New Sulfur-Containing Polyarsenicals from the New Caledonian Sponge Echinochalina bargibanti
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Experimental Structural Characterization of Arsenicins B and C
2.2. Computational NMR Analysis
2.2.1. Arsenicin B
2.2.2. Arsenicin C
2.3. Biological Activity
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Collection and Isolation
3.3. Data of Arsenicin B and Arsenicin C
3.4. Computational Details
3.5. Antimicrobial Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kunito, T.; Kubota, R.; Fujihara, J.; Agusa, T.; Tanabe, S. Arsenic in marine mammals, seabirds and sea Turtles. Rev. Environ. Contam. Toxicol. 2008, 31, 31–69. [Google Scholar]
- Ni Dhubhghaill, O.M.; Sadler, P.J. The structure and reactivity of arsenic compounds: Biological activity and drug design. In Structure and Bonding; Springer: Berlin, Germany, 1991; pp. 129–190. [Google Scholar]
- Chouchane, S.; Snow, E.T. In Vitro effect of arsenical compounds on glutathione-related enzymes. Chem. Res. Toxicol. 2001, 14, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, T.; Kobayashi, Y.; Cui, X.; Hirano, S. A new metabolic pathway of arsenite: Arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch. Toxicol. 2005, 79, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.J. A chemical hypothesis for arsenic methylation in mammals. Chem. Biol. Interact. 1993, 88, 89–114. [Google Scholar] [CrossRef]
- Raab, A.; Wright, S.H.; Jaspars, M.; Meharg, A.A.; Feldmann, J. Pentavalent arsenic can bind to biomolecules. Angew. Chem. Int. Ed. 2007, 46, 2594–2597. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, D.; Rancy, P.C.; Nagarkar, R.P.; Schneider, J.P.; Thorpe, C. Arsenic (III) species inhibit oxidative protein folding in vitro. Biochemistry 2009, 48, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.G.; Xue, X.M.; Kappler, A.; Rosen, B.P.; Meharg, A.A. Linking genes to microbial biogeochemical cycling: Lessons from arsenic. Environ. Sci. Technol. 2017, 51, 7326–7339. [Google Scholar] [CrossRef] [PubMed]
- Schmeisser, E.; Rumpler, A.; Kollroser, M.; Rechberger, G.; Goessler, W.; Francesconi, K.A. Arsenic fatty acids are human urinary metabolites of arsenolipids present in cod liver. Angew. Chem. Int. Ed. 2006, 45, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.R.; Pickford, R.; Thomas-Oates, J.; Jaspars, M.; Feldmann, J. 2-Dimethylarsinothioyl acetic acid identified in a biological sample: The first occurrence of a mammalian arsinothioyl metabolite. Angew. Chem. Int. Ed. Engl. 2004, 43, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Kanaki, K.; Pergantis, S.A. Precursor ion scanning for the non-targeted detection of individual arsenosugars in extracts of marine organisms. Rapid Commun. Mass Spectrom. 2006, 20, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Schmeisser, E.; Raml, R.; Francesconi, K.A.; Kuehnelt, D.; Lindberg, A.L.; Sörösc, C.; Goessler, W. Thio arsenosugars identified as natural constituents of mussels by liquid chromatography-mass spectrometry. Chem. Commun. 2004, 1824–1825. [Google Scholar] [CrossRef] [PubMed]
- Nischwitz, V.; Pergantis, S.A. Identification of the novel thio-arsenosugars DMthioAssugarcarboxyl, DMthioAssugarcarbamate and DMthiAassugaradenine in extracts of giant clam tissues by high-performance liquid chromatography online with electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 3579–3585. [Google Scholar] [CrossRef] [PubMed]
- Conklin, S.D.; Creed, P.A.; Creed, J.T. Detection and quantification of a thio-arsenosugar in marine molluscs by IC-ICP-MS with an emphasis on the interaction of arsenosugars with sulfide as a function of Ph. J. Anal. At. Spectrom. 2006, 21, 869–875. [Google Scholar] [CrossRef]
- Mancini, I.; Guella, G.; Frostin, M.; Hnawia, E.; Laurent, D.; Debitus, C.; Pietra, F. On the first polyarsenic organic compound from Nature: Arsenicin A from the New Caledonian marine sponge Echinochalina bargibanti. Chem. Eur. J. 2006, 12, 8989–8994. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.A.; Rae, D.; Salem, G.; Weir, M.L.; Willis, A.C.; Wild, S.B. Arsenicin A, a natural polyarsenical: Synthesis and crystal structure. Organometallics 2010, 29, 32–33. [Google Scholar] [CrossRef]
- Lu, D.; Coote, M.L.; Ho, J.; Kilah, N.L.; Lin, C.Y.; Salem, G.; Weir, M.L.; Willis, A.C.; Wild, S.B.; Dilda, P.J. Resolution and improved synthesis of (±)-Arsenicin A: A natural adamantane-type tetraarsenical possessing strong anti-acute promelocytic leukemia cell line activity. Organometallics 2012, 31, 1808–1816. [Google Scholar] [CrossRef]
- Mancini, I.; Planchestainer, M.; Defant, A. Synthesis and in-vitro anticancer evaluation of polyarsenicals related to the marine sponge derived Arsenicin A. Sci. Rep. 2017, 7, 11548–11556. [Google Scholar] [CrossRef] [PubMed]
- Mancini, I.; Defant, A. Bioactive poly(arsenic) compounds. In Progress in Molecular and Subcellular Biology; Springer: Berlin, Germany, 2013; pp. 175–195. [Google Scholar]
- Arulmozhiraja, S.; Coote, M.L.; Lu, D.; Salem, G.; Wild, S.B. Origin of the unusual ultraviolet absorption of Arsenicin A. J. Phys. Chem. A 2011, 115, 4530–4534. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Arulmozhiraja, S.; Coote, M.L.; Rae, A.D.; Salem, G.; Willis, A.C.; Wild, S.B.; Benhenda, S.; Breitenbach, V.L.; de Thé, H.; et al. Sulfur derivatives of the natural polyarsenical arsenicin A: Biologically active, organometallic arsenic–sulfur cages related to the minerals realgar and uzonite. Organometallics 2015, 34, 829–840. [Google Scholar] [CrossRef]
- Guella, G.; Mancini, I.; Mariotto, G.; Rossi, B.; Viliani, G. Vibrational analysis as a powerful tool in structure elucidation of polyarsenicals: A DFT-based investigation of arsenicin A. Phys. Chem. Chem. Phys. 2009, 11, 2420–2427. [Google Scholar] [CrossRef] [PubMed]
- Tähtinen, P.; Saielli, G.; Guella, G.; Mancini, I.; Bagno, A. Computational NMR spectroscopy of organoarsenicals and the natural polyarsenic compound arsenicin A. Chem. Eur. J. 2008, 14, 10445–10452. [Google Scholar] [CrossRef] [PubMed]
- Kerr, T.J.; McHale, B.B. Applications in General Microbiology: A Laboratory Manual, 6th ed.; Hunter Textbooks, Winston-Salem Publisher: Winston-Salem, NC, USA, 2001; pp. 202–203. [Google Scholar]
- Motuhi, S.E.; Mehiri, M.; Payri, C.E.; La Barre, S.; Bach, S. Marine Natural Products from New Caledonia—A Review. Mar. Drugs 2016, 14, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural localized molecular orbitals. J. Chem. Phys. 1985, 83, 1736–1740. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinhold, F. Natural bond orbital analysis of near-Hartree-Fock water dimer. J. Chem. Phys. 1983, 78, 4066–4073. [Google Scholar] [CrossRef]
- Jensen, F. The basis set convergence of spin−spin coupling constants calculated by density functional methods. J. Chem. Theory Comput. 2006, 2, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Roslund, M.U.; Tähtinen, P.; Niemitz, M.; Sjöholm, R. Complete assignments of the (1)H and (13)C chemical shifts and J(H,H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr. Res. 2008, 343, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A.; Vreven, T., Jr.; Kudin, K.N.; Burant, J.C.; et al. Gaussian; Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Schreckenbach, G.; Ziegler, T. Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J. Phys. Chem. 1995, 99, 606–611. [Google Scholar] [CrossRef]
- Schreckenbach, G.; Ziegler, T. Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes. Int. J. Quantum Chem. 1997, 61, 899–918. [Google Scholar] [CrossRef]
- Wolff, S.K.; Ziegler, T. Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling. J. Chem. Phys. 1998, 109, 895–905. [Google Scholar] [CrossRef]
- Wolff, S.K.; Ziegler, T.; van Lenthe, E.; Baerends, E.J. Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance. J. Chem. Phys. 1999, 110, 7689–7698. [Google Scholar] [CrossRef] [Green Version]
- Autschbach, J.; Ziegler, T. Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds. J. Chem. Phys. 2000, 113, 936–947. [Google Scholar] [CrossRef]
- Autschbach, J.; Ziegler, T. Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. II. Spin–orbit coupling effects and anisotropies. J. Chem. Phys. 2000, 113, 9410–9418. [Google Scholar] [CrossRef]
C-Atom | δH (ppm), J (Hz) | δC (ppm) | HMBC Correlation with | nOe Enhancement at |
---|---|---|---|---|
Arsenicin B a | ||||
1 | Ha 3.96 (d, 12.4) Hb 2.34 (d, 12.4) | 42.20 t | C-2 | 1-Hb 1-Ha |
2 | Ha 3.46 (dd, 13.5, 1.7) Hb 1.92 (d, 13.5) | 27.40 t | 2-Hb 2-Ha | |
3 | Ha 3.44 (dd, 13.8, 1.7) Hb 1.56 (d, 13.8) | 25.70 t | 3-Hb 3-Ha | |
Arsenicin C | ||||
1 | Ha 3.50 (d, 12.8) Hb 2.02 (dd, 12.8, 1.7) | 45.14 t | 1-Hb 1-Ha | |
2 | Ha 2.99 (dd, 13.7, 1.9) Hb 1.44 (dd, 13.7, 1.7) | 31.40 t | C-1 | 2-Hb 2-Ha |
3 | Ha 3.27(dd, 13.8, 1.9) Hb 1.29 (d, 13.8) | 33.58 t | 3-Hb 3-Ha |
Nucleus | Exptl | (A) | (B) | (C) | σSO |
---|---|---|---|---|---|
C1 | 42.20 | 57.57 | 59.47 | 58.44 | 6.66 |
C2 | 27.40 | 42.57 | 44.05 | 41.40 | 7.37 |
C3 | 25.70 | 41.00 | 42.26 | 39.40 | 6.75 |
H1a | 3.96 | 3.35 | 3.32 | 3.99 | −0.37 |
H1b | 2.34 | 1.98 | 1.96 | 2.41 | −0.25 |
H2a | 3.46 | 3.00 | 2.99 | 3.46 | −0.24 |
H2b | 1.92 | 1.49 | 1.49 | 2.00 | −0.28 |
H3a | 3.44 | 2.92 | 2.89 | 3.26 | −0.30 |
H3b | 1.56 | 1.15 | 1.15 | 1.49 | −0.20 |
MAE (13C) | 15.28 | 16.83 | 14.65 | ||
MAE (1H) | 0.46 | 0.48 | 0.07 | ||
MAE (all) | 5.40 | 5.93 | 4.93 | ||
a (13C) a | 1.0 | 1.0 | 1.2 | ||
b (13C) a | 15.0 | 15.5 | 9.8 | ||
R(13C) | 0.9999 | 0.9999 | 0.9999 | ||
a (1H) a | 0.93 | 0.92 | 0.98 | ||
b (1H) a | −0.26 | −0.25 | 0.05 | ||
R(1H) | 0.9983 | 0.9981 | 0.9948 |
Structure | E (au) | ΔE (kcal/mol) |
---|---|---|
C1 | −9535.03540580 | 1.5 |
C2 | −9535.03778732 | 0.0 |
C3 | −9535.03662772 | 0.7 |
Nucleus | Exptl | C1 | C2 | ||||||
---|---|---|---|---|---|---|---|---|---|
(A) | (B) | (C) | σSO | (A) | (B) | (C) | σSO | ||
C1 | 45.14 | 50.38 | 52.04 | 54.93 | 3.30 | 57.67 | 59.70 | 59.90 | 5.09 |
C2 | 31.40 | 43.25 | 44.90 | 40.87 | 8.90 | 44.16 | 45.84 | 44.27 | 5.96 |
C3 | 33.58 | 46.37 | 47.96 | 45.82 | 5.97 | 47.04 | 48.69 | 46.62 | 6.01 |
H1a | 3.50 | 2.93 | 2.92 | 3.52 | −0.22 | 2.98 | 2.98 | 3.59 | −0.31 |
H1b | 2.02 | 1.70 | 1.69 | 2.08 | −0.23 | 1.60 | 1.62 | 2.25 | −0.35 |
H2a | 2.99 | 2.94 | 2.93 | 3.52 | −0.30 | 2.62 | 2.63 | 3.03 | −0.16 |
H2b | 1.44 | 1.17 | 1.17 | 1.66 | −0.31 | 0.96 | 0.99 | 1.65 | −0.38 |
H3a | 3.27 | 3.39 | 3.38 | 3.72 | −0.22 | 2.90 | 2.88 | 3.24 | −0.23 |
H3b | 1.29 | 1.01 | 1.03 | 1.45 | −0.20 | 0.78 | 0.80 | 1.38 | −0.34 |
MAE (13C) | 9.96 | 11.59 | 10.50 | 12.92 | 14.70 | 13.56 | |||
MAE (1H) | 0.27 | 0.27 | 0.24 | 0.44 | 0.43 | 0.12 | |||
MAE (all) | 3.50 | 4.04 | 3.66 | 4.60 | 5.19 | 4.60 | |||
a (13C) | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | 1.1 | |||
b (13C) | 29.7 | 31.3 | 12.5 | 14.3 | 15.1 | 8.4 | |||
R (13C) | 0.9543 | 0.9574 | 0.9788 | 0.9984 | 0.9988 | 0.9999 | |||
a (1H) | 1.04 | 1.03 | 1.06 | 1.03 | 1.01 | 0.93 | |||
b (1H) | −0.32 | −0.29 | 0.09 | −0.51 | −0.46 | 0.26 | |||
R (1H) | 0.9730 | 0.9724 | 0.9815 | 0.9978 | 0.9979 | 0.9963 |
Exptl | C1 | C2 | |||||
---|---|---|---|---|---|---|---|
(A) | (B) | (C) | (A) | (B) | (C) | ||
2JH1a,H1b | 12.8 | −8.73 | −11.50 | −6.58 | −8.90 | −11.65 | −6.82 |
2JH2a,H2b | 13.7 | −9.80 | −12.69 | −7.52 | −9.87 | −12.70 | −7.69 |
2JH3a,H3b | 13.8 | −9.83 | −12.79 | −7.65 | −9.70 | −12.61 | −7.54 |
4JH1a,H2a | 1.52 | 1.27 | 0.60 | 1.61 | 1.46 | 0.74 | |
4JH1a,H2b | −0.20 | −0.11 | −0.29 | −0.26 | −0.16 | −0.37 | |
4JH1b,H2a | −0.34 | −0.29 | −0.43 | −0.21 | −0.11 | −0.32 | |
4JH1b,H2b | 1.7 | −0.38 | −0.06 | −0.09 | 0.26 | 0.71 | 0.48 |
4JH2a,H3a | 1.9 | 0.04 | 0.52 | 0.31 | 0.36 | 0.91 | 0.57 |
4JH2a,H3b | −0.74 | −0.61 | −0.66 | −0.37 | −0.18 | −0.35 | |
4JH2b,H3a | −0.80 | −0.70 | −0.70 | −0.48 | −0.32 | −0.45 | |
4JH2b,H3b | 1.02 | 0.99 | 0.60 | 1.54 | 1.59 | 0.96 | |
5JH1a,H3a | −0.08 | 0.15 | 0.26 | −0.16 | 0.06 | 0.24 | |
5JH1a,H3b | −0.90 | −0.83 | −0.58 | −0.81 | −0.72 | −0.47 | |
5JH1b,H3a | −0.89 | −0.79 | −0.51 | −0.84 | −0.73 | −0.52 | |
5JH1b,H3b | −1.03 | −0.95 | −0.60 | −1.03 | −0.95 | −0.64 | |
MAE (JH,H) a | 3.1 | 1.3 | 4.4 | 3.0 | 1.1 | 4.2 |
Compound | Weight | S. aureus | E. coli | C. albicans |
---|---|---|---|---|
Arsenicin A a | 10 μg/disc | 24 | 28 | 26 |
5 μg/disc | 23 | n.t. | 23 | |
1 μg/disc | 19 | 17 | 12 | |
Arsenicin B | 10 μg/disc | 15 | n.t. b | 13 |
5 μg/disc | 14 | n.t. | 12 | |
1 μg/disc | 10 | n.t. | n.t. | |
Arsenicin C | 10 μg/disc | 21 | 12 | 16 |
5 μg/disc | 20 | n.t. | 9 | |
1 μg/disc | 10 | 7 | n.t. | |
Gentamycin | 10 μg/disk | 22 | 30 | 22 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tähtinen, P.; Guella, G.; Saielli, G.; Debitus, C.; Hnawia, E.; Mancini, I. New Sulfur-Containing Polyarsenicals from the New Caledonian Sponge Echinochalina bargibanti. Mar. Drugs 2018, 16, 382. https://doi.org/10.3390/md16100382
Tähtinen P, Guella G, Saielli G, Debitus C, Hnawia E, Mancini I. New Sulfur-Containing Polyarsenicals from the New Caledonian Sponge Echinochalina bargibanti. Marine Drugs. 2018; 16(10):382. https://doi.org/10.3390/md16100382
Chicago/Turabian StyleTähtinen, Petri, Graziano Guella, Giacomo Saielli, Cécile Debitus, Edouard Hnawia, and Ines Mancini. 2018. "New Sulfur-Containing Polyarsenicals from the New Caledonian Sponge Echinochalina bargibanti" Marine Drugs 16, no. 10: 382. https://doi.org/10.3390/md16100382
APA StyleTähtinen, P., Guella, G., Saielli, G., Debitus, C., Hnawia, E., & Mancini, I. (2018). New Sulfur-Containing Polyarsenicals from the New Caledonian Sponge Echinochalina bargibanti. Marine Drugs, 16(10), 382. https://doi.org/10.3390/md16100382