lactobacillus = Clostridium histolticum | HPLC | ↑Total SCFA | [99] |
Gracilaria rubra | Polysaccharide extract (PE) | 1% (w/v) | Yes–non-digestible (% digestible undisclosed) | 10% (w/v) pooled inoculum (n = 4) 24 h | 16S rRNA NGS | ↑Bacteroides ↑Prevotella ↑Phascolarctobacterium ↓Firmicutes:Bacteroidetes | GC-FID | ↑ Acetate ↑ Propionate ↑ Isobutyrate ↑ Total SCFA | [117] |
- | Porphyran | 1% (w/v) | No–digestibility unknown | 10% (w/v) pooled inoculum (n = 5) 24 h | qPCR | ↑Bifidobacterium ↑Bacteroides | HPLC | = Acetate = Propionate = Butyrate = Total SCFA | [79] |
Seaweed | Substrate | Dose | Use of a Simulated in vitro Digestion Before Fermentation? | Experimental Parameters | Microbial Enumeration | Microbial Changes | Metabolomics Analysis Technique | Metabolite Changes | Reference |
---|---|---|---|---|---|---|---|---|---|
Enteromorpha prolifera | Polysaccharide extract (PE) | 0.2 g in 9.5 mL 0.8 g in 9.5mL | Yes-non-digestible (% digestible undisclosed) | 10.5% (w/v) pooled inoculum (n = 3) 12, 24, and 48 h | Microbial culture | ↑Enterobacter (0.2 PE and 0.8 PE at 24 h and 48 h) = Enterococcus = Lactobacillus = Bifidobacterium | GC-FID | = Acetate = Butyrate = Lactate | [12] |
- | Ulvan | 1% (w/v) | No-digestibility unknown | 10% (w/v) pooled inoculum (n = 5) 24 h | qPCR | ↑Bifidobacterium ↑Lactobacillus | HPLC | ↑ Acetate ↑ Lactate | [79] |
Animal | Substrate | Dose | Duration | Biological Sample | Microbial Changes | Metabolite Changes | Reference |
---|---|---|---|---|---|---|---|
30 Male Sprague-Dawley Rats | Chondrus crispus Whole Seaweed (WS) | 0.5% (w/w) 2.5% (w/w) | 21 days | Faeces | ↑Bifidobacterium↑Legionella↑Sutterella ↑Blautia↑Holdemania ↑Shewanella↑Agarivorans ↓Streptococcus ↑Bifidobacterium breve (2.5% WS) | ↑ Acetate ↑ Propionate (2.5% WS) ↑ Butyrate ↑ Total SCFA | [15] |
24 Male Sprague-Dawley Rats | Ecklonia radiata Whole Seaweed (WS) Ecklonia radiata Polysaccharide Fraction (PF) | 5% (w/w) WS 5% (w/w) PF | 7 days | Caecum | ↑F. prausnitzii↑E. coli (PF) ↓ Enterococcus (WS) ↓Lactobacillus ↓Bifidobacterium ↓ Firmicutes:Bacteroidetes | ↑ Acetate ↑ Propionate ↑ Butyrate (PF) ↓ Valerate ↓ Hexanoate ↑ Total SCFA ↓ i-Butyrate ↓ i-Valerate ↓ phenol ↓ p-cresol | [129] |
18 Male Wistar Rats | Alginate (A) Laminarin (L) Fucoidan (F) | 2% (w/w) | 14 days | Caecum | ↑Bacteroides (Bacteroides capillosus) Presence of Enterorhabdus (A) ↑ Proteobacteria. Presence of Lachnospiracea, Parabacteroides (Parabacteroides distasonis) and Parasutterella (L) Not fermented (F) | ↑ Propionate (L) ↑ Total SCFA (A, L) | [97] |
16 Male C57 BL/6 Mice | Saccorhiza polyschides extract (BAE) | High fat diet + 5% (w/w) BAE | 8 months | Faeces | ↓ Faecal bile salt hydrolase activity | ↓ Secondary bile acids | [54] |
18 Male Wistar Rats | Alginate (A) Laminarin (L) | 2% (w/w) | 14 days | Caecum | ↑Lactobacillus↑Porphyromonas↑Coprobacillus ↑Oscillibacter valencigenes ↓Parabacteroides (L) ↑ Catabacter honkongensis ↑ Stomatobaculum longum ↓ Adlercreuzia (A) ↓ Helicobacter (A, L) | ↑ Lactic acid (L) = Acetate = Propionate = Butyrate = Total SCFA ↓ Indole | [130] |
18 Male C57BL/6 mice | Ascophyllum nodosum Fucoidan (FuA) Laminaria japonica Fucoidan (FuL) | 100 mg/kg/day | 6 weeks | Caecum | ↑Lactobacillus↑Anaeroplasma ↑Thalassospira (FuA) ↑Ruminococcaceae ↓ Alistipes ↓ Clostridiales ↓ Akkermansia (FuL) ↓ Candidatus ↓ Arthromitus ↓ Peptococcus ↓ Lachnospiraceae Incertae Sedis (FuA, FuL) | - | [96] |
15 Male Wistar rats | Ascophyllum nodosum seaweed crude polysaccharide (SCP) SCP Lactobacillus plantarum hydrolysate (SCPH Lp) SCP Enterococcus fecalis hydrolysate (SCPH Ef) Alginate (A) Hydrolysed Alginate (HA) | 0.2 g per 180 –200 g rat weight | 4 days | Faeces | - | ↑ Acetate (HA > A > SCPH Lp > SCPH Ef) ↑ Propionate (HA = A = SCPH Lp = SCPH Ef) ↑ Butyrate (HA = A = SCPH Lp = SCPH Ef) (relative to day zero) | [131] |
32 Female Kunming mice | Enteromorpha prolifera (EP) Enteromorpha polysaccharide extract (PEP) | 1:5 (w/w) | 7 days | Faeces | ↑Alpha diversity (EP) ↑Bacteroidales S24-7 (EP) ↑ Prevotellaceae (PEP) ↑ Firmicutes ↑Actinobacteria (EP, PEP) ↓ Bacteroidetes ↓ Proteobacteria (EP, PEP) | - | [119] |
Animal | Seaweed Component | Dose | Duration | Biological Sample | Microbial Changes | Metabolite Changes | Reference |
---|---|---|---|---|---|---|---|
20 pregnant gilts and 48 piglets | Laminarin/Fucoidan Extract | 10 g/day | Gestation (day 83) to weaning (day 28) | Faeces (Sow) Colonic digesta (Piglet) | Sows (parturition): ↓ Enterobacteriaceae = Lactobacilli Piglets (birth, 48h after birth, weaning): = Enterobacteriaceae = Lactobacilli | - | [207] |
200 pigs | Ecklonia cava Whole Seaweed | 0.05% (w/w) 0.1% (w/w) 0.15% (w/w) | 28 days | Caecum | ↑Lactobacillus ↓E. coli = Total Anaerobes | - | [208] |
24 pigs | Laminarin/Fucoidan Extract (SD) Laminarin/Fucoidan Wet Seaweed (WS) | 5.37 Kg/tonne SD 26.3 Kg/tonne WS | 21 days | Ileum Caecum Colon | = Bifidobacteria = Lactobacillus = Enterobacterium (SD, WS) ↑Lactobacillus agilis (colon) | - | [209] |
48 pigs | Laminarin Extract | 300 ppm | 32 days | Faeces | ↑Lactobacillus = Bifidobacteria | = Acetate ↓ Propionate = Butyrate = Valerate = i-Butyrate = i-Valerate | [210] |
48 pigs | β-glucan | 250 g/tonne 150 g/tonne | 29 days | Ileum Caecum Proximal Colon Distal Colon | = Lactobacilli = Bifidobacteria. ↑ Lactobacillus diversity | - | [211] |
168 pigs | Laminarin (L) Fucoidan (F) | 240 mg/kg F 150 mg/kg L 300 mg/kg L 150 mg/kg L and 240 mg/kg F 300 mg/kg L and 240 mg/kg F | 35 days | Faeces | = E. coli = Bifidobacteria ↑ Lactobacilli | = Acetate = Propionate = Butyrate = Valerate = i-Butyrate = i-Valerate = Total SCFA | [212] |
9 pigs | Alginate | 5.14% (w/w) | 84 days | Faeces | = Diversity ↑ Unclassified F16 family ↓ Clostridiaceae ↓ Unclassified RF39 (Mollicutes) ↑ Ruminococcus ↑ Roseburia ↑ unclassified F16 genus (TM7) ↑ Lachnospira ↓ Blautia | - | [199] |
Animal | Seaweed Component | Dose | Duration | Biological Sample | Microbial Changes | Metabolite Changes | Reference |
---|---|---|---|---|---|---|---|
160 laying hens | Chondrus crispus Whole Seaweed (CC) Sarcodiotheca gaudichaudii Whole Seaweed (SG) | 0.5% (w/w) 1% (w/w) 2% (w/w) | 30 days | Ileum Caecal digesta | ↑Bifidobacterium longum (CC2, SG1, SG2) ↑Streptococcus salivarius (CC1, CC2, SG2) ↓Clostridium perfringens (CC1, CC2, SG1, SG2) ↓Lactobacillus acidophilus (CC1, CC2) | ↑ Acetate (CC1, SG1) ↑ Propionate (CC2) ↑ Butyrate (SC2) | [200] |
96 laying hens | Chondrus crispus Whole Seaweed (CC) Sarcodiotheca gaudichaudii Whole Seaweed (SG) | Control diet + 2% (w/w) seaweed Control diet + 4% (w/w) seaweed | 28 days | Caecum | ↑Lactobacillus acidophilus (CC4) ↓Bifidobacterium longum (SG2, SG4, CC4) ↓ Streptococcus salivarius (SG2, SG4, CC2, CC4) ↑ Bacteroidetes (SG4, CC2, CC4) | ↑ Propionate (CC4) | [201] |
Seaweed | Substrate | Experimental Parameters | Dose (w/v) | Microbial Enumeration | Microbial Changes | Metabolomics Analysis Technique | Metabolite Changes | Reference |
---|---|---|---|---|---|---|---|---|
Ascophyllum nodosum (AN) Laminaria digitata (LD) | Whole Seaweed | 50% pooled inoculum (n = 4) 24 h | 0.5 g/L 1 g/L 2 g/L | - | - | GC-FID | ↑Propionate ↑Butyrate (LD) ↓ BCFA ↓Methane | [213] |
Asparagopsis taxiformis | Whole Seaweed | 20% pooled inoculum (n = 4) 72 h | 0.5% 1% 2% 5% 10% | - | - | GC-FID | ↓ Total gas production ↓ Methane ↓ Acetate ↑ Propionate ↑ Butyrate (2%, 10%) ↓ Total SCFA (5%, 10%) | [214] |
Ulva sp. Laminaria ochroleuca Saccharina latissima Gigartina sp. Gracilaria vermiculophylla | Whole Seaweed | 20% pooled inoculum (n = 2) 24 h | 25% | - | - | GC-FID | ↓ Methane | [215] |
Brown seaweed by-products (BSB) | - | 50% (v/v) single inoculum 0, 3, 6, 9, 12, and 24 h | 2% 4% | - | - | GC-FID | ↓ Ammonia (3, 9, 12 and 24 h) ↓ Total SCFA (24 h) | [216] |
Seaweed | Dose | Experimental Parameters | Microbial Enumeration | Microbial Changes | Metabolomics Analysis Technique | Metabolite Changes | Reference |
---|---|---|---|---|---|---|---|
Asparagopsis taxiformis Whole Seaweed | 2% | in vitro batch culture fermentation 20% (v/v) pooled sheep rumen fluid inoculum (n = 4) 48 and 72 h | 16S rRNA NGS qPCR | ↓Methanogens ↓Bacteroidetes/Firmicutes ratio ↓ mcrA gene expression | GC-MS | ↓ Total Gas ↓ Methane ↑ Hydrogen | [203] |
Ascophyllum nodosum Whole Seaweed | 1% 3% 5% | Rams (n = 8) 21 days ad libitum | 16S rRNA NGS | ↓ undefined TM7-1 ↓undefined Coriobacteriaceae ↓Roseburia ↓Coprococcus ↓Prevotella copri ↑Blautia producta ↑ Entodinium species 1 ↑Veillonellaceae | GC-FID | Dose dependent: ↑ Acetate ↓ Propionate ↓ Butyrate PICRUSt: ↑Butanoate metabolism ↑ Fatty acid metabolism ↓Glycerophospholipid metabolism | [204] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; McSorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar. Drugs 2019, 17, 327. https://doi.org/10.3390/md17060327
Cherry P, Yadav S, Strain CR, Allsopp PJ, McSorley EM, Ross RP, Stanton C. Prebiotics from Seaweeds: An Ocean of Opportunity? Marine Drugs. 2019; 17(6):327. https://doi.org/10.3390/md17060327
Chicago/Turabian StyleCherry, Paul, Supriya Yadav, Conall R. Strain, Philip J. Allsopp, Emeir M. McSorley, R. Paul Ross, and Catherine Stanton. 2019. "Prebiotics from Seaweeds: An Ocean of Opportunity?" Marine Drugs 17, no. 6: 327. https://doi.org/10.3390/md17060327
APA StyleCherry, P., Yadav, S., Strain, C. R., Allsopp, P. J., McSorley, E. M., Ross, R. P., & Stanton, C. (2019). Prebiotics from Seaweeds: An Ocean of Opportunity? Marine Drugs, 17(6), 327. https://doi.org/10.3390/md17060327