From Testis to Retroperitoneum: The Role of Radiomics and Artificial Intelligence for Primary Tumors and Nodal Disease in Testicular Cancer: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
- Full-text available in languages other than English;
- Designed as a systematic review, meta-analysis, comment, letter to the editor, or meeting abstract;
- Published before 2015;
- Conducted on animal or experimental models.
3. Results
3.1. Study Selection and Characteristics
3.2. Primary Tumor Assessment
3.2.1. Ultrasound-Based Radiomics
3.2.2. MRI-Based Radiomics
3.3. CT-Derived Radiomics for Retroperitoneal Nodal Metastasis Detection and Post-Chemotherapy Residual Mass Assessment
3.4. Integrated Models Combining Radiomics with Clinical and Molecular Data
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chavarriaga, J.; Nappi, L.; Papachristofilou, A.; Conduit, C.; Hamilton, R.J. Testicular cancer. Lancet 2025, 406, 76–90. [Google Scholar] [CrossRef]
- Berney, D.M.; Cree, I.; Rao, V.; Moch, H.; Srigley, J.R.; Tsuzuki, T.; Amin, M.B.; Comperat, E.M.; Hartmann, A.; Menon, S.; et al. An introduction to the WHO 5th edition 2022 classification of testicular tumours. Histopathology 2022, 81, 459–466. [Google Scholar] [CrossRef]
- Singla, N.; Bagrodia, A.; Baraban, E.; Fankhauser, C.D.; Ged, Y.M.A. Testicular Germ Cell Tumors: A Review. JAMA 2025, 333, 793–803. [Google Scholar] [CrossRef] [PubMed]
- Ager, M.; Donegan, S.; Boeri, L.; de Castro, J.M.; Donaldson, J.F.; Omar, M.I.; Dimitropoulos, K.; Tharakan, T.; Janisch, F.; Muilwijk, T.; et al. Radiological features characterising indeterminate testes masses: A systematic review and meta-analysis. BJU Int. 2023, 131, 288–300. [Google Scholar] [CrossRef] [PubMed]
- Tsili, A.C.; Sofikitis, N.; Pappa, O.; Bougia, C.K.; Argyropoulou, M.I. An Overview of the Role of Multiparametric MRI in the Investigation of Testicular Tumors. Cancers 2022, 14, 3912. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, A.; Bass, E.B.; Bixler, B.R.; Daneshmand, S.; Kirkby, E.; Marianes, A.; Pierorazio, P.M.; Sharma, R.; Spiess, P.E. Diagnosis and Treatment of Early-Stage Testicular Cancer: AUA Guideline Amendment 2023. J. Urol. 2024, 211, 20–25. [Google Scholar] [CrossRef]
- Schieda, N.; Oto, A.; Allen, B.C.; Akin, O.; Barker, S.J.; Fulgham, P.F.; Gettle, L.M.; Maranchie, J.K.; Patel, B.N.; Schuster, D.M.; et al. ACR Appropriateness Criteria® Staging and Surveillance of Testicular Cancer: 2021 Update. J. Am. Coll. Radiol. JACR 2022, 19, S194–S207. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Lewin, J.; Dufort, P.; Halankar, J.; O’Malley, M.; Jewett, M.A.S.; Hamilton, R.J.; Gupta, A.; Lorenzo, A.; Traubici, J.; Nayan, M.; et al. Applying Radiomics to Predict Pathology of Postchemotherapy Retroperitoneal Nodal Masses in Germ Cell Tumors. JCO Clin. Cancer Inform. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Fang, F.; Sun, Y.; Huang, H.; Huang, Y.; Luo, X.; Yao, W.; Wei, L.; Xie, G.; Wu, Y.; Lu, Z.; et al. Ultrasound-based deep learning radiomics nomogram for risk stratification of testicular masses: A two-center study. J. Cancer Res. Clin. Oncol. 2024, 150, 18. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Chen, S.; Miao, S. Development of an Ultrasound-Based Clinical-Radiomic Nomogram for Predicting Histologic Subtypes in Focal Testicular Tumors. J. Ultrasound Med. 2025, 44, 1457–1471. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, S.; Peng, C.; Zhou, S.; Campo, I.; Bertolotto, M.; Li, Q.; Wang, Z.; Xu, D.; Wang, Y.; et al. Deep learning-based super-resolution US radiomics to differentiate testicular seminoma and non-seminoma: An international multicenter study. Insights Imaging 2025, 16, 165. [Google Scholar] [CrossRef]
- Zhang, P.; Feng, Z.; Cai, W.; You, H.; Fan, C.; Lv, W.; Min, X.; Wang, L. T2-Weighted Image-Based Radiomics Signature for Discriminating Between Seminomas and Nonseminoma. Front. Oncol. 2019, 9, 1330. [Google Scholar] [CrossRef]
- Feliciani, G.; Mellini, L.; Carnevale, A.; Sarnelli, A.; Menghi, E.; Piccinini, F.; Scarpi, E.; Loi, E.; Galeotti, R.; Giganti, M.; et al. The potential role of MR based radiomic biomarkers in the characterization of focal testicular lesions. Sci. Rep. 2021, 11, 3456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Min, X.; Feng, Z.; Kang, Z.; Li, B.; Cai, W.; Fan, C.; Yin, X.; Xie, J.; Lv, W.; et al. Value of Intra-Perinodular Textural Transition Features from MRI in Distinguishing Between Benign and Malignant Testicular Lesions. Cancer Manag. Res. 2021, 13, 839–847. [Google Scholar] [CrossRef]
- Fan, C.; Sun, K.; Min, X.; Cai, W.; Lv, W.; Ma, X.; Li, Y.; Chen, C.; Zhao, P.; Qiao, J.; et al. Discriminating malignant from benign testicular masses using machine-learning based radiomics signature of appearance diffusion coefficient maps: Comparing with conventional mean and minimum ADC values. Eur. J. Radiol. 2022, 148, 110158. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, Z.; Wang, L.; Lv, W.; Liu, Z.; Min, X.; Li, J.; Zhang, J. Comparison and analysis of multiple machine learning models for discriminating benign and malignant testicular lesions based on magnetic resonance imaging radiomics. Front. Med. 2023, 10, 1279622. [Google Scholar] [CrossRef]
- Jian, Y.; Yang, S.; Liu, R.; Tan, X.; Zhao, Q.; Wu, J.; Chen, Y. Radiomics Analysis of Different Machine Learning Models based on Multiparametric MRI to Identify Benign and Malignant Testicular Lesions. Acad. Radiol. 2025, 32, 4061–4081. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, P.; Feng, Y.; Lv, W.; Min, X.; Liu, Z.; Li, J.; Feng, Z. Identification of testicular cancer with T2-weighted MRI-based radiomics and automatic machine learning. BMC Cancer 2025, 25, 563. [Google Scholar] [CrossRef]
- Baessler, B.; Nestler, T.; Pinto Dos Santos, D.; Paffenholz, P.; Zeuch, V.; Pfister, D.; Maintz, D.; Heidenreich, A. Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection. Eur. Radiol. 2020, 30, 2334–2345. [Google Scholar] [CrossRef]
- Fournier, C.; Leguillette, C.; Leblanc, E.; Le Deley, M.C.; Carnot, A.; Pasquier, D.; Escande, A.; Taieb, S.; Ceugnart, L.; Lebellec, L. Diagnostic Value of the Texture Analysis Parameters of Retroperitoneal Residual Masses on Computed Tomographic Scan after Chemotherapy in Non-Seminomatous Germ Cell Tumors. Cancers 2023, 15, 2997. [Google Scholar] [CrossRef]
- Lisson, C.S.; Manoj, S.; Wolf, D.; Lisson, C.G.; Schmidt, S.A.; Beer, M.; Thaiss, W.; Bolenz, C.; Zengerling, F.; Goetz, M. Radiomics and Clinicopathological Characteristics for Predicting Lymph Node Metastasis in Testicular Cancer. Cancers 2023, 15, 5630. [Google Scholar] [CrossRef]
- Scavuzzo, A.; Pasini, G.; Crescio, E.; Jimenez-Rios, M.A.; Figueroa-Rodriguez, P.; Comelli, A.; Russo, G.; Vazquez, I.C.; Araiza, S.M.; Ortiz, D.G.; et al. Radiomics Analyses to Predict Histopathology in Patients with Metastatic Testicular Germ Cell Tumors before Post-Chemotherapy Retroperitoneal Lymph Node Dissection. J. Imaging 2023, 9, 213. [Google Scholar] [CrossRef]
- Li, X.; Ding, R.; Liu, Z.; Teixeira, W.M.S.; Ye, J.; Tian, L.; Li, H.; Guo, S.; Yao, K.; Ma, Z.; et al. A predictive system comprising serum microRNAs and radiomics for residual retroperitoneal masses in metastatic nonseminomatous germ cell tumors. Cell Rep. Med. 2024, 5, 101843. [Google Scholar] [CrossRef] [PubMed]
- Venishetty, N.; Taylor, J.; Xi, Y.; Howard, J.M.; Ng, Y.S.; Wong, D.; Woldu, S.L.; De Leon, A.D.; Pedrosa, I.; Margulis, V.; et al. Testicular Radiomics to Predict Pathology At Time of Postchemotherapy Retroperitoneal Lymph Node Dissection for Nonseminomatous Germ Cell Tumor. Clin. Genitourin. Cancer 2024, 22, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Ozgun, G.; Abdalvand, N.; Ozcan, G.; Nip, K.M.; Khazamipour, N.; Rahmim, A.; Bell, R.; MauriceDror, C.; Soleimani, M.; Chi, K.; et al. Machine Learning Model Integrating Computed Tomography Image-Derived Radiomics and Circulating miRNAs to Predict Residual Teratoma in Metastatic Nonseminoma Testicular Cancer. JCO Clin. Cancer Inform. 2025, 9, e2500105. [Google Scholar] [CrossRef]
- Tateo, V.; Thompson, Z.J.; Gilbert, S.M.; Cortessis, V.K.; Daneshmand, S.; Masterson, T.A.; Feldman, D.R.; Pierorazio, P.M.; Prakash, G.; Heidenreich, A.; et al. Epidemiology and Risk Factors for Testicular Cancer: A Systematic Review. Eur. Urol. 2025, 87, 427–441. [Google Scholar] [CrossRef]
- Khan, M.; Sheehan, P.K.; Bazin, A.; Farooq, A.R.; Leonard, C.; Aleem, U.; Corrigan, L.; McDermott, R. Long-term side effects of testicular cancer and treatment (observational study of mortality and morbidity in testicular cancer survivors). Support. Care Cancer 2025, 33, 413. [Google Scholar] [CrossRef] [PubMed]
- Fosså, S.D.; Haugnes, H.S.; Dahl, A.A.; Kiserud, C.E.; Fosså, A.; Skalleberg, J.; Myklebust, T. Adverse health outcomes and global quality of life in long-term testicular cancer survivors: A longitudinal 30-year perspective. Ann. Oncol. 2023, 34, 1165–1174. [Google Scholar] [CrossRef]
- Lung, P.F.C.; Fang, C.; Jaffer, O.S.; Deganello, A.; Shah, A.; Hedayati, V.; Obaro, A.; Yusuf, G.T.; Huang, D.Y.; Sellars, M.E.; et al. Vascularity of Intra-testicular Lesions: Inter-observer Variation in the Assessment of Non-neoplastic Versus Neoplastic Abnormalities After Vascular Enhancement with Contrast-Enhanced Ultrasound. Ultrasound Med. Biol. 2020, 46, 2956–2964. [Google Scholar] [CrossRef] [PubMed]
- Törzsök, P.; Deininger, S.; Abenhardt, M.; Oswald, D.; Lusuardi, L.; Deininger, C.; Forstner, R.; Meissnitzer, M.; Brandtner, H.; Hecht, S. Discriminating Malignant from Benign Testicular Masses Using Multiparametric Magnetic Resonance Imaging-A Prospective Single-Center Study. J. Clin. Med. 2024, 13, 4390. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.H.; Einhorn, L.H. Testicular cancer–discoveries and updates. N. Engl. J. Med. 2014, 371, 2005–2016. [Google Scholar] [CrossRef]
- Hu, B.; Alsyouf, M.; Farkouh, A.; Cary, C.; Masterson, T.; Einhorn, L.; Adra, N.; Boorjian, S.A.; Kollmannsberger, C.; Schuckman, A.; et al. Accuracy of 18F-Fluorodeoxyglucose Positron Emission Tomography in Early Metastatic Testicular Seminoma: Analysis from the SEMS Trial. J. Urol. 2025, 214, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, L.; Liang, J.; Wen, B.; He, Z.; Xie, Y.; Luo, H.; Yang, Q.; Liu, L.; Luo, D.; et al. Radiomic features add incremental benefit to conventional radiological feature-based differential diagnosis of lung nodules. Eur. Radiol. 2025, 35, 2968–2978. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, H.; Li, Q.; Sun, H.; Guo, L. Discriminating Between Benign and Malignant Solid Ovarian Tumors Based on Clinical and Radiomic Features of MRI. Acad. Radiol. 2023, 30, 814–822. [Google Scholar] [CrossRef]
- Bos, P.; van den Brekel, M.W.M.; Gouw, Z.A.R.; Al-Mamgani, A.; Taghavi, M.; Waktola, S.; Aerts, H.J.; Castelijns, J.A.; Beets-Tan, R.G.; Jasperse, B. Improved outcome prediction of oropharyngeal cancer by combining clinical and MRI features in machine learning models. Eur. J. Radiol. 2021, 139, 109701. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]




| No. | Author, Year | Study Design | Sample Size (n) | Tumor Type | US Technique | Segmentation | Extracted Features | Ground Truth | Validation | Performance |
|---|---|---|---|---|---|---|---|---|---|---|
| 1. | Fang et al., 2024 [12] | Retrospective Multicenter | 275 Training n = 158 Internal validation n = 68 External validation n = 49 | Benign versus malignant | Conventional grayscale 4–12 MHz linear probe | Manual | First and second order n = 1561 | Testicular biopsy Radical orchiectomy | Internal split 70–30% External cohort | Internal validation 85% External validation 80.3% |
| 2. | Lin et al., 2025 [13] | Retrospective Single center | 148 Training n = 104 Validation n = 44 | TGCT versus TNGCT SGCT versus NSGCT | Conventional grayscale 4–15 MHz linear probe | Manual | First and second order n = 464 | Radical orchiectomy | Internal split 70–30% | TGCT versus TNGCT 82% SGCT versus NSGCT 74% |
| 3. | Zhang et al., 2025 [14] | Retrospective Multicenter | 489 Training n = 338 Internal validation n = 92 External validation n = 59 | SGCT versus NSGCT | Conventional grayscale with super resolution reconstruction 7–15 MHz linear probe | Manual | First and second order n = 1552 | Radical orchiectomy | Internal 5-fold cross-validation External cohort | Internal validation 91% External validation 82% |
| No. | Author, Year | Study Design | Sample Size (n) | Tumor Type | MRI Technique | Segmentation | Extracted Features | Ground Truth | Validation | Performance |
|---|---|---|---|---|---|---|---|---|---|---|
| 1. | Zhang et al., 2019 [15] | Retrospective Single center | 39 No separate training and validation cohorts | SGCT versus NSGCT | 3 Tesla T2WI used for analysis | Manual | First and second order n = 851 | Radical orchiectomy | Internal 5-fold cross-validation | SGCT versus NSGCT 97.9% |
| 2. | Feliciani et al. 2021 [16] | Retrospective Single center | 44 No separate training and validation cohorts | TGCT versus TNGCT SGCT versus NSGCT | 1.5 Tesla T2WI used for analysis | Manual | First, second and high order n = 484 | Testicular biopsy Radical orchiectomy | Internal 5-fold cross-validation LASSO feature selection SVM models | TGCT versus TNGCT 89% SGCT versus NSGCT 86% |
| 3. | Zhang et al., 2021 [17] | Retrospective Single center | 80 No separate training and validation cohorts | Benign versus malignant | 3 Tesla T2WI used for analysis | Manual | First order n = 66 | Radical orchiectomy | Internal validation No dataset split or cross-validation | Benign versus malignant 80.7% |
| 4. | Fan et al., 2022 [18] | Retrospective Single center | 101 Training n = 71 Validation n = 30 | Benign versus malignant | 3 Tesla ADC used for analysis | Manual | First and second order n = 851 | Testicular biopsy Radical orchiectomy | Internal split 70–30% Internal 10-fold cross-validation LASSO feature selection | Training 90.4% Validation 86.8% |
| 5. | Feng et al., 2023 [19] | Retrospective Single center | 115 Training n = 81 Validation n = 34 | Benign versus malignant | 3 Tesla T2WI used for analysis | Manual | First and second order n = 1781 | Testicular biopsy Radical orchiectomy | Internal split 70–30% Internal 10-fold cross-validation | Training 98.7% Validation 90.5% |
| 6. | Jian et al., 2025 [20] | Retrospective Single center | 148 Training n = 103 Validation n = 45 | Benign versus malignant | 1.5 Tesla T2WI, ADC, DWI and DCE used for analysis | Manual | First and second order n = 1409 | Radical orchiectomy | Internal split 70–30% Internal 10-fold cross-validation LASSO feature selection | Benign versus malignant 81% |
| 7. | Wang et al., 2025 [21] | Retrospective Single center | 123 Training n = 86 Validation n = 37 | Benign versus malignant | 3 Tesla T2WI used for analysis | Manual | First and second order n = 1781 | Testicular biopsy Radical orchiectomy | Internal split 70–30% Internal 5-fold cross-validation | Training 94.2% Validation 78.4% |
| No. | Author, Year | Study Design | Sample Size (n) | Tumor Type | CT Technique | Segmentation | Extracted Features | Ground Truth | Validation | Performance |
|---|---|---|---|---|---|---|---|---|---|---|
| 1. | Lewin et al., 2018 [10] | Retrospective Single center | 102 No separate training and validation cohorts | Teratoma versus GCT versus fibrosis/necrosis | Contrast-enhanced CT 5 mm slice thickness | Manual | First and second order n = 153 | pcRPLND | Nested 10-fold cross-validation, repeated 100 times | Global accuracy 71.7% |
| 2. | Baessler et al., 2020 [22] | Retrospective Multicenter | 204 Training n = 120 Validation n = 23 External validation n = 61 | Teratoma versus GCT versus fibrosis/necrosis | Contrast-enhanced CT 2–5 mm slice thickness | Semi-automatic | First and second order n = 97 | pcRPLND | Internal 10-fold cross-validation | Training 96% Validation 81% |
| 3. | Fournier et al., 2023 [23] | Retrospective Single center | 149 Training n = 99 Validation n = 50 | Teratoma versus GCT versus fibrosis/necrosis | Contrast-enhanced CT 2 mm slice thickness | Manual | First and second order n = 178 | Retroperitoneal residual mass resection | Internal split 66–33% | Training 85.6% Validation 82.3% |
| 4. | Lisson et al., 2023 [24] | Retrospective Single center | 273 Training n = 191 Validation n = 82 | SGCT versus NSGCT | Contrast-enhanced CT 3 mm slice thickness | Manual | First and second order n = 85 | Clinical relapse | Internal split 70–30% Internal 10-fold cross-validation SMOTE oversampling for the training datasets | Global accuracy 83% |
| 5. | Scavuzzo et al., 2023 [25] | Retrospective Single center | 122 No separate training and validation cohorts | Teratoma versus GCT versus fibrosis/necrosis | Contrast-enhanced CT 2–5 mm slice thickness | Semi-automatic | First and second order n = 851 | pcRPLND | Internal 5-fold cross-validation, repeated 100 times | Global accuracy 85.3% |
| 6. | Li et al., 2024 [26] | Retrospective (training and internal validation) and prospective (external validation) Multicenter | 187 Training n = 108 Validation n = 37 External validation n = 42 | Teratoma versus GCT versus fibrosis/necrosis | Contrast-enhanced CT 2–5 mm slice thickness | Manual | First and second order n = 1130 | pcRPLND | Internal split 70–30% | Global accuracy 81% |
| 7. | Venishetty et al., 2024 [27] | Retrospective Single center | 45 No separate training and validation cohorts | Teratoma versus GCT versus fibrosis/necrosis | Contrast-enhanced CT Slice thickness not reported | Manual | First order Total number of features not reported | pcRPLND | Multiple t-tests with Benjamini–Hochberg correction | No reported accuracy High collinearity 0.87–0.98 |
| 8. | Ozgun et al., 2025 [28] | Retrospective Single center | 111 Training n = 78 Validation n = 33 | Teratoma versus non-teratoma | Contrast-enhanced CT Slice thickness not reported | Manual | First and second order Total number of features not reported | pcRPLND | Internal split 70–30% Nested 10-fold cross-validation | Training 89% Validation 81% |
| Diagnostic Task | Modality | Author, Year | Model | Best Reported Performance | Validation |
|---|---|---|---|---|---|
| Benign versus malignant | US | Fang et al., 2024 [12] | Deep learning radiomics model (ResNet-50) | 80.3% | External validation |
| MRI | Feng et al., 2023 [19] | Machine learning radiomics model (XGBoost) | 90.5% | Internal split (train/test) 70–30% | |
| TGCT versus TNGCT | US | Lin et al., 2025 [13] | Machine learning radiomics model (Multivariate Logistic Regression) | 82% | Internal split (train/test) 70–30% |
| MRI | Feliciani et al. 2021 [16] | Machine learning radiomics model (Support Vector Machine) | 89% | Internal 5-fold cross-validation | |
| SGCT versus NSGCT | US | Zhang et al., 2025 [14] | Deep learning (Generative Adversarial Network) radiomics feature extraction and machine learning (Logistic Regression) classifier | 82% | External validation |
| MRI | Zhang et al., 2019 [15] | Machine learning radiomics model (LASSO Logistic Regression) | 97.9% | Internal 5-fold cross-validation | |
| CT | Lisson et al., 2023 [24] | Machine learning radiomics model (Random Forest) | 83% | Internal split (train/test) 70–30% Internal 10-fold cross-validation | |
| Viable retroperitoneal mass versus fibrosis/necrosis | CT | Scavuzzo et al., 2023 [25] | Machine learning radiomics model (Support Vector Machine) | 85.3% | Internal 5-fold cross-validation |
| Retroperitoneal teratoma versus non-teratoma residual disease | CT | Ozgun et al., 2025 [28] | Machine learning radiomics model (CatBoost) | 81% | Internal split (train/test) 70–30% |
| No. | Author, Year | Imaging Modality | Sample Size (n) | Tumor Type | Integrated Data Types | Integrate Variables | Prediction Task | Modeling Approach | Validation | Performance |
|---|---|---|---|---|---|---|---|---|---|---|
| 1. | Lisson et al., 2023 [24] | Contrast-enhanced computed tomography | n = 273 Retroperitoneal lymph nodes | SGCT and NSGCT | Clinical and biochemical | - Age - AFP - β-hCG - BMI | Preoperative prediction of lymph node metastasis | Random Forest SVM kNN | Internal split 70–30% Internal 10-fold cross-validation SMOTE oversampling | Random Forest combined model 87% |
| 2. | Fang et al., 2024 [12] | Conventional grayscale ultrasound | n = 275 Primary testicular lesions | Benign versus malignant | Clinical and biochemical | - Age - AFP - β-hCG - BMI - Scrotal pain - Comorbidities - CBC | Preoperative prediction of benign versus malignant lesions | Deep learning algorithm | Internal split 70–30% External validation cohort | Deep learning combined model 90.9% |
| 3. | Li et al., 2024 [26] | Contrast-enhanced computed tomography | n = 187 Retroperitoneal residual masses | Teratoma versus GCT versus fibrosis/necrosis | Serum microRNAs | - miR-371a-3p - miR-375-5p | Pre-operative classification of post-chemotherapy residual masses | Logistic Regression | Internal split 70–30% | Logistic Regression combined model 91% |
| 4. | Jian et al., 2025 [20] | Multiparametric magnetic resonance imaging | n = 148 Primary testicular lesions | Benign versus malignant | Clinical and biochemical | - Age - AFP - β-hCG - Size - Laterality | Preoperative prediction of benign versus malignant lesions | Random Forest SVM Logistic Regression kNN | Internal split 70–30% Internal 10-fold cross-validation LASSO feature selection | Logistic Regression combined with tumor size model 88.4% |
| 5. | Lin et al., 2025 [13] | Conventional grayscale ultrasound | n = 148 Primary testicular lesions | TGCT versus TNGCT SGCT versus NSGCT | Clinical and biochemical | - Age - AFP - β-hCG - Size - Cryptorchidism history | Preoperative prediction of testicular tumor subtype | Multivariate logistic regression | Internal split 70–30% | Multivariate logistic regression combined model TGCT versus TNGCT 89% SGCT versus NSGCT 86% |
| 6. | Ozgun et al., 2025 [28] | Contrast-enhanced computed tomography | n = 111 Retroperitoneal residual masses | Teratoma versus non-teratoma | Clinical, biochemical and serum microRNAs | - Age - AFP - β-hCG - Location - miR-371 - miR-375 | Pre-operative classification of post-chemotherapy residual masses | Random Forest SVM CatBoost Gradient Boosting | Internal split 70–30% Nested 10-fold cross-validation | CatBoost combined model 96% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Telecan, T.; Munteanu, V.C.; Gaia-Oltean, A.I.; Crivii, C.-B.; Capraș, R.-D. From Testis to Retroperitoneum: The Role of Radiomics and Artificial Intelligence for Primary Tumors and Nodal Disease in Testicular Cancer: A Systematic Review. Medicina 2026, 62, 125. https://doi.org/10.3390/medicina62010125
Telecan T, Munteanu VC, Gaia-Oltean AI, Crivii C-B, Capraș R-D. From Testis to Retroperitoneum: The Role of Radiomics and Artificial Intelligence for Primary Tumors and Nodal Disease in Testicular Cancer: A Systematic Review. Medicina. 2026; 62(1):125. https://doi.org/10.3390/medicina62010125
Chicago/Turabian StyleTelecan, Teodora, Vlad Cristian Munteanu, Adriana Ioana Gaia-Oltean, Carmen-Bianca Crivii, and Roxana-Denisa Capraș. 2026. "From Testis to Retroperitoneum: The Role of Radiomics and Artificial Intelligence for Primary Tumors and Nodal Disease in Testicular Cancer: A Systematic Review" Medicina 62, no. 1: 125. https://doi.org/10.3390/medicina62010125
APA StyleTelecan, T., Munteanu, V. C., Gaia-Oltean, A. I., Crivii, C.-B., & Capraș, R.-D. (2026). From Testis to Retroperitoneum: The Role of Radiomics and Artificial Intelligence for Primary Tumors and Nodal Disease in Testicular Cancer: A Systematic Review. Medicina, 62(1), 125. https://doi.org/10.3390/medicina62010125

