Loaded Single-Leg Roman Chair Hold Preferentially Increases Biceps Femoris Activation, Whereas the Nordic Hamstring Exercise Emphasises Semitendinosus Activation in Professional Athletes
Abstract
1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Exercise Protocols
2.3.1. Nordic Hamstring Exercise
2.3.2. Single-Leg Roman Chair Hold Exercise
2.4. EMG Measurement Procedures
2.5. EMG Data Normalisation via MVIC
2.6. Statistical Analyses
3. Results
3.1. Semitendinosus Activation
3.2. Within-Group Comparisons Between Muscles
3.3. Overview of Muscle Activation Patterns in the Exercises
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BF | Biceps femoris |
| BFlh | Biceps femoris long head |
| EMG | Electromyography |
| HSIs | Hamstring strain injuries |
| MVIC | Maximal voluntary isometric contraction |
| NHE | Nordic Hamstring exercise |
| RCH | Single-leg Roman chair-hold exercise |
| SENIAM | Surface Electromyography for Non-invasive Assessment of Muscles |
References
- Gudelis, M.; Pruna, R.; Trujillano, J.; Lundblad, M.; Khodaee, M. Epidemiology of hamstring injuries in 538 cases from an FC Barcelona multi sports club. Physician Sportsmed. 2023, 52, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Opar, D.; Williams, M.; Shield, A. Hamstring Strain Injuries Factors that Lead to Injury and Re-Injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.H.; Fuller, C.W.; Kemp, S.P.; Reddin, D.B. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am. J. Sports Med. 2006, 34, 1297–1306. [Google Scholar] [CrossRef]
- Hernesman, S.C.; Hoch, A.Z.; Vetter, C.S.; Young, C.C. Foot drop in a marathon runner from chronic complete hamstring tear. Clin. J. Sport. Med. 2003, 13, 365–368. [Google Scholar] [CrossRef]
- Rodoplu, C.; Burger, C.; Fischer, J.; Manieu Seguel, J.; Arabacı, R.; Konrad, A. A Single Bout of Foam Rolling After Nordic Hamstring Exercise Improves Flexibility but Has No Effect on Muscle Stiffness or Functional Muscle Parameters. Medicina 2025, 61, 148. [Google Scholar] [CrossRef]
- Koulouris, G.; Connell, D.A.; Brukner, P.; Schneider-Kolsky, M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am. J. Sports Med. 2007, 35, 1500–1506. [Google Scholar] [CrossRef]
- Kenneally-Dabrowski, C.J.B.; Brown, N.A.T.; Lai, A.K.M.; Perriman, D.; Spratford, W.; Serpell, B.G. Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand. J. Med. Sci. Sports 2019, 29, 1083–1091. [Google Scholar] [CrossRef]
- Kujala, U.M.; Orava, S.; Järvinen, M. Hamstring injuries. Current trends in treatment and prevention. Sports Med. 1997, 23, 397–404. [Google Scholar] [CrossRef]
- Thelen, D.; Chumanov, E.; Hoerth, D.; Best, T.; Swanson, S.; Li, L.; Young, M.; Heiderscheit, B. Hamstring Muscle Kinematics during Treadmill Sprinting. Med. Sci. Sports Exerc. 2005, 37, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Roig Pull, M.; Ranson, C. Eccentric muscle actions: Implications for injury prevention and rehabilitation. Phys. Ther. Sport. 2007, 8, 88–97. [Google Scholar] [CrossRef]
- Liu, H.; Garrett, W.E.; Moorman, C.T.; Yu, B. Injury rate, mechanism, and risk factors of hamstring strain injuries in sports: A review of the literature. J. Sport. Health Sci. 2012, 1, 92–101. [Google Scholar] [CrossRef]
- Arnason, A.; Andersen, T.E.; Holme, I.; Engebretsen, L.; Bahr, R. Prevention of hamstring strains in elite soccer: An intervention study. Scand. J. Med. Sci. Sports 2008, 18, 40–48. [Google Scholar] [CrossRef]
- Mjølsnes, R.; Arnason, A.; Østhagen, T.; Raastad, T.; Bahr, R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand. J. Med. Sci. Sports 2004, 14, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.; Thorborg, K.; Nielsen, M.B.; Budtz-Jørgensen, E.; Hölmich, P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: A cluster-randomized controlled trial. Am. J. Sports Med. 2011, 39, 2296–2303. [Google Scholar] [CrossRef] [PubMed]
- van der Horst, N.; Smits, D.W.; Petersen, J.; Goedhart, E.A.; Backx, F.J. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: A randomized controlled trial. Am. J. Sports Med. 2015, 43, 1316–1323. [Google Scholar] [CrossRef]
- Hegyi, A.; Péter, A.; Finni, T.; Cronin, N.J. Region-dependent hamstrings activity in Nordic hamstring exercise and stiff-leg deadlift defined with high-density electromyography. Scand. J. Med. Sci. Sports 2018, 28, 992–1000. [Google Scholar] [CrossRef]
- Bourne, M.N.; Duhig, S.J.; Timmins, R.G.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: Implications for injury prevention. Br. J. Sports Med. 2017, 51, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Opar, D.A.; Williams, M.D.; Al Najjar, A.; Shield, A.J. Muscle activation patterns in the Nordic hamstring exercise: Impact of prior strain injury. Scand. J. Med. Sci. Sports 2016, 26, 666–674. [Google Scholar] [CrossRef]
- Bourne, M.N.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of exercise selection on hamstring muscle activation. Br. J. Sports Med. 2017, 51, 1021–1028. [Google Scholar] [CrossRef]
- Suskens, J.J.M.; Secondulfo, L.; Kiliç, Ö.; Hooijmans, M.T.; Reurink, G.; Froeling, M.; Nederveen, A.J.; Strijkers, G.J.; Tol, J.L. Effect of two eccentric hamstring exercises on muscle architectural characteristics assessed with diffusion tensor MRI. Scand. J. Med. Sci. Sports 2022, 33, 393–406. [Google Scholar] [CrossRef]
- Van Hooren, B.; Bosch, F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? part I: A critical review of the literature. J. Sports Sci. 2017, 35, 2313–2321. [Google Scholar] [CrossRef]
- Van Hooren, B.; Bosch, F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise. J. Sports Sci. 2017, 35, 2322–2333. [Google Scholar] [CrossRef]
- Macdonald, B.; O’Neill, J.; Pollock, N.; Hooren, B. The Single-Leg Roman Chair Hold is More Effective than the Nordic Hamstring Curl in Improving Hamstring Strength-Endurance in Gaelic Footballers with Previous Hamstring Injury. J. Strength. Cond. Res. 2019, 33, 1. [Google Scholar] [CrossRef] [PubMed]
- Ruan, M. “Excessive muscle strain as the direct cause of injury” should not be generalized to hamstring muscle strain injury in sprinting. J. Sport. Health Sci. 2018, 7, 123–124. [Google Scholar] [CrossRef]
- Shield, A.; Murphy, S. Preventing hamstring injuries—Part 1: Is there really an eccentric action of the hamstrings in high speed running and does it matter? Sport. Perform. Sci. Rep. 2018, 1, 1–5. [Google Scholar]
- Van Hooren, B.; Frans, B. Preventing hamstring injuries—Part 2: There is possibly an isometric action of the hamstrings in high-speed running and it does matter. Sport. Perform. Sci. Rep. 2018, 1, 1–5. [Google Scholar]
- Van Hooren, B.; Vanwanseele, B.; van Rossom, S.; Teratsias, P.; Willems, P.; Drost, M.; Meijer, K. Muscle forces and fascicle behavior during three hamstring exercises. Scand. J. Med. Sci. Sports 2022, 32, 997–1012. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European recommendations for surface electromyography. Roessingh Res. Dev. 1999, 8, 13–54. [Google Scholar]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Marshall, P.W.M.; Lovell, R.; Knox, M.F.; Brennan, S.L.; Siegler, J.C. Hamstring Fatigue and Muscle Activation Changes During Six Sets of Nordic Hamstring Exercise in Amateur Soccer Players. J. Strength. Cond. Res. 2015, 29, 3124–3133. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.; Jamnik, V.; Bredin, S.; Shephard, R.; Gledhill, N. The 2021 Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) and electronic Physical Activity Readiness Medical Examination (ePARmed-X+): 2021 PAR-Q+. Health Fit. J. Can. 2021, 14, 83–87. [Google Scholar]
- Burrows, A.P.; Cleather, D.; Mahaffey, R.; Cimadoro, G. Kinetic and Electromyographic Responses to Traditional and Assisted Nordic Hamstring Exercise. J. Strength. Cond. Res. 2020, 34, 2715–2724. [Google Scholar] [CrossRef]
- Hirose, N.; Tsuruike, M.; Higashihara, A. Biceps Femoris Muscle is Activated by Performing Nordic Hamstring Exercise at a Shallow Knee Flexion Angle. J. Sports Sci. Med. 2021, 20, 275–283. [Google Scholar] [CrossRef]
- van den Tillaar, R.; Solheim, J.A.B.; Bencke, J. Comparison of hamstring muscle activation during high-speed running and various hamstring strengthening exercises. Int. J. Sports Phys. Ther. 2017, 12, 718–727. [Google Scholar] [CrossRef]
- Guruhan, S.; Kafa, N.; Ecemis, Z.B.; Guzel, N.A. Muscle Activation Differences During Eccentric Hamstring Exercises. Sports Health 2021, 13, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Hedges, L.V.; Olkin, I. Statistical Methods for Meta-Analysis; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Pieters, D.; Witvrouw, E.; Steyaert, A.; Vanden Bossche, L.; Schuermans, J.; Freitas, S.; Wezenbeek, E. The Time-Course of Hamstring Muscle Passive Stiffness and Perceived Tightness After Strenuous Exercise: Is It Time to Start Using Localized Stiffness Measurements? J. Strength. Cond. Res. 2025, 39, e1279–e1286. [Google Scholar] [CrossRef]
- Yagiz, G.; Monleón, C.; Akaras, E.; Adanir, S.; Liébana, E. Acute Effects of Nordic Hamstring Exercise on Hamstring Stiffness: A Randomised Controlled Trial. J. Clin. Med. 2025, 14, 8677. [Google Scholar] [CrossRef]
- Van Hooren, B.; Vicente-Mampel, J.; Piqueras-Sanchiz, F.; Baraja-Vegas, L.; Bautista, I.J. T2 Hamstring Muscle Activation during the Single-Leg Roman Chair: Impact of Prior Injury. Exerc. Sport. Mov. 2023, 1, 1–8. [Google Scholar] [CrossRef]
- Yagiz, G.; Fredianto, M.; Ulfa, M.; Ariani, I.; Agustin, A.D.; Shida, N.; Moore, E.W.G.; Kubis, H.-P. A retrospective comparison of the biceps femoris long head muscle structure in athletes with and without hamstring strain injury history. PLoS ONE 2024, 19, e0298146. [Google Scholar] [CrossRef] [PubMed]
- Yagiz, G.; Shida, N.; Kuruma, H.; Furuta, M.; Morimoto, K.; Yamada, M.; Uchiyama, T.; Kubis, H.-P.; Owen, J.A. Rugby Players Exhibit Stiffer Biceps Femoris, Lower Biceps Femoris Fascicle Length to Knee Extensors, and Knee Flexors to Extensors Muscle Volume Ratios Than Active Controls. Int. J. Sports Physiol. Perform. 2023, 18, 1030–1037. [Google Scholar] [CrossRef]
- Sahinis, C.; Amiridis, I.G.; Enoka, R.M.; Kellis, E. Differences in activation amplitude between semitendinosus and biceps femoris during hamstring exercises: A systematic and critical review with meta-analysis. J. Sports Sci. 2025, 43, 1054–1069. [Google Scholar] [CrossRef] [PubMed]


| NHE (n = 18) | RCH (n = 18) | p-Value | Effect Size (Hedges’ (Adjusted) g) | |
|---|---|---|---|---|
| Mean average EMG for BF | 46.5 ± 9.6 | 56.8 * ± 16.5 | 0.028 | 0.77 |
| Mean EMG for 1st set for BF | 46.52 ± 9.6 | 42.35 ± 15.2 | 0.331 | 0.33 |
| Mean EMG for 2nd set for BF | Not performed, the first set of results was used for comparison (46.52 ± 9.60) | 55.45 ± 17.0 | 0.060 | 0.65 |
| Mean EMG for 3rd set for BF | Not performed, the first set of results was used for comparison (46.52 ± 9.60) | 72.9 ** ± 22.6 | <0.001 | 1.52 |
| Peak average EMG for BF | 63.38 ± 13.12 | 68.4 ± 20.4 | 0.384 | 0.30 |
| Peak EMG for 1st set for BF | 63.38 ± 13.12 | 52.0 ± 20.9 | 0.059 | 0.65 |
| Peak EMG for 2nd set for BF | Not performed, the first set of results was used for comparison (63.38 ± 13.12) | 67.1 ± 20.6 | 0.522 | 0.22 |
| Peak EMG for 3rd set for BF | Not performed, the first set of results was used for comparison (63.38 ± 13.12) | 86.2 * ± 27.6 | 0.003 | 1.05 |
| Set 1 | Set 2 | Set 3 | p-Values | |
|---|---|---|---|---|
| Mean EMG activity of the BF | 42.4 ± 15.2 | 55.5 ± 17.00 **,α | 72.9 ± 22.6 **,α,β | Set 1 vs. Set 2: < 0.001 Set 1 vs. Set 3: < 0.001 Set 2 vs. Set 3: < 0.001 |
| Peak EMG activity of the BF | 52.0 ± 20.9 | 67.1 ± 20.6 *,α | 86.2 ± 27.6 **,α,β | Set 1 vs. Set 2: 0.002 Set 1 vs. Set 3: < 0.001 Set 2 vs. Set 3: < 0.001 |
| Mean EMG activity of the ST | 34.4 ± 17.4 | 46.5 ± 20.8 **,α,β | 62.5 ± 24.3 **,α,β | Set 1 vs. Set 2: < 0.001 Set 1 vs. Set 3: < 0.001 Set 2 vs. Set 3: < 0.001 |
| Peak EMG activity of the ST | 39.7 ± 21.5 | 55.6 ± 26.6 | 73.2 ± 28.2 | Set 1 vs. Set 2: < 0.001 Set 1 vs. Set 3: < 0.001 Set 2 vs. Set 3: < 0.001 |
| NHE (n = 18) | RCH (n = 18) | p-Value | Effect Size (Hedges’ (Adjusted) g) | |
|---|---|---|---|---|
| Mean average EMG for ST | 53.2 ± 13.7 | 47.8 ± 20.0 | 0.351 | 0.32 |
| Mean EMG for 1st set for ST | 53.2 ** ± 13.7 | 34.4 ± 17.4 | <0.001 | 1.20 |
| Mean EMG for 2nd set for ST | Not performed, the first set of results was used for comparison (53.20 ± 13.67) | 46.5 ± 20.8 | 0.264 | 0.38 |
| Mean EMG for 3rd set for ST | Not performed, the first set of results was used for comparison (53.20 ± 13.67) | 62.5 ± 24.3 | 0.166 | 0.47 |
| Peak average EMG for ST | 70.95 ± 22.10 | 56.2 ± 24.4 | 0.065 | 0.64 |
| Peak EMG for 1st set for ST | 70.95 ** ± 22.10 | 39.7 ± 21.5 | <0.001 | 1.43 |
| Peak EMG for 2nd set for ST | Not performed, the first set of results was used for comparison (70.95 ± 22.10) | 55.6 ± 26.6 | 0.068 | 0.63 |
| Peak EMG for 3rd set for ST | Not performed, the first set of results was used for comparison (70.95 ± 22.10) | 73.2 ± 28.2 | 0.790 | 0.09 |
| BF (n = 18) | ST (n = 18) | p-Value | Effect Size (Hedges’ (Adjusted) g) | |
|---|---|---|---|---|
| Average of the mean EMG for the three sets | 56.9 ± 16.5 | 47.8 ± 20.0 | 0.146 | 0.50 |
| Mean EMG for 1st set | 42.4 ± 15.2 | 34.4 ± 17.4 | 0.153 | 0.49 |
| Mean EMG for 2nd set | 55.5 ± 17.0 | 46.5 ± 20.8 | 0.168 | 0.47 |
| Mean EMG for 3rd set | 72.9 ± 22.6 | 62.5 ± 24.3 | 0.195 | 0.44 |
| Average of the peak EMG for the three sets | 68.4 ± 20.4 | 56.2 ± 24.4 | 0.111 | 0.55 |
| Peak EMG for 1st set | 52.0 ± 20.9 | 39.7 ± 21.5 | 0.091 | 0.58 |
| Peak EMG for 2nd set | 67.1 ± 20.6 | 55.6 ± 26.6 | 0.156 | 0.48 |
| Peak EMG for 3rd set | 86.2 ± 27.6 | 73.2 ± 28.2 | 0.173 | 0.46 |
| BF (n = 18) | ST (n = 18) | p-Value | Effect Size (Hedges’ (Adjusted) g) | |
|---|---|---|---|---|
| Mean EMG for 1st set | 46.5 ± 9.6 | 53.2 ± 13.7 | 0.099 | 0.57 |
| Peak EMG for 1st set | 63.4 ± 13.1 | 71.0 ± 22.1 | 0.220 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yagiz, G.; Yuksel, F.; Monleón, C.; Kubis, H.-P.; Karatay, G.M.; Eler, S.; Akaras, E.; Guzel, N.A.; Liébana, E. Loaded Single-Leg Roman Chair Hold Preferentially Increases Biceps Femoris Activation, Whereas the Nordic Hamstring Exercise Emphasises Semitendinosus Activation in Professional Athletes. Medicina 2026, 62, 146. https://doi.org/10.3390/medicina62010146
Yagiz G, Yuksel F, Monleón C, Kubis H-P, Karatay GM, Eler S, Akaras E, Guzel NA, Liébana E. Loaded Single-Leg Roman Chair Hold Preferentially Increases Biceps Femoris Activation, Whereas the Nordic Hamstring Exercise Emphasises Semitendinosus Activation in Professional Athletes. Medicina. 2026; 62(1):146. https://doi.org/10.3390/medicina62010146
Chicago/Turabian StyleYagiz, Gokhan, Fuat Yuksel, Cristina Monleón, Hans-Peter Kubis, Gokhan Mehmet Karatay, Serdar Eler, Esedullah Akaras, Nevin Atalay Guzel, and Encarnación Liébana. 2026. "Loaded Single-Leg Roman Chair Hold Preferentially Increases Biceps Femoris Activation, Whereas the Nordic Hamstring Exercise Emphasises Semitendinosus Activation in Professional Athletes" Medicina 62, no. 1: 146. https://doi.org/10.3390/medicina62010146
APA StyleYagiz, G., Yuksel, F., Monleón, C., Kubis, H.-P., Karatay, G. M., Eler, S., Akaras, E., Guzel, N. A., & Liébana, E. (2026). Loaded Single-Leg Roman Chair Hold Preferentially Increases Biceps Femoris Activation, Whereas the Nordic Hamstring Exercise Emphasises Semitendinosus Activation in Professional Athletes. Medicina, 62(1), 146. https://doi.org/10.3390/medicina62010146

