Comparison of Total Antioxidant Capacity in COPD, Asthma, and Asthma–COPD Overlap Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. General Data
2.2. Total Antioxidant Capacity Assessment
2.3. Ethical Approval
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Groups
3.2. Comparison of TAC Levels of Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogers, L.K.; Cismowski, M.J. Oxidative stress in the lung—The essential paradox. Curr. Opin. Toxicol. 2018, 7, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.J.; Shapiro, S.D.; Pauwels, R.A. Chronic obstructive pulmonary disease: Molecular and cellular mechanisms. Eur. Respir. J. 2003, 22, 672–688. [Google Scholar] [CrossRef] [PubMed]
- Thimmulappa, R.K.; Chattopadhyay, I.; Rajasekaran, S. Oxidative stress mechanisms in the pathogenesis of environmental lung diseases. In Oxidative Stress in Lung Diseases; Springer: Berlin/Heidelberg, Germany, 2019; pp. 103–137. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of COPD. 2024. Available online: https://goldcopd.org (accessed on 1 March 2025).
- Barnes, P.J. Oxidative stress in chronic obstructive pulmonary disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef] [PubMed]
- Kume, H.; Yamada, R.; Sato, Y.; Togawa, R. Airway smooth muscle regulated by oxidative stress in COPD. Antioxidants 2023, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2024. Available online: https://ginasthma.org (accessed on 1 March 2025).
- Kleniewska, P.; Pawliczak, R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed. Pharmacother. 2017, 94, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, S.; Maretto, B.T.; Felix, S.N.; Cirillo, J.V.O.; Araújo, K.A.; Moreira, A.R.; Ayres, S.A.; Laia, R.M.; Cruz, F.M.; Almeida, F.M.; et al. Evaluation of inflammation, remodeling, hyperresponsiveness and oxidative stress in experimental models of asthma–COPD overlap. Eur. Respir. J. 2024, 64 (Suppl. 68), PA4833. [Google Scholar] [CrossRef]
- Mohideen, K.; Chandrasekaran, K.; Veeraraghavan, H.; Faizee, S.H.; Dhungel, S.; Ghosh, S. Meta-analysis of assessment of total oxidative stress and total antioxidant capacity in patients with periodontitis. Dis. Markers 2023, 2023, 9949047. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, A.; Meucci, E.; Ricerca, B.M.; Mancini, A. Total antioxidant capacity: Biochemical aspects and clinical significance. Int. J. Mol. Sci. 2023, 24, 10978. [Google Scholar] [CrossRef] [PubMed]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2018. Available online: https://ginasthma.org (accessed on 1 March 2025).
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of COPD. 2018. Available online: https://goldcopd.org (accessed on 20 March 2025).
- Centers for Disease Control and Prevention (CDC). Smoking Glossary. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/nchs/nhis/tobacco/tobacco_glossary.htm (accessed on 20 March 2025).
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Stanojkovic, I.; Kotur-Stevuljevic, J.; Milenkovic, B.; Spasic, S.; Vujic, T.; Stefanovic, A.; Llic, A.; Ivanisevic, J. Pulmonary function, oxidative stress and inflammatory markers in severe COPD exacerbation. Respir. Med. 2011, 105 (Suppl. 1), S31–S37. [Google Scholar] [CrossRef] [PubMed]
- Kodama, Y.; Kishimoto, Y.; Muramatsu, Y.; Tatebe, J.; Yamamoto, Y.; Hirota, N.; Itoigawa, Y.; Atsuta, R.; Koike, K.; Sato, T.; et al. Antioxidant nutrients in plasma of Japanese patients with COPD, asthma–COPD overlap syndrome and bronchial asthma. Clin. Respir. J. 2017, 11, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Cansiz, K.; Tug, T.; Konuk, S. Oxidant and antioxidant balance in stable COPD patients and during acute COPD exacerbations. Med. Sci. 2020, 9, 609–613. [Google Scholar] [CrossRef]
- Salama, R.H.M.; Elkholy, M.M.; Sadek, S.H.; Mahdy, I.G. Total antioxidant capacity as a marker in predicting severity of COPD. Egypt. J. Bronchol. 2017, 11, 322–326. [Google Scholar] [CrossRef]
- Aydemir, Y.; Aydemir, Ö.; Şengül, A.; Güngen, A.C.; Çoban, H.; Taşdemir, C.; Düzenli, H.; Şehitoğulları, A. Comparison of oxidant/antioxidant balance in COPD and non-COPD smokers. Heart Lung 2019, 48, 566–569. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Shameem, M.; Husain, Q. Altered oxidant-antioxidant levels in the disease prognosis of COPD. Int. J. Tuberc. Lung Dis. 2013, 17, 1104–1109. [Google Scholar] [CrossRef] [PubMed]
- Hlavati, M.; Tomić, S.; Buljan, K.; Buljanović, V.; Feldi, I.; Butković-Soldo, S. Total antioxidant status in stable chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 2411–2419. [Google Scholar] [CrossRef] [PubMed]
- Bekir, S. Association between oxidative stress markers and lung function parameters in stable COPD patients. Turk. J. Vasc. Surg. 2022, 11, 770–774. [Google Scholar]
- Yoon, S.Y.; Kim, T.B.; Baek, S.; Kim, S.; Kwon, H.S.; Lee, Y.S.; Lee, T.; Jang, A.S.; Chang, Y.S.; Cho, S.H.; et al. The impact of total antioxidant capacity on pulmonary function in asthma patients. Int. J. Tuberc. Lung Dis. 2012, 16, 1544–1550. [Google Scholar] [CrossRef] [PubMed]
- Karadogan, B.; Beyaz, S.; Gelincik, A.; Buyukozturk, S.; Arda, N. Evaluation of oxidative stress biomarkers and antioxidant parameters in allergic asthma patients with different level of asthma control. J. Asthma 2022, 59, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Emecen, Ö.; İnal, B.B.; Erdenen, F.; Usta, M.; Aral, H.; Güvenen, G. Evaluation of oxidant/antioxidant status and ECP levels in asthma. Turk. J. Med. Sci. 2010, 40, 889–895. [Google Scholar] [CrossRef]
- Fatani, S.H. Biomarkers of oxidative stress in acute and chronic bronchial asthma. J. Asthma 2014, 51, 578–584. [Google Scholar] [CrossRef] [PubMed]
Variable | n (%) |
---|---|
Gender | |
Male | 47 (61.8) |
Female | 29 (38.2) |
Smoking status | |
Never smoker | 15 (19.7) |
Former smoker | 22 (28.9) |
Current smoker | 39 (51.3) |
Diagnosis | |
Asthma | 26 (%34.2) |
COPD | 30 (%39.5) |
ACO | 20 (%26.3) |
Mean ± SD | |
Age | 55.6 ± 14.4 |
Spirometry | |
FEV1% | 69.9 ± 21.1 |
FVC% | 73.4 ± 19.3 |
FEV1/FVC | 73.3 ± 11.8 |
Total antioxidant level (mmol/L) | 1079.1 ± 261.4 |
TAC Level (mmol/L) Mean ± SD | p Value | |
---|---|---|
Diagnosis | ||
Asthma | 1154.8 ± 310.1 b | 0.192 |
COPD | 1027.9 ± 203.6 a | |
ACO | 1042.4 ± 260.9 b | |
Gender | ||
Male | 1035.6 ± 245.5 | 0.065 |
Female | 1149.6 ± 275.2 | |
Smoking status | ||
Never smoker | 1167.9 ± 254.8 a | 0.960 |
Former smoker | 1091.7 ± 320.9 b | |
Current smoker | 1076.3 ± 261.4 b |
Within-Group Correlations for TAC Levels | ||||||
---|---|---|---|---|---|---|
Eozinofil (rhoS) | p Value | FEV1 (rhoS) | p Value | FEV1/FVC (rhoS) | p Value | |
Asthma | −0.124 | 0.548 | −0.351 | 0.079 | −0.001 | 0.995 |
COPD | −0.117 | 0.537 | −0.282 | 0.132 | −0.003 | 0.986 |
ACO | 0.028 | 0.907 | −0.065 | 0.784 | 0.171 | 0.471 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yüksel Yavuz, M.; Turan, M.O.; Özkanay, H.; Köseoğlu, M. Comparison of Total Antioxidant Capacity in COPD, Asthma, and Asthma–COPD Overlap Patients. Medicina 2025, 61, 1340. https://doi.org/10.3390/medicina61081340
Yüksel Yavuz M, Turan MO, Özkanay H, Köseoğlu M. Comparison of Total Antioxidant Capacity in COPD, Asthma, and Asthma–COPD Overlap Patients. Medicina. 2025; 61(8):1340. https://doi.org/10.3390/medicina61081340
Chicago/Turabian StyleYüksel Yavuz, Melike, Muzaffer Onur Turan, Hayat Özkanay, and Mehmet Köseoğlu. 2025. "Comparison of Total Antioxidant Capacity in COPD, Asthma, and Asthma–COPD Overlap Patients" Medicina 61, no. 8: 1340. https://doi.org/10.3390/medicina61081340
APA StyleYüksel Yavuz, M., Turan, M. O., Özkanay, H., & Köseoğlu, M. (2025). Comparison of Total Antioxidant Capacity in COPD, Asthma, and Asthma–COPD Overlap Patients. Medicina, 61(8), 1340. https://doi.org/10.3390/medicina61081340