Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health
Abstract
:1. Introduction
2. Bioactive Effects and Potential Health Benefits of Marine Algae
2.1. Biological Activities of Marine Algal Extracts
2.1.1. Macroalgal Extracts
2.1.2. Microalgal Extracts
2.2. Biological Activities of Polysaccharides from Marine Algae
2.2.1. Fucoidans
Anti-Melanogenic Activity
Antioxidant Activity
Skin Anti-Aging Activity
Anti-Atopic Dermatitis Activity
Moisturizing Activity
Anti-Skin Cancer Activity
2.2.2. Laminaran
2.2.3. Ulvans
2.2.4. Porphyran
Antioxidant Activity
Skin Anti-Inflammatory Activity
2.2.5. Carrageenan
Anti-Melanogenic Activity
Antioxidant Activity
Photoprotective Activity
2.3. Biological Activities of Monosaccharides and Oligosaccharides from Red Algae
2.3.1. Anti-Melanogenic Activity
2.3.2. Skin Anti-Inflammatory Activity
2.3.3. Antioxidant Activity
2.3.4. Moisturizing Activity
2.3.5. Anti-Skin Cancer Activity
3. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 2016, 21, 551. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.V.; Kim, S.K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs 2013, 11, 146–164. [Google Scholar] [CrossRef] [PubMed]
- Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009, 8, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Munro, M.H.; Blunt, J.W.; Dumdei, E.J.; Hickford, S.J.; Lill, R.E.; Li, S.; Battershill, C.N.; Duckworth, A.R. The discovery and development of marine compounds with pharmaceutical potential. J. Biotechnol. 1999, 70, 15–25. [Google Scholar] [CrossRef]
- Snelgrove, P.V. An Ocean of Discovery: Biodiversity Beyond the Census of Marine Life. Planta Med. 2016, 82, 790–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.M.D.; Chen, C.C.; Huynh, P.; Chang, J.S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015, 184, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Zia, K.M.; Tabasum, S.; Nasif, M.; Sultan, N.; Aslam, N.; Noreen, A.; Zuber, M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 2016, 96, 282–301. [Google Scholar] [CrossRef] [PubMed]
- De Jesus Raposo, M.F.; de Morais, A.M.; de Morais, R.M. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef] [PubMed]
- Hamed, I.; Ozogul, F.; Ozogul, Y.; Regenstein, J.M. Marine bioactive compounds and their health benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Kang, H.K.; Seo, C.H.; Park, Y. The effects of marine carbohydrates and glycosylated compounds on human health. Int. J. Mol. Sci. 2015, 16, 6018–6056. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Quarterman, J.; Jin, Y.S. Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol. 2013, 31, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Laurienzo, P. Marine polysaccharides in pharmaceutical applications: An Overview. Mar. Drugs 2010, 8, 2435–2465. [Google Scholar] [CrossRef] [PubMed]
- Cunha, L.; Grenha, A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs 2016, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.B.; Adel, M.; Karimi, P.; Peidayesh, M. Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates. Adv. Food Nutr. Res. 2014, 73, 197–220. [Google Scholar] [PubMed]
- Melo, M.R.S.; Feitosa, J.P.A.; Freitas, A.L.P.; de Paula, R.C.M. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym. 2002, 49, 491–498. [Google Scholar] [CrossRef]
- Cha, S.H.; Ko, S.C.; Kim, D.; Jeon, Y.J. Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. J. Dermatol. 2011, 38, 343–352. [Google Scholar] [CrossRef]
- Heo, S.J.; Ko, S.C.; Kang, S.M.; Cha, S.H.; Lee, S.H.; Kang, D.H.; Jung, W.K.; Affan, A.; Oh, C.; Jeon, Y.J. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food Chem. Toxicol. 2010, 48, 1355–1361. [Google Scholar] [CrossRef] [PubMed]
- Quah, C.C.; Kim, K.H.; Lau, M.S.; Kim, W.R.; Cheah, S.H.; Gundamaraju, R. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Iyer, V.V. Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cell. Dev. Biol. Anim. 2013, 49, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, T.; Tsukahara, K.; Moriwaki, S.; Kitahara, T.; Sano, T.; Takema, Y. Treatment of human skin with an extract of Fucus vesiculosus changes its thickness and mechanical properties. J. Cosmet. Sci. 2002, 53, 1–9. [Google Scholar] [PubMed]
- Grether-Beck, S.; Muhlberg, K.; Brenden, H.; Felsner, I.; Brynjolfsdottir, A.; Einarsson, S.; Krutmann, J. Bioactive molecules from the Blue Lagoon: In vitro and in vivo assessment of silica mud and microalgae extracts for their effects on skin barrier function and prevention of skin ageing. Exp. Dermatol. 2008, 17, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Buono, S.; Langellotti, A.L.; Martello, A.; Bimonte, M.; Tito, A.; Carola, A.; Apone, F.; Colucci, G.; Fogliano, V. Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Arch. Dermatol. Res. 2012, 304, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Lee, C.H.; Kim, J.R.; Kwon, J.Y.; Seo, S.G.; Han, J.G.; Kim, B.G.; Kim, J.E.; Lee, K.W. Chlorella vulgaris attenuates dermatophagoides Farinae-induced atopic dermatitis-like symptoms in NC/Nga mice. Int. J. Mol. Sci. 2015, 16, 21021–21034. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Lucas, S.; Bisson, J.F.; Duffaud, A.; Nejdi, A.; Guerin-Deremaux, L.; Baert, B.; Saniez-Degrave, M.H.; Rozan, P. Benefits of oral and topical administration of ROQUETTE Chlorella sp. on skin inflammation and wound healing in mice. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2014, 13, 93–102. [Google Scholar] [CrossRef]
- Singh, A.; Singh, S.P.; Bamezai, R. Inhibitory potential of Chlorella vulgaris (E-25) on mouse skin papillomagenesis and xenobiotic detoxication system. Anticancer Res. 1999, 19, 1887–1891. [Google Scholar] [PubMed]
- Hidalgo-Lucas, S.; Rozan, P.; Guerin-Deremaux, L.; Violle, N.; Baert, B.; Saniez-Degrave, M.H.; Bisson, J.F. Oral and topical administration of ROQUETTE Schizochytrium sp. alleviate skin inflammation and improve wound healing in mice. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2015, 13, 154–164. [Google Scholar] [CrossRef]
- Kim, S.; You, D.H.; Han, T.; Choi, E.M. Modulation of viability and apoptosis of UVB-exposed human keratinocyte HaCaT cells by aqueous methanol extract of laver (Porphyra yezoensis). J. Photochem. Photobiol. B 2014, 141, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Mercurio, D.G.; Wagemaker, T.A.L.; Alves, V.M.; Benevenuto, C.G.; Gaspar, L.R.; Campos, P.M. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts. J. Photochem. Photobiol. B 2015, 153, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Al-Bader, T.; Byrne, A.; Gillbro, J.; Mitarotonda, A.; Metois, A.; Vial, F.; Rawlings, A.V.; Laloeuf, A. Effect of cosmetic ingredients as anticellulite agents: Synergistic action of actives with in vitro and in vivo efficacy. J. Cosmet. Dermatol. 2012, 11, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Xhauflaire-Uhoda, E.; Fontaine, K.; Pierard, G.E. Kinetics of moisturizing and firming effects of cosmetic formulations. Int. J. Cosmet. Sci. 2008, 30, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [PubMed]
- Rinnerthaler, M.; Streubel, M.K.; Bischof, J.; Richter, K. Skin aging, gene expression and calcium. Exp. Gerontol. 2015, 68, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Tezuka, T. The content of free amino acids in the stratum corneum is increased in senile xerosis. Arch. Dermatol. Res. 2004, 295, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tang, H.; Hu, X.; Chen, M.; Xie, H. Aquaporin-3 gene and protein expression in sun-protected human skin decreases with skin ageing. Australas. J. Dermatol. 2010, 51, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Ngo, D.H.; Kim, S.K. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol. 2013, 62, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.S.; Balcos, M.C.; Yun, H.Y.; Baek, K.J.; Kwon, N.S.; Kim, M.K.; Kim, D.S. ERK activation by fucoidan leads to inhibition of melanogenesis in Mel-Ab Cells. Korean J. Physiol. Pharmacol. 2015, 19, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Ruperez, P.; Ahrazem, O.; Leal, J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, Q.; Zhang, Z.; Li, Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2008, 42, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, F.; Zhang, Q.B.; Zhang, Z.S.; Shi, X.L.; Li, P.C. Synthesized different derivatives of low molecular fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Int. J. Biol. Macromol. 2009, 44, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Marudhupandi, T.; Kumar, T.T.; Senthil, S.L.; Devi, K.N. In vitro antioxidant properties of fucoidan fractions from Sargassum tenerrimum. Pak. J. Biol. Sci. 2014, 17, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.J.; Lee, S.R.; Shim, S.N.; Jeong, S.H.; Stonik, V.A.; Rasskazov, V.A.; Zvyagintseva, T.; Lee, Y.H. Fucoidan inhibits UVB-induced MMP-1 expression in human skin fibroblasts. Biol. Pharm. Bull. 2008, 31, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.J.; Lee, S.H.; Ku, M.J.; Yu, B.C.; Jeon, M.J.; Jeong, S.H.; Stonik, V.A.; Zvyagintseva, T.N.; Ermakova, S.P.; Lee, Y.H. Fucoidan inhibits UVB-induced MMP-1 promoter expression and down regulation of type I procollagen synthesis in human skin fibroblasts. Eur. J. Dermatol. 2009, 19, 129–134. [Google Scholar] [PubMed]
- Moon, H.J.; Park, K.S.; Ku, M.J.; Lee, M.S.; Jeong, S.H.; Imbs, T.I.; Zvyagintseva, T.N.; Ermakova, S.P.; Lee, Y.H. Effect of Costaria costata fucoidan on expression of matrix metalloproteinase-1 promoter, mRNA, and protein. J. Nat. Prod. 2009, 72, 1731–1734. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Tamauchi, H.; Kawakami, F.; Yoshinaga, K.; Nakano, T. Suppressive effect of dietary fucoidan on proinflammatory immune response and MMP-1 expression in UVB-irradiated mouse skin. Planta Med. 2015, 81, 1370–1374. [Google Scholar] [PubMed]
- Senni, K.; Gueniche, F.; Foucault-Bertaud, A.; Igondjo-Tchen, S.; Fioretti, F.; Colliec-Jouault, S.; Durand, P.; Guezennec, J.; Godeau, G.; Letourneur, D. Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch. Biochem. Biophys. 2006, 445, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H. Topical application of fucoidan improves atopic dermatitis symptoms in NC/Nga mice. Phytother. Res. 2012, 26, 1898–1903. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, K.; Hiragun, T.; Takahagi, S.; Yanase, Y.; Morioke, S.; Mihara, S.; Kameyoshi, Y.; Hide, M. Fucoidan suppresses IgE production in peripheral blood mononuclear cells from patients with atopic dermatitis. Arch. Dermatol. Res. 2011, 303, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jin, W.; Hou, Y.; Niu, X.; Zhang, H.; Zhang, Q. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int. J. Biol. Macromol. 2013, 57, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Ermakova, S.P.; Choi, H.K.; Kusaykin, M.I.; Shevchenko, N.M.; Zvyagintseva, T.N.; Choi, H.S. Fucoidan from Laminaria cichorioides inhibits AP-1 transactivation and cell transformation in the mouse epidermal JB6 cells. Mol. Carcinog. 2008, 47, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, L.; Qin, Y.; Liang, W.H.; Mo, M.Q.; Liu, S.L.; Liang, F.; Wang, Y.; Tan, W.; Liang, Y. Effect of laminarin polysaccharide on activity of matrix metalloproteinase in photoaging skin. China J. Chin. Mater. Med. 2013, 38, 2370–2373. [Google Scholar]
- Ayoub, A.; Pereira, J.M.; Rioux, L.E.; Turgeon, S.L.; Beaulieu, M.; Moulin, V.J. Role of seaweed laminaran from Saccharina longicruris on matrix deposition during dermal tissue-engineered production. Int. J. Biol. Macromol. 2015, 75, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Zhang, Q.; Zhao, T.; Chen, R.; Zhang, H.; Niu, X.; Li, Z. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int. J. Biol. Macromol. 2005, 37, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Zhang, Q.; Zhao, T.; Hu, R.; Zhang, K.; Li, Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg. Med. Chem. Lett. 2006, 16, 2441–2445. [Google Scholar] [CrossRef] [PubMed]
- Adrien, A.; Bonnet, A.; Dufour, D.; Baudouin, S.; Maugard, T.; Bridiau, N. Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydr. Polym. 2017, 157, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Kuda, T.; Tsunekawa, M.; Goto, H.; Araki, Y. Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. J. Food Compos. Anal. 2005, 18, 625–633. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, N.; Zhou, G.; Lu, X.; Xu, Z.; Li, Z. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol. Res. 2003, 48, 151–155. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, N.; Liu, X.; Zhao, Z.; Li, Z.; Xu, Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res. 2004, 339, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Zhang, Q.; Qi, H.; Zhang, H.; Niu, X.; Xu, Z.; Li, Z. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. Int. J. Biol. Macromol. 2006, 38, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.S.; Zhang, Q.B.; Wang, J.; Zhang, H.; Niu, X.Z.; Li, P.C. Preparation of the different derivatives of the low-molecular-weight porphyran from Porphyra haitanensis and their antioxidant activities in vitro. Int. J. Biol. Macromol. 2009, 45, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Hama, Y.; Yamaguchi, K.; Oda, T. Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages. J. Biochem. 2012, 151, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Isaka, S.; Cho, K.; Nakazono, S.; Abu, R.; Ueno, M.; Kim, D.; Oda, T. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis). Int. J. Biol. Macromol. 2015, 74, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Takematsu, H.; Seiji, M. Effect of macrophages on elimination of dermal melanin from the dermis. Arch. Dermatol. Res. 1984, 276, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Thevanayagam, H.; Mohamed, S.M.; Chu, W.L. Assessment of UVB-photoprotective and antioxidative activities of carrageenan in keratinocytes. J. Appl. Phycol. 2014, 26, 1813–1821. [Google Scholar] [CrossRef]
- Sun, Y.J.; Yang, B.Y.; Wu, Y.M.; Liu, Y.; Gu, X.; Zhang, H.; Wang, C.J.; Cao, H.Z.; Huang, L.J.; Wang, Z.F. Structural characterization and antioxidant activities of kappa-carrageenan oligosaccharides degraded by different methods. Food Chem. 2015, 178, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.M.; Song, J.M.; Zhang, W.W.; Li, X.G.; Li, N.; Gao, X.L. Antioxidant activity and cytoprotective effect of kappa-carrageenan oligosaccharides and their different derivatives. Bioorg. Med. Chem. Lett. 2006, 16, 1329–1334. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.M.; Zhang, W.W.; Li, X.G.; Lu, X.X.; Li, N.; Gao, X.L.; Song, J.M. Preparation and in vitro antioxidant activity of kappa-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr. Res. 2005, 340, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.W.; Li, J.; Wang, W.; Guan, H.S. Protective effects of kappa-ca3000+CP against ultraviolet-induced damage in HaCaT and MEF cells. J. Photochem. Photobiol. B 2010, 101, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Lopes, G.; Gil-Izquierdo, A.; Andrade, P.B.; Sousa, C.; Mouga, T.; Valentao, P. Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Mar. Drugs 2012, 10, 2766–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.B.; Zhou, X.Y.; Zhao, Z.J.; Li, Q.; Huang, X.Y.; Sun, F.Z. The Kunming mouse: As a model for age-related decline in female fertility in human. Zygote 2013, 21, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Lahaye, M.; Robic, A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Yun, E.J.; Choi, I.G.; Kim, K.H. Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol. 2015, 33, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yan, X.; Zhu, P.; Lin, J. Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutr. J. 2006, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Nakayasu, M.; Saeki, H.; Tohda, H.; Oikawa, A. Effects of sugars on melanogenesis in cultured melanoma cells. J. Cell. Physiol. 1977, 92, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yun, E.J.; Yu, S.; Kim, K.H.; Kang, N.J. Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides. Mar. Drugs 2017, 15, 321. [Google Scholar] [CrossRef] [PubMed]
- Yun, E.J.; Lee, S.; Kim, J.H.; Kim, B.B.; Kim, H.T.; Lee, S.H.; Pelton, J.G.; Kang, N.J.; Choi, I.G.; Kim, K.H. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol. 2013, 97, 2961–2970. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Yan, X.J. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochim. Biophys. Acta 2005, 1722, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Enoki, T.; Okuda, S.; Kudo, Y.; Takashima, F.; Sagawa, H.; Kato, I. Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci. Biotechnol. Biochem. 2010, 74, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Enoki, T.; Tominaga, T.; Takashima, F.; Ohnogi, H.; Sagawa, H.; Kato, I. Anti-tumor-promoting activities of agaro-oligosaccharides on two-stage mouse skin carcinogenesis. Biol. Pharm. Bull. 2012, 35, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Bin, B.H.; Kim, S.T.; Bhin, J.; Lee, T.R.; Cho, E.G. The development of sugar-based anti-melanogenic agents. Int. J. Mol. Sci. 2016, 17, 583. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Takisada, M.; Suzuki, T.; Kirimura, K.; Usami, S. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 1997, 61, 162–163. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.K.; Lee, D.G.; Kim, N.Y.; Yu, K.H.; Jang, H.J.; Lee, S.W.; Jang, H.J.; Lee, Y.J.; Lee, S.H. Purification and characterization of neoagarotetraose from hydrolyzed agar. J. Microbiol. Biotechnol. 2009, 19, 1197–1200. [Google Scholar] [PubMed]
- Lee, D.G.; Jang, M.K.; Lee, O.H.; Kim, N.Y.; Ju, S.A.; Lee, S.H. Over-production of a glycoside hydrolase family 50 beta-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol. Lett. 2008, 30, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Ariga, O.; Okamoto, N.; Harimoto, N.; Nakasaki, K. Purification and characterization of alpha-neoagarooligosaccharide hydrolase from Cellvibrio sp OA-2007. J. Microbiol. Biotechnol. 2014, 24, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, D.H.; Cho, K.M.; Kim, K.H.; Kang, N.J. Effect of 3,6-anhydro-l-galactose on alpha-melanocyte stimulating hormone-induced melanogenesis in human melanocytes and a skin-equivalent model. J. Cell. Biochem. 2018, 119, 7643–7656. [Google Scholar] [CrossRef] [PubMed]
- Ajisaka, K.; Agawa, S.; Nagumo, S.; Kurato, K.; Yokoyama, T.; Arai, K.; Miyazaki, T. Evaluation and comparison of the antioxidative potency of various carbohydrates using different methods. J. Agric. Food Chem. 2009, 57, 3102–3107. [Google Scholar] [CrossRef] [PubMed]
- Villaverde, J.J.; Sevilla-Moran, B.; Lopez-Goti, C.; Alonso-Prados, J.L.; Sandin-Espana, P. Computational Methodologies for the Risk Assessment of Pesticides in the European Union. J. Agric. Food Chem. 2017, 65, 2017–2018. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Rios-Gutierrez, M.; Perez, P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules 2016, 21, 748. [Google Scholar] [CrossRef] [PubMed]
- Alice, B.N.; Richard, J.F. Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends Food Sci. Technol. 2017, 69, 289–305. [Google Scholar]
Species | Solvent | Function | Mechanism | Ref. |
---|---|---|---|---|
Endarachne binghamiae Sargassum siliquastrum Ecklonia cava | A | Anti-melanogenesis | In vitro (B16F10 cells) Mushroom TYR activity (↓) Melanin content (↓) Cellular TYR activity (-) | [16] |
S. siliquastrum E. cava | In vivo (Zebrafish) Melanin content (↓) TYR activity (↓) | |||
Ishige okamurae Yendo | A | Anti-melanogenesis | In vitro (B16F10 cells) Mushroom TYR activity (↓) Melanin content (↓) | [17] |
Sargassum polycystum Padina tenuis | E, H | Anti-melanogenesis | In vitro (HEMs) Mushroom TYR activity (↓) In vivo (Guinea pigs) Melanin content (↓) | [18] |
Schizymenia dubyi | A | Anti-melanogenesis | In vitro (B16F10 cells) Mushroom TYR activity (↓) Melanin content (↓) | [16] |
Sargassum wightii Padina gymnospora | M, C, EAc, A | Antioxidant | In vitro DPPH radical (↓) Ferrous ion chelation | [19] |
Caulerpa peltata | ||||
Gelidiella acerosa | ||||
Fucus vesiculosus (Bladder wrack) | A | Skin anti-aging | In vivo (human cheek skin) Thickness (↑) Elasticity (↑) | [20] |
Blue Lagoon coccoid Filamentous | PBS w/o Mg and Ca (pH 7) | Skin anti-aging Skin barrier function | In vitro (HEKs, HDFs) Gene expression of INV, LOR, TGM-1, FLG (↑) UVA-induced expression of MMP-1 (↓) type 1 collagen (↑) | [21] |
In vivo (Human skin) UVA-induced expression of MMP-1 (↓) type 1 collagen (↑) level of TEWL (↓) | ||||
Botryococcus braunii | A | Antioxidant | In vitro (NIH3T3 cells) ORAC (↑), ROS level (↓) DNA damage (↓) | [22] |
Skin anti-aging | In vitro (HaCaT cells) Expression of AQP3, FLG, INV and type 1 and 3 pro-collagen (↑) | |||
Anti-inflammation | In vitro (RAW 264.7 cells) iNOS expression (↓) NO production (↓) | |||
Chlorella vulgaris | A | Anti-atopic dermatitis | In vivo (NC/Nga mice) DFE-induced AD (↓) Epidermal thickness (↓) Skin hydration (↑) Infiltration of eosinophil and mast cell (↓) Serum chemokine levels of TARC and MDC (↓) mRNA level of IL-4, IFN-γ (↓) | [23] |
Chlorella sorokiniana (ROQUETTE Chlorella sp.) | Spring water | Anti-skin inflammation | In vivo (hairless Skh-1 mice) TPA-induced skin inflammation (↓) macroscopic score (↓) | [24] |
Chlorella vulgaris | Anti-skin cancer | In vivo DMBA-induced skin papillomagenesis (↓) Tumor burden (↓) Cumulative number of skin papillomas (↓) Percent incidence of mice bearing skin papillomas (↓) | [25] | |
Schizochytrium (ROQUETTE Schizochytrium sp.) | Spring water | Anti-skin inflammation | In vivo (hairless Skh-1 mice) TPA-induced skin inflammation (↓) Macroscopic score (↓) | [26] |
Porphyra yezoensis (laver) | M | UV protection | In vitro (HaCaT cells) Cell viability (↑) Apoptosis (↓) Activation of JNK, ERK (↓) | [27] |
Porphyra umbilicalis Vitamins, Ginkgo biloba | A | UV protection | In vivo (HRS⁄ J-hairless mice) UVA/UVB-induced DNA damage (↓), erythema (↓), level of p53, caspase-3 (↓) | [28] |
Furcellaria lumbricalis Fucus vesiculosus | A | Skin anti-aging | In vitro (HDFs) Expression of type 1 pro-collagen (↑) | [29] |
Spirulina maxima Ulva lactuca Lola implexa with other compounds | Skin anti-aging | In vivo (Human skin) Skin hydrating (↑) Skin firming effects (↑) | [30] |
Species | Saccharides | Function | Mechanism | Ref. |
---|---|---|---|---|
Fucoidan | Anti-melanogenesis | In vitro (Mel-Ab cells) Activation of ERK (↓) Melanin content (↓) | [36] | |
Sargassum tenerrimum Turbinaria conoides | Fucoidan | Antioxidant | In vitro DPPH radical (↓) Superoxide radical (↓) High total antioxidant and FRAP ability | [37,38,39,40] |
Costaria costata | Fucoidan | Skin anti-aging | In vitro (HS68 cells) UVB-induced mRNA and pro-tein expression of MMP-1 (↓) type 1 pro-collagen (↑) Activation of ERK, JNK (↓) | [41,42] |
Fucoidan | In vitro (HaCaT cells) Expression of MMP-1 (↓) type 1 pro-collagen (↑) | [43] | ||
Mekabu | Fucoidan | In vivo UVB-induced edema (↓) Thickness of prickle cell layer (↓) MMP-1 activity & expression, IFN-γ (↓) | [44] | |
Ascophyllum nodosum | Fucoidan (16 kDa) by acidic hydrolysis | In vitro (HDFs) IL-1β-induced MMP-9, MMP-3 expression/secretion (↓) TIMP-1 (↑) | [45] | |
Ex vivo (human skin) Elastic fiber degradation (↓) Leukocyte elastase activity (↓) | ||||
Laminaria cichorioides | Fucoidan | Anti-atopic dermatitis | In vivo (Nc/Nga mice) DNCB-induced AD (↓) Clinical severity scores (↓) Scratching counts (↓) Epidermis thickness (↓) Mast cell count (↓) Infiltration of mast cells (↓) Serum histamine (↓) Total IgE (↓) | [46] |
in vitro (Human keratinocytes) AD-associated chemokines TARC, MDC, RANTES (↓) | ||||
Fucoidan | Ex vivo IgE production in PBMC from patients with AD (↓) Immunoglobulin germline transcripts of B cells (↓) IgE-secreting cells count (↓) | [47] | ||
Saccharina japonica | Fucoidan | Moisturizing | Higher moisture-absorption and moisture-retention ability than HA | [48] |
Laminaria cichorioides | Fucoidan (water soluble) | Anti-skin cancer | In vitro (JB6 Cl41 cells) EGF or TPA-induced neoplastic cell transformation (↓) Binding of EGF and EGFR (↓) | [49] |
Saccharina longicruris | Laminaran | Skin anti-aging | In vivo (Kunming SPF mice) UVA+UVB-induced skin dermal thickness (↓) Hyp content (↑) Serum or mRNA level of MMP-1 (↓), TIMP-1 (↑) | [50] |
Dermal tissue-engineered production | Deposition of matrix (↑) | [51] | ||
Ulva pertusa | Ulvans | Antioxidant | In vitro Superoxide (↓) Hydroxyl radicals (↓) Reducing power (↑) Metal chelating ability (↑) | [52] |
Acetylated and benzoylated ulvans | [53] | |||
Ulva sp. | Crude ulvans (57 kDa) LMW ulvan (4 kDa) | Skin anti-aging | In vitro (HDFs) Hyaluronan production Collagen release (-) | [54] |
Porphyra sp. | Porphyran | Antioxidant | In vitro Ferrous ion chelating Reducing power (↑) DPPH radical (↓) Superoxide (↓) | [55] |
Porphyra haitanensis | Porphyran fraction F1 fraction F2 | In vivo (Kumming mice) Antioxidant enzyme activity such as MDA (↓), SOD (↑), GSH-Px (↑) lipid peroxidation (↓) TAOC in different organs (↑) | [56,57] | |
Porphyran with different MW | In vitro DPPH radical (↓) Reducing power (↑) | [58] | ||
LMW Porphyran SD, AD, PD, BD | In vitro DPPH radical (↓) Hydroxyl radicals (↓) Superoxide (↓) | [59] | ||
Porphyra yezoensis | Porphyran | Anti-inflammation | In vitro (RAW264.7 cells) LPS-induced NO, iNOS level, NF-κB activation, TNF-α, nuclear translocation of p65, phosphorylation and degradation of IκB-α (↓) | [60,61] |
Porphyridium | Carrageenan | Anti-melanogenesis | In vivo (Guinea pig) Level of melanosome (↓) | [62] |
Commercial | ι(ІІ)-Carrageenan | Antioxidant Photoprotective | In vitro (HaCaT cells) UVB-induced cell death (↓) DCF-DA: Intracellular ROS (↓) DPPH radical (↓) | [63] |
Eucheuma spinosum (Eucheuma denticulatum) | ι(V)-Carrageenan | |||
Commercial | λ-Carrageenan | |||
Eucheuma cottonii (Kappaphycus alvarezii) | κ(ІІІ)-Carrageenan | |||
Commercial | ι(ІІ)-Carrageenan | |||
κ-COSs (37.7 kDa) | Antioxidant | In vitro Superoxide radical (↓) Hydroxyl radical (↓) DPPH radical (↓) Reducing power (↑) | [64] | |
κ-COSs (1.2 kDa) SD (0.8 kDa) LAD (1.2 kDa) HAD (1.4 kDa PD (1.1 kDa) | In vitro Superoxide (↓) Hydroxyl radical (↓) DPPH radical (↓) Reducing power (↑) Iron ion chelation (↑) Total antioxidant activity (↑) | [65,66] | ||
κ-COSs with CP | Photo-protective | In vitro (HaCaT cells, MEFs) UVB-induced damage (↓) | [67] |
DP | Name | Mode of Linkage | Function | Mechanism | Ref. |
---|---|---|---|---|---|
1 | D-Glucose | - | Anti-melanogenesis | In vitro (B16 cells) TYR activity (↓) Melanin content (-) | [73] |
L-AHG | - | In vitro (B16F10 cells or HEMs) Melanin content (↓), TYR activity (-) | [74,75] | ||
D-AHG | - | Anti-inflammation | In vitro (Raw264.7 cells) LPS-induced NO level (↓) | [75] | |
D-Galactose | - | Melanogenesis | In vitro (B16 cells) Melanin content (-) TYR activity (↑) | [73,75] | |
2 | Agarobiose | Galβ1→4AHG | Antioxidant | In vitro DPPH radical (↓) | [76] |
Anti-inflammation | In vitro (RAW264.7 cell) LPS-induced level of NO, PGE2 (↓) Expression of HO-1 (↑) Protein level of iNOS (↓) | [77] | |||
In vitro (Human Monocytes) LPS-induced Cytokines TNF-α, IL-1b, IL-6 (↓) | |||||
In vitro (Human Monocytes) LPS-induced NO level (↓) mRNA level of COX-2, mPGES-1 (↓) | [78] | ||||
Neoagarobiose | AHGα1→3Gal | Anti-melanogenesis | In vitro (B16 cells) Melanin content (↓) Cellular TYR activity (↓) | [79,80] | |
Moisturizing | Higher moisture-absorption and moisture-retention ability than HA | ||||
3 | Agarotriose | Galβ1→4AHGα1→3Gal | N.a. | - | - |
Neoagarotriose | AHGα1→3Galβ1→4AHG | N.a. | - | - | |
4 | Agarotetraose | Galβ1→4AHGα1→3Galβ1→4AHG | Antioxidant | In vitro DPPH radical (↓) | [76] |
Anti-inflammation | In vitro (RAW264.7 cell) LPS-induced level of NO (↓) | [77] | |||
Neoagarotetraose | AHGα1→3Galβ1→4AHGα1→3Gal | Anti-melanogenesis | In vitro (B16 cells or HEMs) Melanin content (↓) Cellular TYR activity (↓) | [74,81] | |
5 | Agaropentaose | Galβ1→4AHGα1→3Galβ1→4AHGα1→3Gal | N.a. | - | - |
Neoagaropentaose | AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHG | N.a. | - | - | |
6 | Agarohexaose | Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHG | Antioxidant | In vitro DPPH radical (↓) | [76] |
Anti-inflammation | In vitro (RAW264.7 cell) LPS-induced level of NO (↓) | [77] | |||
In vitro (Human Monocytes) LPS-induced NO level (↓) mRNA level of COX-2, mPGES-1 (↓) | [78] | ||||
Neoagarohexaose | AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Gal | Anti-melanogenesis | In vitro (B16 cells or HEMs) Melanin content (↓) Cellular TYR activity (↓) | [74,81,82] | |
7 | Agaroheptaose | Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Gal | N.a. | - | - |
Neoagaroheptaose | AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHG | N.a. | - | - | |
8 | Agarooctaose | Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHG | Antioxidant | In vitro DPPH radical (↓) | [76] |
Neoagarooctaose | AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Gal | N.a. | - | - | |
9 | Agarononaose | Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Gal | N.a. | - | - |
Neoagarononaose | AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHG | N.a. | - | - | |
10 | Agarodecaose | Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHG | Antioxidant | In vitro DPPH radical (↓) | [76] |
Neoagarodecaose | AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Galβ1→4AHGα1→3Gal | N.a. | - | - | |
- | Mixture of AOSs with DP 2, 4, 6 and 8 | [Galβ1→4AHG]n | Anti-melanogenesis | In vitro (B16 cells) Melanin content (↓) Cellular TYR activity (↓) | [82] |
Anti-skin cancer | In vivo (ICR mice) DMBA/TPA-induced tumor incidence (↓), number of papilloma (↓), TPA-induced ear edema (↓) TPA-induced PGE2 (↓) | [78] | |||
Anti-inflammation | In vitro (Human monocytes) LPS-induced NO level (↓) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Lee, J.-E.; Kim, K.H.; Kang, N.J. Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health. Mar. Drugs 2018, 16, 459. https://doi.org/10.3390/md16110459
Kim JH, Lee J-E, Kim KH, Kang NJ. Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health. Marine Drugs. 2018; 16(11):459. https://doi.org/10.3390/md16110459
Chicago/Turabian StyleKim, Ji Hye, Jae-Eun Lee, Kyoung Heon Kim, and Nam Joo Kang. 2018. "Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health" Marine Drugs 16, no. 11: 459. https://doi.org/10.3390/md16110459
APA StyleKim, J. H., Lee, J. -E., Kim, K. H., & Kang, N. J. (2018). Beneficial Effects of Marine Algae-Derived Carbohydrates for Skin Health. Marine Drugs, 16(11), 459. https://doi.org/10.3390/md16110459