Bone Marrow Aspirate Concentrate (BMAC) for Knee Osteoarthritis: A Narrative Review of Clinical Efficacy and Future Directions
Abstract
:1. Introduction
1.1. Background
1.2. Limitations of Conventional Treatments
1.3. Overview and Advantages of Bone Marrow Aspirate Concentrate
- Cartilage Regeneration—MSCs stimulate extracellular matrix (ECM) synthesis and promote chondrocyte differentiation [16].
- Inflammation Modulation—Bioactive factors suppress pro-inflammatory cytokines such as IL-1β and TNF-α, mitigating joint inflammation [13].
- Subchondral Bone Remodeling—BMAC may enhance the osteochondral interface, a critical factor in OA pathophysiology [17].
1.4. Objective of This Review
- Does BMAC facilitate sustained cartilage regeneration and long-term symptom relief in knee OA patients?
- How does BMAC compare with existing intra-articular treatments in terms of clinical and economic outcomes?
- What are the key challenges hindering BMAC’s widespread adoption, and how can these be addressed?
1.5. Review Methodology
- Studies evaluating the clinical efficacy of BMAC in knee OA;
- Articles published in peer-reviewed journals in English;
- Randomized controlled trials (RCTs), cohort studies, systematic reviews, and meta-analyses.
- Studies focusing solely on in vitro or animal models;
- Non-peer-reviewed articles, case reports, and conference abstracts.
2. Current Clinical Applications of BMAC in Knee Treatments
2.1. BMAC in Knee OA
2.1.1. Biological Mechanisms and Clinical Optimization of BMAC in Knee OA
Cartilage Regeneration and Chondrogenesis
Inflammation Modulation and Immunoregulation
Subchondral Bone Remodeling
Optimization of BMAC Preparation and Delivery
2.1.2. Clinical Evidence Supporting BMAC in Knee Osteoarthritis
2.1.3. BMAC for Advanced OA and Subchondral Applications
2.2. BMAC in Cartilage Repair
2.2.1. Clinical Efficacy of BMAC in Cartilage Repair
BMAC-Enhanced Surgical Procedures
2.2.2. Mechanisms of BMAC in Cartilage Regeneration
Growth Factor Signaling in Chondrogenesis
Inflammation Modulation and Cartilage Protection
Enhancing BMAC Efficacy with Biomaterials
2.3. Comparison with Other Treatments
2.3.1. Comparative Efficacy of BMAC vs. PRP, HA
2.3.2. Long-Term Outcomes of BMAC vs. PRP and HA
Sustainability of Clinical Benefits
2.3.3. BMAC vs. Emerging Regenerative Therapies (ADSCs, SVF, Umbilical Cord MSCs)
2.4. Administration Methods
2.4.1. Injection Frequency: Single vs. Repeated Administration
Comparative Efficacy of Single vs. Repeated Injections
Safety Considerations and MSC Viability
2.4.2. Intra-Articular vs. Subchondral Injections
Comparative Efficacy of Intra-Articular and Subchondral Injections
2.4.3. Standardization and Optimization of BMAC Administration
Key Considerations for Standardization
- Cell Concentration and Growth Factor Profiles
- 2.
- Injection Guidance and Delivery MethodImage-guided BMAC delivery is essential for procedural accuracy and therapeutic effectiveness, particularly for subchondral injections. Ultrasound (US) guidance has demonstrated superior precision compared to blind injections (96% vs. 78% accuracy) [47] and is endorsed by the American Academy of Orthopaedic Surgeons (AAOS) for routine use in knee injections [3]. While MRI and fluoroscopy offer high-resolution visualization, they are less accessible and more resource-intensive [3,48,49,50]. Standardizing imaging guidance—including injection depth, anatomical landmarks, and delivery route—is critical to minimize variability, reduce complications, and improve clinical outcomes [51].
- 3.
- Optimal Injection Volume and FrequencyRecommended injection intervals range from 4 to 12 weeks, with some studies suggesting up to six months for sustained symptom relief [35,48]. While current dosing intervals vary across studies, standardized regimens have yet to be established. This issue is further discussed in Section 3.3.
- 4.
- Patient Selection Criteria
3. Discussion
3.1. Key Findings and Comparative Effectiveness
3.1.1. Comparison of BMAC with PRP and HA
3.1.2. BMAC vs. Adipose-Derived Stem Cells (ADSCs)
3.2. Clinical Implications and Standardization Challenges
3.2.1. Need for Standardized BMAC Preparation and Administration
- First spin: 1200 rpm for 10 min (red blood cell separation)
- Injection volume: 5–10 mL per session (adjusted for joint size and OA severity)
3.2.2. Safety and Long-Term Efficacy
3.2.3. Economic Considerations and Cost-Effectiveness
3.3. Limitations and Future Directions
3.3.1. Study Heterogeneity and Short-Term Follow-Up
3.3.2. Long-Term Efficacy and Research Gaps
3.3.3. Comparator Selection and Lack of Standardized Control Groups
- Uniform outcome measures: Standardized clinical and imaging-based assessments;
- Consistent patient selection criteria: Stratification based on OA severity;
- Extended follow-up durations: Long-term studies to evaluate sustained efficacy.
4. Conclusions
5. Future Directions
- Determine optimal MSC concentrations for consistent therapeutic effects.
- Develop standardized centrifugation and processing protocols to improve reproducibility.
- Optimize injection strategies for intra-articular and subchondral applications based on OA severity.
- Conduct large-scale RCTs with ≥5-year follow-ups to assess sustained efficacy.
- Utilize MRI-based imaging to evaluate cartilage preservation.
- Investigate potential risks of repeated injections, including immune response and MSC depletion.
- Improve MSC retention by integrating biomaterial scaffolds, as previously discussed in Section 2.2.2.
- Explore exosome-enriched or genetically modified BMAC formulations for enhanced regenerative signaling.
- Personalize treatment using patient-specific biomarkers to improve outcomes.
- Compare BMAC’s cost-effectiveness with PRP, HA, and surgery.
- Evaluate insurance coverage feasibility and reimbursement models.
- Identify high-benefit patient subgroups to optimize resource allocation.
- Develop biomarker-based stratification to predict treatment response.
- Assess early intervention effects in mild-to-moderate OA.
- Explore adjunct therapies (e.g., exercise, weight management) to enhance BMAC efficacy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dulic, O.; Rasovic, P.; Lalic, I.; Kecojevic, V.; Gavrilovic, G.; Abazovic, D.; Maric, D.; Miskulin, M.; Bumbasirevic, M. Bone Marrow Aspirate Concentrate versus Platelet Rich Plasma or Hyaluronic Acid for the Treatment of Knee Osteoarthritis. Medicina 2021, 57, 1193. [Google Scholar] [CrossRef]
- Rasovic, P.; Dulic, O.; Lalic, I.; Matijevic, R.; Janjic, N.; Tosic, M.; Aleksandric, D.; Abazovic, D.; Miskulin, M.; Matijevic, S.; et al. The role of osteoarthritis severity, BMI and age on clinical efficacy of bone marrow aspirate concentrate in the treatment of knee osteoarthritis. Regen. Med. 2023, 18, 735–747. [Google Scholar] [CrossRef]
- Han, J.H.; Jung, M.; Chung, K.; Jung, S.H.; Choi, C.H.; Kim, S.H. Bone Marrow Aspirate Concentrate Injections for the Treatment of Knee Osteoarthritis: A Systematic Review of Randomized Controlled Trials. Orthop. J. Sports Med. 2024, 12. [Google Scholar] [CrossRef]
- Park, D.; Choi, Y.H.; Kang, S.H.; Koh, H.S.; In, Y. Bone Marrow Aspirate Concentrate versus Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells for Combined Cartilage Regeneration Procedure in Patients Undergoing High Tibial Osteotomy: A Systematic Review and Meta-Analysis. Medicina 2023, 59, 634. [Google Scholar] [CrossRef]
- Riggle, C.; McLellan, M.; Bohlen, H.; Wang, D. Complications of Stem Cell-Based Injections for Knee Osteoarthritis: A Systematic Review. Hss J. 2024. [Google Scholar] [CrossRef]
- Chahla, J.; Dean, C.S.; Moatshe, G.; Pascual-Garrido, C.; Serra Cruz, R.; LaPrade, R.F. Concentrated Bone Marrow Aspirate for the Treatment of Chondral Injuries and Osteoarthritis of the Knee: A Systematic Review of Outcomes. Orthop. J. Sports Med. 2016, 4, 2325967115625481. [Google Scholar] [CrossRef]
- Jin, Q.H.; Chung, Y.W.; Na, S.M.; Ahn, H.W.; Jung, D.M.; Seon, J.K. Bone marrow aspirate concentration provided better results in cartilage regeneration to microfracture in knee of osteoarthritic patients. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 1090–1097. [Google Scholar] [CrossRef]
- Hohmann, E.; Tetsworth, K.; Glatt, V. Platelet-Rich Plasma Versus Corticosteroids for the Treatment of Plantar Fasciitis: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2021, 49, 1381–1393. [Google Scholar] [CrossRef]
- Singh, H.; Knapik, D.M.; Polce, E.M.; Eikani, C.K.; Bjornstad, A.H.; Gursoy, S.; Perry, A.K.; Westrick, J.C.; Yanke, A.B.; Verma, N.N.; et al. Relative Efficacy of Intra-articular Injections in the Treatment of Knee Osteoarthritis: A Systematic Review and Network Meta-analysis. Am. J. Sports Med. 2022, 50, 3140–3148. [Google Scholar] [CrossRef]
- Cushman, D.M.; Ofek, E.; Syed, R.H.; Clements, N.; Gardner, J.E.; Sams, J.M.; Mulvey, J.L.; McCormick, Z.L. Comparison of Varying Corticosteroid Type, Dose, and Volume for the Treatment of Pain in Small- and Intermediate-Size Joint Injections: A Narrative Review. PM&R 2019, 11, 758–770. [Google Scholar]
- Di Matteo, B.; Vandenbulcke, F.; Vitale, N.D.; Iacono, F.; Ashmore, K.; Marcacci, M.; Kon, E. Minimally Manipulated Mesenchymal Stem Cells for the Treatment of Knee Osteoarthritis: A Systematic Review of Clinical Evidence. Stem Cells Int. 2019, 2019, 1735242. [Google Scholar] [CrossRef]
- Xu, L.; Urita, A.; Onodera, T.; Hishimura, R.; Nonoyama, T.; Hamasaki, M.; Liang, D.; Homan, K.; Gong, J.P.; Iwasaki, N. Ultrapurified Alginate Gel Containing Bone Marrow Aspirate Concentrate Enhances Cartilage and Bone Regeneration on Osteochondral Defects in a Rabbit Model. Am. J. Sports Med. 2021, 49, 2199–2210. [Google Scholar] [CrossRef]
- Boffa, A.; Di Martino, A.; Andriolo, L.; De Filippis, R.; Poggi, A.; Kon, E.; Zaffagnini, S.; Filardo, G. Bone marrow aspirate concentrate injections provide similar results versus viscosupplementation up to 24 months of follow-up in patients with symptomatic knee osteoarthritis. A randomized controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 3958–3967. [Google Scholar] [CrossRef]
- Kon, E.; Boffa, A.; Andriolo, L.; Di Martino, A.; Di Matteo, B.; Magarelli, N.; Marcacci, M.; Onorato, F.; Trenti, N.; Zaffagnini, S.; et al. Subchondral and intra-articular injections of bone marrow concentrate are a safe and effective treatment for knee osteoarthritis: A prospective, multi-center pilot study. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 4232–4240. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, M.S.; Park, W.T.; Lee, G.W. Bone Marrow Aspirate Concentrate: Its Uses in Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 3224. [Google Scholar] [CrossRef]
- Filardo, G.; Perdisa, F.; Roffi, A.; Marcacci, M.; Kon, E. Stem cells in articular cartilage regeneration. J. Orthop. Surg. Res. 2016, 11, 42. [Google Scholar] [CrossRef]
- Themistocleous, G.S.; Chloros, G.D.; Kyrantzoulis, I.M.; Georgokostas, I.A.; Themistocleous, M.S.; Papagelopoulos, P.J.; Savvidou, O.D. Effectiveness of a single intra-articular bone marrow aspirate concentrate (BMAC) injection in patients with grade 3 and 4 knee osteoarthritis. Heliyon 2018, 4, e00871. [Google Scholar] [CrossRef]
- Bolia, I.K.; Bougioukli, S.; Hill, W.J.; Trasolini, N.A.; Petrigliano, F.A.; Lieberman, J.R.; Weber, A.E. Clinical Efficacy of Bone Marrow Aspirate Concentrate Versus Stromal Vascular Fraction Injection in Patients With Knee Osteoarthritis: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2022, 50, 1451–1461. [Google Scholar] [CrossRef]
- Hernigou, J.; Vertongen, P.; Rasschaert, J.; Hernigou, P. Role of Scaffolds, Subchondral, Intra-Articular Injections of Fresh Autologous Bone Marrow Concentrate Regenerative Cells in Treating Human Knee Cartilage Lesions: Different Approaches and Different Results. Int. J. Mol. Sci. 2021, 22, 3844. [Google Scholar] [CrossRef] [PubMed]
- El-Jawhari, J.J.; Ilas, D.C.; Jones, W.; Cuthbert, R.; Jones, E.; Giannoudis, P.V. Enrichment and preserved functionality of multipotential stromal cells in bone marrow concentrate processed by vertical centrifugation. Eur. Cell Mater. 2020, 40, 58–73. [Google Scholar] [CrossRef]
- Keeling, L.E.; Belk, J.W.; Kraeutler, M.J.; Kallner, A.C.; Lindsay, A.; McCarty, E.C.; Postma, W.F. Bone Marrow Aspirate Concentrate for the Treatment of Knee Osteoarthritis: A Systematic Review. Am. J. Sports Med. 2022, 50, 2315–2323. [Google Scholar] [CrossRef]
- Shapiro, S.A.; Kazmerchak, S.E.; Heckman, M.G.; Zubair, A.C.; O’Connor, M.I. A Prospective, Single-Blind, Placebo-Controlled Trial of Bone Marrow Aspirate Concentrate for Knee Osteoarthritis. Am. J. Sports Med. 2017, 45, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Pabinger, C.; Lothaller, H.; Kobinia, G.S. Intra-articular injection of bone marrow aspirate concentrate (mesenchymal stem cells) in KL grade III and IV knee osteoarthritis: 4 year results of 37 knees. Sci. Rep. 2024, 14, 2665. [Google Scholar] [CrossRef]
- Subramanyam, K.; Poornima, S.; Kumar, S.; Hasan, Q. Short-Term Clinical Results of Single-Injection Autologous Bone Marrow Aspirate Concentrate (BMAC) as a Therapeutic Option/Tool in Knee Osteoarthritis. Biologics 2024, 4, 218–231. [Google Scholar] [CrossRef]
- Gobbi, A.; Whyte, G.P. Long-term Clinical Outcomes of One-Stage Cartilage Repair in the Knee with Hyaluronic Acid-Based Scaffold Embedded with Mesenchymal Stem Cells Sourced From Bone Marrow Aspirate Concentrate. Am. J. Sports Med. 2019, 47, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Betsch, M.; Schneppendahl, J.; Thuns, S.; Herten, M.; Sager, M.; Jungbluth, P.; Hakimi, M.; Wild, M. Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PLoS ONE 2013, 8, e71602. [Google Scholar] [CrossRef] [PubMed]
- Almeida, H.V.; Eswaramoorthy, R.; Cunniffe, G.M.; Buckley, C.T.; O’Brien, F.J.; Kelly, D.J. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomater. 2016, 36, 55–62. [Google Scholar] [CrossRef]
- Park, Y.B.; Ha, C.W.; Rhim, J.H.; Lee, H.J. Stem Cell Therapy for Articular Cartilage Repair: Review of the Entity of Cell Populations Used and the Result of the Clinical Application of Each Entity. Am. J. Sports Med. 2018, 46, 2540–2552. [Google Scholar] [CrossRef]
- El-Kadiry, A.E.; Lumbao, C.; Salame, N.; Rafei, M.; Shammaa, R. Bone marrow aspirate concentrate versus platelet-rich plasma for treating knee osteoarthritis: A one-year non-randomized retrospective comparative study. BMC Musculoskelet. Disord. 2022, 23, 23. [Google Scholar] [CrossRef]
- Anz, A.W.; Hubbard, R.; Rendos, N.K.; Everts, P.A.; Andrews, J.R.; Hackel, J.G. Bone Marrow Aspirate Concentrate Is Equivalent to Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis at 1 Year: A Prospective, Randomized Trial. Orthop. J. Sports Med. 2020, 8. [Google Scholar] [CrossRef]
- Sadabad, H.N.; Behzadifar, M.; Arasteh, F.; Behzadifar, M.; Dehghan, H.R. Efficacy of Platelet-Rich Plasma versus Hyaluronic Acid for treatment of Knee Osteoarthritis: A systematic review and meta-analysis. Electron. Physician 2016, 8, 2115–2122. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Islam, S.A.; Hossain, M.J.; Arefin, M.S.; Islam, M.I.; Begum, S.A.; Shompa, S.S.; Akhtaruzzaman, A.K.M. Effects of platelet rich plasma in combination with hyaluronic acid in the treatment of primary knee osteoarthritis. J. Natl. Inst. Neurosci. Bangladesh 2019, 5, 137–142. [Google Scholar] [CrossRef]
- Prodromos, C.; Finkle, S.; Rumschlag, T.; Lotus, J. Autologous Mesenchymal Stem Cell Treatment is Consistently Effective for the Treatment of Knee Osteoarthritis: The Results of a Systematic Review of Treatment and Comparison to a Placebo Group. Medicines 2020, 7, 42. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Poggi, A.; Reale, D.; Andriolo, L.; Flanigan, D.C.; Filardo, G. Biologic Augmentation Reduces the Failure Rate of Meniscal Repair: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2021, 9, 2325967120981627. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.; van Eck, C.F.; Velikonja, N.K. Bone marrow aspirate concentrate is more effective than hyaluronic acid and autologous conditioned serum in the treatment of knee osteoarthritis: A retrospective study of 505 consecutive patients. Appl. Sci. 2021, 11, 2932. [Google Scholar] [CrossRef]
- Yanke, A.B.; Yazdi, A.A.; Weissman, A.C.; Wagner, K.R.; Meeker, Z.D.; Condron, N.B.; Darwish, R.Y.; Drager, J.; Danilkowicz, R.M.; Forsythe, B.; et al. A Prospective, Randomized, Double-Blind Clinical Trial to Investigate the Efficacy of Autologous Bone Marrow Aspirate Concentrate During Arthroscopic Meniscectomy in Patients with Early Knee Osteoarthritis. Am. J. Sports Med. 2024, 52, 2963–2971. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Muthu, S.; Ganie, P.A. Does the Source of Mesenchymal Stem Cell Have an Effect in the Management of Osteoarthritis of the Knee? Meta-Analysis of Randomized Controlled Trials. Cartilage 2021, 13 (Suppl. 1), 1532S–1547S. [Google Scholar] [CrossRef]
- Andia, I.; Maffulli, N. Mesenchymal stromal cell products for intra-articular knee injections for conservative management of osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720x21996953. [Google Scholar] [CrossRef]
- Şahin, A.A.; Değirmenci, E.; Özturan, K.E.; Fırat, T.; Kükner, A. Effects of adipose tissue-derived stromal vascular fraction on osteochondral defects treated by hyaluronic acid-based scaffold: An experimental study. Jt. Dis. Relat. Surg. 2021, 32, 347–354. [Google Scholar] [CrossRef]
- Boada-Pladellorens, A.; Avellanet, M.; Pages-Bolibar, E.; Veiga, A. Stromal vascular fraction therapy for knee osteoarthritis: A systematic review. Ther. Adv. Musculoskelet. Dis. 2022, 14, 1759720x221117879. [Google Scholar] [CrossRef]
- Shapiro, S.A.; Arthurs, J.R.; Heckman, M.G.; Bestic, J.M.; Kazmerchak, S.E.; Diehl, N.N.; Zubair, A.C.; O’Connor, M.I. Quantitative T2 MRI Mapping and 12-Month Follow-up in a Randomized, Blinded, Placebo Controlled Trial of Bone Marrow Aspiration and Concentration for Osteoarthritis of the Knees. Cartilage 2019, 10, 432–443. [Google Scholar] [CrossRef]
- Kyriakidis, T.; Pitsilos, C.; Iosifidou, M.; Tzaveas, A.; Gigis, I.; Ditsios, K.; Iosifidis, M. Stem cells for the treatment of early to moderate osteoarthritis of the knee: A systematic review. J. Exp. Orthop. 2023, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, C.; Boffa, A.; Andriolo, L.; Silva, S.; Grigolo, B.; Zaffagnini, S.; Filardo, G. Bone marrow concentrate injections for the treatment of osteoarthritis: Evidence from preclinical findings to the clinical application. Int. Orthop. 2021, 45, 525–538. [Google Scholar] [CrossRef]
- Kon, E.; Boffa, A.; Andriolo, L.; Di Martino, A.; Di Matteo, B.; Magarelli, N.; Trenti, N.; Zaffagnini, S.; Filardo, G. Combined subchondral and intra-articular injections of bone marrow aspirate concentrate provide stable results up to 24 months. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 2511–2517. [Google Scholar] [CrossRef]
- Soundharya, V.; Arthi, R.; Haran, H.; Kumar, S.I.; James, S. Enhanced Bone Marrow Aspirate Concentrate (BMAC) Preparation Strategy in the Management of Chondromalacia Patella: A Case Report. Cureus 2024, 16, e59321. [Google Scholar]
- Rosário, D.A.V.; Faleiro, T.B.; Franco, B.; Daltro, G.C.; Marchetto, R. Comparison between concentrated bone marrow aspirate and corticoid in gluteal tendinopathy. Acta Ortop. Bras. 2021, 29, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Oo, W.M.; Linklater, J.; Siddiq, M.A.B.; Fu, K.; Hunter, D.J. Comparison of ultrasound guidance with landmark guidance for symptomatic benefits in knee, hip and hand osteoarthritis: Systematic review and meta-analysis of randomised controlled trials. Australas. J. Ultrasound Med. 2024, 27, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, R.; DeBaun, M.R.; Fleck, E.; Centeno, C.J.; Kraft, D.; Leibacher, J.; Bieback, K.; Seifried, E.; Dragoo, J.L. Quantitation of progenitor cell populations and growth factors after bone marrow aspirate concentration. J. Transl. Med. 2019, 17, 115. [Google Scholar] [CrossRef]
- Kim, S.J.; Song, D.H.; Park, J.W.; Park, S.; Kim, S.J. Effect of Bone Marrow Aspirate Concentrate-Platelet-Rich Plasma on Tendon-Derived Stem Cells and Rotator Cuff Tendon Tear. Cell Transplant. 2017, 26, 867–878. [Google Scholar] [CrossRef]
- Dragoo, J.L.; Guzman, R.A. Evaluation of the Consistency and Composition of Commercially Available Bone Marrow Aspirate Concentrate Systems. Orthop. J. Sports Med. 2020, 8, 2325967119893634. [Google Scholar] [CrossRef]
- Brozovich, A.; Sinicrope, B.J.; Bauza, G.; Niclot, F.B.; Lintner, D.; Taraballi, F.; McCulloch, P.C. High Variability of Mesenchymal Stem Cells Obtained via Bone Marrow Aspirate Concentrate Compared with Traditional Bone Marrow Aspiration Technique. Orthop. J. Sports Med. 2021, 9, 23259671211058459. [Google Scholar] [CrossRef]
- Ruoss, S.; Nasamran, C.A.; Ball, S.T.; Chen, J.L.; Halter, K.N.; Bruno, K.A.; Whisenant, T.C.; Parekh, J.N.; Dorn, S.N.; Esparza, M.C.; et al. Comparative single-cell transcriptional and proteomic atlas of clinical-grade injectable mesenchymal source tissues. Sci. Adv. 2024, 10, eadn2831. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.J.; Jeon, Y.S.; Park, J.S.; Bae, G.C.; Kim, J.S.; Kim, M.K. Comparison of Bone Marrow Aspirate Concentrate and Allogenic Human Umbilical Cord Blood Derived Mesenchymal Stem Cell Implantation on Chondral Defect of Knee: Assessment of Clinical and Magnetic Resonance Imaging Outcomes at 2-Year Follow-Up. Cell Transplant. 2020, 29, 963689720943581. [Google Scholar] [CrossRef]
- Muckenhirn, K.J.; Kruckeberg, B.M.; Cinque, M.E.; Chahla, J.; DePhillipo, N.N.; Godin, J.A.; LaPrade, R.F. Arthroscopic Inside-Out Repair of a Meniscus Bucket-Handle Tear Augmented with Bone Marrow Aspirate Concentrate. Arthrosc. Tech. 2017, 6, e1221–e1227. [Google Scholar] [CrossRef] [PubMed]
- Ukeba, D.; Ishikawa, Y.; Yamada, K.; Ohnishi, T.; Tachi, H.; Tha, K.K.; Iwasaki, N.; Sudo, H. Bone Marrow Aspirate Concentrate Combined with Ultra-Purified Alginate Bioresorbable Gel Enhances Intervertebral Disc Repair in a Canine Model: A Preclinical Proof-of-Concept Study. Cells 2024, 13, 987. [Google Scholar] [CrossRef]
- Drakos, M.C.; Eble, S.K.; Cabe, T.N.; Patel, K.; Hansen, O.B.; Sofka, C.; Fabricant, P.D.; Deland, J.T. Comparison of Functional and Radiographic Outcomes of Talar Osteochondral Lesions Repaired with Micronized Allogenic Cartilage Extracellular Matrix and Bone Marrow Aspirate Concentrate vs Microfracture. Foot Ankle Int. 2021, 42, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Ling, T.; Zhao, E.; You, M.; Chen, X.; Chen, G.; Zhou, K.; Zhou, Z. The efficacy of core decompression combined with regenerative therapy in early femoral head necrosis: A systematic review and meta-analysis involving 954 subjects. Front. Pharmacol. 2024, 15, 1501590. [Google Scholar] [CrossRef]
- Wang, X.; Hu, L.; Wei, B.; Wang, J.; Hou, D.; Deng, X. Regenerative therapies for femoral head necrosis in the past two decades: A systematic review and network meta-analysis. Stem Cell Res. Ther. 2024, 15, 21. [Google Scholar] [CrossRef]
- Liu, X.N.; Yang, C.-J.; Kim, J.E.; Du, Z.W.; Ren, M.; Zhang, W.; Zhao, H.Y.; Kim, K.O.; Noh, K.-C. Enhanced Tendon-to-Bone Healing of Chronic Rotator Cuff Tears by Bone Marrow Aspirate Concentrate in a Rabbit Model. Clin. Orthop. Surg. 2018, 10, 99–110. [Google Scholar] [CrossRef]
- Imam, M.A.; Holton, J.; Horriat, S.; Negida, A.S.; Grubhofer, F.; Gupta, R.; Narvani, A.; Snow, M. A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in tendon pathology. Sicot J. 2017, 3, 58. [Google Scholar] [CrossRef]
- Du, F.; Wang, Q.; Ouyang, L.; Wu, H.; Yang, Z.; Fu, X.; Liu, X.; Yan, L.; Cao, Y.; Xiao, R. Comparison of concentrated fresh mononuclear cells and cultured mesenchymal stem cells from bone marrow for bone regeneration. Stem Cells Transl. Med. 2021, 10, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Loi, F.; Córdova, L.A.; Zhang, R.; Pajarinen, J.; Lin, T.-H.; Goodman, S.B.; Yao, Z. The effects of immunomodulation by macrophage subsets on osteogenesis in vitro. Stem Cell Res. Ther. 2016, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, A.; Whyte, G.P. One-Stage Cartilage Repair Using a Hyaluronic Acid-Based Scaffold with Activated Bone Marrow-Derived Mesenchymal Stem Cells Compared with Microfracture: Five-Year Follow-up. Am. J. Sports Med. 2016, 44, 2846–2854. [Google Scholar] [CrossRef]
- Aitken, D.; Laslett, L.L.; Cai, G.; Hill, C.; March, L.; Wluka, A.E.; Wang, Y.; Blizzard, L.; Cicuttini, F.; Jones, G. A protocol for a multicentre, randomised, double-blind, placebo-controlled trial to compare the effect of annual infusions of zoledronic acid to placebo on knee structural change and knee pain over 24 months in knee osteoarthritis patients—ZAP2. BMC Musculoskelet Disord. 2018, 19, 217. [Google Scholar] [CrossRef] [PubMed]
- Vilchez-Cavazos, F.; Millán-Alanís, J.M.; Blázquez-Saldaña, J.; Álvarez-Villalobos, N.; Peña-Martínez, V.M.; Acosta-Olivo, C.A.; Simental-Mendía, M. Comparison of the Clinical Effectiveness of Single Versus Multiple Injections of Platelet-Rich Plasma in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2019, 7, 2325967119887116. [Google Scholar] [CrossRef]
- Ruane, J.J.; Ross, A.; Zigmont, V.; McClure, D.; Gascon, G. A Single-Blinded Randomized Controlled Trial of Mesenchymal Stem Cell Therapy for the Treatment of Osteoarthritis of the Knee with Active Control. J. Stem Cells Regen. Med. 2021, 17, 3–17. [Google Scholar]
- Raeissadat, S.A.; Rahimi, M.; Rayegani, S.M.; Moradi, N. Cost-utility analysis and net monetary benefit of Platelet Rich Plasma (PRP), intra-articular injections in compared to Plasma Rich in Growth Factors (PRGF), Hyaluronic Acid (HA) and ozone in knee osteoarthritis in Iran. BMC Musculoskelet. Disord. 2023, 24, 22. [Google Scholar] [CrossRef]
- Richards, M.M.; Maxwell, J.S.; Weng, L.; Angelos, M.G.; Golzarian, J. Intra-articular treatment of knee osteoarthritis: From anti-inflammatories to products of regenerative medicine. Phys. Sportsmed. 2016, 44, 101–108. [Google Scholar] [CrossRef]
- Khurana, A.; Goyal, A.; Kirubakaran, P.; Akhand, G.; Gupta, R.; Goel, N. Efficacy of Autologous Conditioned Serum (ACS), Platelet-Rich Plasma (PRP), Hyaluronic Acid (HA) and Steroid for Early Osteoarthritis Knee: A Comparative Analysis. Indian J. Orthop. 2021, 55 (Suppl. 1), 217–227. [Google Scholar] [CrossRef]
- Cheng, P.G.; Yang, K.D.; Huang, L.G.; Wang, C.H.; Ko, W.S. Comparisons of Cytokines, Growth Factors and Clinical Efficacy between Platelet-Rich Plasma and Autologous Conditioned Serum for Knee Osteoarthritis Management. Biomolecules 2023, 13, 555. [Google Scholar] [CrossRef]
- Shang, Z.; Wanyan, P.; Zhang, B.; Wang, M.; Wang, X. A systematic review, umbrella review, and quality assessment on clinical translation of stem cell therapy for knee osteoarthritis: Are we there yet? Stem Cell Res. Ther. 2023, 14, 91. [Google Scholar] [CrossRef] [PubMed]
Treatment | Mechanism of Action | Advantages | Limitations |
---|---|---|---|
Platelet-Rich Plasma (PRP) [8] | Delivers platelet-derived growth factors to promote tissue healing | Autologous; potential regenerative properties | High variability in preparation; inconsistent long-term efficacy |
Hyaluronic Acid (HA) [9] | Enhances joint lubrication and reduces friction | Provides temporary symptom relief | Effectiveness varies based on OA severity |
Corticosteroids [10] | Suppresses inflammation for short-term pain relief | Rapid pain relief | Potential cartilage degradation with repeated use |
Study | Comparison | Sample Size | Follow-Up Period | Pain Reduction (VAS) | Functional Improvement (IKDC/WOMAC) | Statistical Significance (p-Value) | Key Findings |
---|---|---|---|---|---|---|---|
Themistocleous et al. [17] | BMAC vs. Baseline | 121 | 6–30 months | ↓ 8.33 to 4.49 | ↑ OKS 20.20 to 32.29 | p < 0.001 | A single BMAC injection improved pain and function |
Boffa et al. [13] | BMAC vs. HA | 60 | 24 months | ↓ 2.2 at 12 M, 2.2 at 24 M | IKDC improved for BMAC and declined for HA | p = 0.041 (12 M), p = 0.002 (24 M) | BMAC had superior long-term symptom relief in mild OA |
Di Matteo et al. [11] | BMAC (Review) | 1386 | Various | Improved in most studies | Mixed results across studies | Variable | BMAC is safe but lacks standardization |
Shapiro et al. [22] | BMAC vs. Saline | 25 | 6 months | ↓ Both knees | No significant difference vs. placebo | p > 0.09 | BMAC is safe but has no superior effect vs. saline |
Subramanyam et al. [24] | BMAC vs. Baseline | 132 | 12 months | 95% pain relief | Significant functional improvement | p < 0.0001 | Promising short-term results |
Keeling et al. [21] | BMAC (Review) | 299 | 12.9 months | VAS/NRS improved in 5 studies | No superiority over PRP or HA | Variable | BMAC is effective but costly and not superior |
Study | Treatment Comparison | Follow-Up Duration | WOMAC Improvement (%) | KOOS Improvement (%) | IKDC Score Improvement (%) | VAS Reduction (%) | ICRS Score Improvement | p-Value |
---|---|---|---|---|---|---|---|---|
Gobbi & Whyte (2019) [25] | BMAC + HA Scaffold vs. Other | Mean 8 years (6–10) | +65% | KOOS-Pain: +64% KOOS-Symptoms: +48% KOOS-ADL: +42% KOOS-Sports: +50% KOOS-QOL: +53% | +52% | −90% | Confirmed by second-look arthroscopy | p < 0.001 |
Keeling et al. (2021) [21] | BMAC vs. PRP vs. HA | Mean 12.9 months (6–30) | Not reported | Not reported | +45% | −75% | Not explicitly stated | No significant difference between BMAC and PRP (p > 0.05) |
Jin et al. (2021) [7] | BMAC + MFX vs. MFX alone | 24 months | Not reported | Not reported | Not reported | Not reported | BMAC + MFX: 7.8 ± 3.1 vs. MFX: 6.0 ± 3.6 | p = 0.035 |
Study | Design | Comparison | N | Follow-Up | Outcome Measures | Key Findings |
---|---|---|---|---|---|---|
Dulić et al. (2021) [1] | RCT | BMAC vs. PRP vs. HA | 175 (111/34/30) | 1, 3, 6, 9, and 12 months | VAS, WOMAC, KOOS, and IKDC | BMAC showed significantly greater improvements than PRP and HA in all measures (p < 0.001). PRP > HA, but not statistically significant. |
Anz et al. (2020) [30] | RCT | BMAC vs. PRP | 90 | 1–12 months | WOMAC and IKDC | Both BMAC and PRP improved outcomes significantly (p < 0.001). No difference between groups at any time point. |
El-Kadiry et al. (2022) [29] | Retrospective Comparative | BMAC vs. PRP | 39 (26/13) | Baseline–12 months | VAS, KOOS, and WOMAC | BMAC led to significantly higher improvements than PRP (VAS ↑29%, KOOS ↑54%, WOMAC ↑52%; p < 0.01). |
Sadabad et al. (2016) [31] | Meta-analysis | PRP vs. HA | 722 | Mixed (up to 2 years) | WOMAC | PRP was significantly superior to HA (SMD = –0.75; 95% CI: –1.33 to –0.18). High heterogeneity noted. |
Rahman et al. (2019) [32] | RCT | PRP vs. PRP + HA | 34 | 1 week, 1 and 3 months | VAS and IKDC | Combination therapy (PRP + HA) is significantly better than PRP alone for both pain and function (p = 0.001). |
Therapy | Source | Key Advantages | Limitations |
---|---|---|---|
BMAC (Bone Marrow Aspirate Concentrate) | Bone marrow-derived MSCs |
|
|
PRP (Platelet-Rich Plasma) | Autologous platelets from blood |
|
|
HA (Hyaluronic Acid) | Synthetic or animal-derived hyaluronic acid |
|
|
ACS (Autologous Conditioned Serum) | Blood-derived cytokine-enriched serum |
|
|
Therapy | Cost per Injection ($) [Ref] | Number of Injections Required [Ref] | Insurance Coverage [Ref] | Long-Term Cost Savings [Ref] | Accessibility [Ref] |
---|---|---|---|---|---|
BMAC | $1000–$3000 [21] | 1–2 injections per year [21] | Limited; varies by region [21] | Potential to delay surgery [3] | Requires bone marrow aspiration [21] |
PRP | $500–$2000 [65] | 3–4 injections per year [66] | Partial coverage in some regions [66] | Moderate; symptom relief for 6–12 months [67] | Readily available [66] |
HA | $300–$1500 [68] | 1–2 injections per year [7] | Covered in most healthcare systems [68] | Low; primarily symptomatic relief [66] | Widely available [68] |
ACS | $500–$2000 [69] | Not reported | Rarely covered [21] | Uncertain; limited long-term data [70] | Requires specialized processing [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, D.; Koh, H.-S.; Choi, Y.-H.; Park, I. Bone Marrow Aspirate Concentrate (BMAC) for Knee Osteoarthritis: A Narrative Review of Clinical Efficacy and Future Directions. Medicina 2025, 61, 853. https://doi.org/10.3390/medicina61050853
Park D, Koh H-S, Choi Y-H, Park I. Bone Marrow Aspirate Concentrate (BMAC) for Knee Osteoarthritis: A Narrative Review of Clinical Efficacy and Future Directions. Medicina. 2025; 61(5):853. https://doi.org/10.3390/medicina61050853
Chicago/Turabian StylePark, Dojoon, Hae-Seok Koh, Youn-Ho Choi, and Ilkyu Park. 2025. "Bone Marrow Aspirate Concentrate (BMAC) for Knee Osteoarthritis: A Narrative Review of Clinical Efficacy and Future Directions" Medicina 61, no. 5: 853. https://doi.org/10.3390/medicina61050853
APA StylePark, D., Koh, H.-S., Choi, Y.-H., & Park, I. (2025). Bone Marrow Aspirate Concentrate (BMAC) for Knee Osteoarthritis: A Narrative Review of Clinical Efficacy and Future Directions. Medicina, 61(5), 853. https://doi.org/10.3390/medicina61050853