Circulating Potassium/Magnesium Ratio, Thyroid Stimulating Hormone, Fasting Plasma Glucose, Oxidized LDL/Albumin Ratio, and Urinary Iodine Concentration Are Possible Entities for Screening for Preeclampsia in Low-Resource Settings
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Inclusion and Exclusion Criteria for the Current Study
2.4. Methods
2.5. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Biomarkers Associated with Preeclampsia
3.3. Independent Predictors of Preeclampsia
3.4. The AUC, Optimal Thresholds, Sensitivity, and Specificity of the Independent Predictors of Preeclampsia
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Alb | albumin |
BMI | body mass index |
Ca2+ | calcium ions |
CRP | C-reactive protein |
GGT | gamma glutamate transferase |
HDL | high density lipoprotein |
HDL-c | high density lipoprotein cholesterol |
LDL | low density lipoprotein |
LDL-c | low density lipoprotein cholesterol |
L/WBC% | lymphocyte percentage |
Mg2+ | magnesium ions |
NO | nitric oxide |
OxLDL | oxidized low density lipoprotein |
K+ | potassium ions |
TSH | thyroid stimulating hormone |
T3 | triiodothyronine |
UIC | urinary iodine concentration |
References
- Ives, C.W.; Sinkey, R.; Rajapreyar, I.; Tita, A.T.; Oparil, S. Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 1690–1702. [Google Scholar] [CrossRef] [PubMed]
- Anderson, U.; Olsson, M.; Kristensen, K.; Åkerström, B.; Hansson, S. Review: Biochemical markers to predict preeclampsia. Placenta 2012, 33, S42–S47. [Google Scholar] [CrossRef]
- Kornacki, J.; Wender-Ożegowska, E. Utility of biochemical tests in prediction, diagnostics and clinical management of preeclampsia: A review. Arch. Med. Sci. 2020, 16, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Chaemsaithong, P.; Sahota, D.S.; Poon, L.C. First trimester preeclampsia screening and prediction. Am. J. Obstet. Gynecol. 2022, 226, S1071–S1097.e2. [Google Scholar] [CrossRef]
- Velegrakis, A.; Kouvidi, E.; Fragkiadaki, P.; Sifakis, S. Predictive value of the sFlt-1/PlGF ratio in women with suspected preeclampsia: An update (Review). Int. J. Mol. Med. 2023, 52, 89. [Google Scholar] [CrossRef] [PubMed]
- Akolekar, R.; de Cruz, J.; Foidart, J.; Munaut, C.; Nicolaides, K.H. Maternal plasma soluble fms-like tyrosine kinase-1 and free vascular endothelial growth factor at 11 to 13 weeks of gestation in preeclampsia. Prenat. Diagn. 2010, 30, 191–197. [Google Scholar] [PubMed]
- Crovetto, F.; Figueras, F.; Triunfo, S.; Crispi, F.; Rodriguez-Sureda, V.; Dominguez, C.; Llurba, E.; Gratacós, E. First trimester screening for early and late preeclampsia based on maternal characteristics, biophysical parameters, and angiogenic factors. Prenat. Diagn. 2015, 35, 183–191. [Google Scholar]
- Fillion, A.; Boutin, A.; Giguère, Y.; Forest, J.-C.; Ghesquière, L.; Bujold, E. First-Trimester Soluble fms-like Tyrosine Kinase 1 (sFlt-1) for the Prediction of Preterm Preeclampsia. J. Obstet. Gynaecol. Can. 2024, 47, 102753. [Google Scholar] [CrossRef]
- Serra, B.; Mendoza, M.; Scazzocchio, E.; Meler, E.; Nolla, M.; Sabrià, E.; Rodríguez, I.; Carreras, E. A new model for screening for early-onset preeclampsia. Am. J. Obstet. Gynecol. 2020, 222, 608.e1–608.e18. [Google Scholar] [CrossRef]
- Schneuer, F.J.; Nassar, N.; Guilbert, C.; Tasevski, V.; Ashton, A.W.; Morris, J.M.; Roberts, C.L. First trimester screening of serum soluble fms-like tyrosine kinase-1 and placental growth factor predicting hypertensive disorders of pregnancy. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2013, 3, 215–221. [Google Scholar] [CrossRef]
- Verlohren, S.; Galindo, A.; Schlembach, D.; Zeisler, H.; Herraiz, I.; Moertl, M.G.; Pape, J.; Dudenhausen, J.W.; Denk, B.; Stepan, H. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am. J. Obstet. Gynecol. 2010, 202, 161.e1–161.e11. [Google Scholar]
- Nikuei, P.; Rajaei, M.; Roozbeh, N.; Mohseni, F.; Poordarvishi, F.; Azad, M.; Haidari, S. Diagnostic accuracy of sFlt1/PlGF ratio as a marker for preeclampsia. BMC Pregnancy Childbirth 2020, 20, 80. [Google Scholar]
- Flint, E.J.; Cerdeira, A.S.; Redman, C.W.; Vatish, M. The role of angiogenic factors in the management of preeclampsia. Acta Obstet. Gynecol. Scand. 2019, 98, 700–707. [Google Scholar] [PubMed]
- Eze, S.C.; Ododo, N.A.; Ugwu, E.O.; Enebe, J.T.; Onyegbule, O.A.; Eze, I.O.; Ezem, B.U. Serum selenium levels of pre-eclamptic and normal pregnant women in Nigeria: A comparative study. PLoS ONE 2020, 15, e0238263. [Google Scholar]
- Abel, M.H.; Caspersen, I.H.; Sengpiel, V.; Jacobsson, B.; Meltzer, H.M.; Magnus, P.; Alexander, J.; Brantsæter, A.L. Insufficient maternal iodine intake is associated with subfecundity, reduced foetal growth, and adverse pregnancy outcomes in the Norwegian Mother, Father and Child Cohort Study. BMC Med. 2020, 18, 211. [Google Scholar]
- Lopez-Jaramillo, P.; Barajas, J.; Rueda-Quijano, S.M.; Lopez-Lopez, C.; Felix, C. Obesity and Preeclampsia: Common Pathophysiological Mechanisms. Front. Physiol. 2018, 9, 1838. [Google Scholar]
- Magee, L.A.; Brown, M.A.; Hall, D.R.; Gupte, S.; Hennessy, A.; Karumanchi, S.A.; Kenny, L.C.; McCarthy, F.; Myers, J.; Poon, L.C.; et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2022, 27, 148–169. [Google Scholar]
- Muntner, P.; Shimbo, D.; Carey, R.M.; Charleston, J.B.; Gaillard, T.; Misra, S.; Myers, M.G.; Ogedegbe, G.; Schwartz, J.E.; Townsend, R.R.; et al. Measurement of Blood Pressure in Humans: A Scientific Statement from the American Heart Association. Hypertension 2019, 73, e35–e66. [Google Scholar] [PubMed]
- Ukah, U.V.; De Silva, D.A.; Payne, B.; Magee, L.A.; Hutcheon, J.A.; Brown, H.; Ansermino, J.M.; Lee, T.; von Dadelszen, P. Prediction of adverse maternal outcomes from pre-eclampsia and other hypertensive disorders of pregnancy: A systematic review. Pregnancy Hypertens. 2018, 11, 115–123. [Google Scholar]
- Stepan, H.; Galindo, A.; Hund, M.; Schlembach, D.; Sillman, J.; Surbek, D.; Vatish, M. Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound Obstet. Gynecol. 2023, 61, 168–180. [Google Scholar]
- American College of Obstetricians and Gynecologists. ACOG Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020, 135, e237–e260. [Google Scholar]
- Andermann, A.; Blancquaert, I.; Beauchamp, S.; Dery, V. Revisiting Wilson and Jungner in the genomic age: A review of screening criteria over the past 40 years. Bull. World Health Organ. 2008, 86, 317–319. [Google Scholar] [PubMed]
- Ayuk, J.; Gittoes, N.J. Contemporary view of the clinical relevance of magnesium homeostasis. Ann. Clin. Biochem. 2014, 51 Pt 2, 179–188. [Google Scholar] [PubMed]
- Institute of Medicine Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate. The National Academies Collection: Reports funded by National Institutes of Health. In Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
- Van Laecke, S. Hypomagnesemia and hypermagnesemia. Acta Clin. Belg. 2019, 74, 41–47. [Google Scholar] [PubMed]
- Whang, R.; Ryder, K.W. Frequency of hypomagnesemia and hypermagnesemia. Requested vs routine. JAMA 1990, 263, 3063–3064. [Google Scholar]
- Maier, J.A.M. Endothelial cells and magnesium: Implications in atherosclerosis. Clin. Sci. 2012, 122, 397–407. [Google Scholar]
- Manjareeka, M.; Nanda, S. Serum electrolyte levels in preeclamptic women: A comparative study. Int. J. Pharma Bio Sci. 2012, 3, 572–578. [Google Scholar]
- Eslamzadeh, A.; Kashani, S.M.A.; Asadi, N.; Bazmi, S.; Rezaei, S.; Karimimoghadam, Z.; Nowrouzi-Sohrabi, P.; Tabrizi, R. Serum Calcium and Magnesium Levels in Women Presenting with Pre-eclampsia: A Systematic Review and Meta-analysis Based on Observational Studies. Galen Med. J. 2023, 12, e3151. [Google Scholar]
- Atiba, A.S.; Akindele, R.A.; Bello, N.O.; Kolawole, O.O.; Fasanu, A.O. Serum Magnesium Levels in Second and Third Trimesters of Pregnancy in Patients That Developed Pre-Eclampsia and Feto-Maternal Outcome. Open J. Obstet. Gynecol. 2020, 10, 108–117. [Google Scholar]
- Adekanle, D.A.; Adeyemo, O.T.; Adeniyi, A.A.; Okere, R.A.; Jimoh, A.K.; Adebara, I.O.; Bakare, A.; Atiba, A.S.; Adelekan, A.; Olofinbiyi, B.A. Serum magnesium levels in healthy pregnant and pre-eclamptic patients—A cross-section study. Open J. Obstet. Gynecol. 2014, 4, 561–568. [Google Scholar]
- Ephraim, R.K.D.; Osakunor, D.N.M.; Denkyira, S.W.; Eshun, H.; Amoah, S.; Anto, E.O. Serum calcium and magnesium levels in women presenting with pre-eclampsia and pregnancy-induced hypertension: A case-control study in the Cape Coast metropolis, Ghana. BMC Pregnancy Childbirth 2014, 14, 390. [Google Scholar]
- Tesfa, E.; Munshea, A.; Nibret, E.; Gizaw, S.T. Association of maternal serum magnesium with pre-eclampsia in African pregnant women: A systematic review and meta-analysis. Int. Health 2023, 16, 14–22. [Google Scholar]
- Kostov, K.; Halacheva, L. Role of Magnesium Deficiency in Promoting Atherosclerosis, Endothelial Dysfunction, and Arterial Stiffening as Risk Factors for Hypertension. Int. J. Mol. Sci. 2018, 19, 1724. [Google Scholar] [CrossRef]
- AlShanableh, Z.; Ray, E.C. Magnesium in hypertension: Mechanisms and clinical implications. Front. Physiol. 2024, 15, 1363975. [Google Scholar]
- Sontia, B.; Touyz, R.M. Role of magnesium in hypertension. Arch. Biochem. Biophys. 2007, 458, 33–39. [Google Scholar] [PubMed]
- Ferrè, S.; Baldoli, E.; Leidi, M.; Maier, J.A. Magnesium deficiency promotes a pro-atherogenic phenotype in cultured human endothelial cells via activation of NFkB. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2010, 1802, 952–958. [Google Scholar]
- Rodríguez-Ortiz, M.E.; Gómez-Delgado, F.; de Larriva, A.P.A.; Canalejo, A.; Gómez-Luna, P.; Herencia, C.; López-Moreno, J.; Rodríguez, M.; López-Miranda, J.; Almadén, Y. Serum Magnesium is associated with Carotid Atherosclerosis in patients with high cardiovascular risk (CORDIOPREV Study). Sci. Rep. 2019, 9, 8013. [Google Scholar]
- Maier, J.A. Low magnesium and atherosclerosis: An evidence-based link. Mol. Asp. Med. 2003, 24, 137–146. [Google Scholar]
- Businge, C.B.; Longo-Mben, B.; Adeniyi, O.V.; Babe, V.N.; Kitambala, A.; Muak, M.M.; Nk, M.S.; Ts, C.M.; Vangu, R.; Di, E.M.; et al. Iodine deficiency in pregnancy as a predictor of Sub-clinical hypothyroidism, preeclampsia and future cardiovascular disease. Asian J. Clin. Nutr. 2017, 9, 118–123. [Google Scholar]
- Cuellar-Rufino, S.; Navarro-Meza, M.; García-Solís, P.; Xochihua-Rosas, I.; Arroyo-Helguera, O. Iodine levels are associated with oxidative stress and antioxidant status in pregnant women with hypertensive disease. Nutr. Hosp. 2017, 34, 661–666. [Google Scholar]
- Gajewska, K.; Laskowska, M.; Blazewicz, A. Urinary iodine as an important indicator for preeclampsia: A Polish perspective. Curr. Issues Pharm. Med. Sci. 2021, 34, 154–159. [Google Scholar] [CrossRef]
- Andersson, M.; Karumbunathan, V.; Zimmermann, M.B. Global iodine status in 2011 and trends over the past decade. J. Nutr. 2012, 142, 744–750. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.N.; Andersson, M.; Zimmermann, M.B. Global iodine nutrition: Where do we stand in 2013? Thyroid 2013, 23, 523–528. [Google Scholar] [CrossRef] [PubMed]
- König, F.; Andersson, M.; Hotz, K.; Aeberli, I.; Zimmermann, M.B. Ten repeat collections for urinary iodine from spot samples or 24-hour samples are needed to reliably estimate individual iodine status in women. J. Nutr. 2011, 141, 2049–2054. [Google Scholar] [CrossRef]
- An, D.; Yang, R.; Du, Y.; Wang, X.; Yang, Y.; Guo, W.; Yang, J.; Meng, D.; Gao, W.; Zhang, J.; et al. Variations in the Urinary Iodine Concentration and Urinary Iodine/Creatinine Ratio among Preschool Children. Int. J. Endocrinol. 2023, 2023, 6779094. [Google Scholar] [CrossRef]
- WHO Secretariat; Andersson, M.; De Benoist, B.; Delange, F.; Zupan, J. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: Conclusions and recommendations of the Technical Consultation. Public Health Nutr. 2007, 10, 1606–1611. [Google Scholar] [PubMed]
- Rasmussen, L.B.; Ovesen, L.; Christiansen, E. Day-to-day and within-day variation in urinary iodine excretion. Eur. J. Clin. Nutr. 1999, 53, 401–407. [Google Scholar] [CrossRef]
- Lazarus, J.H. Thyroid Regulation and Dysfunction in the Pregnant Patient. In Otorhinolaryngology, Head and Neck Surgery; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Vidal, Z.E.; Cuellar Rufino, S.; Hernández Tlaxcalteco, E.; Hernández Trejo, C.; Martínez Campos, R.; Navarro Meza, M.; Coutiño Rodríguez, R.; Arroyo-Helguera, O. Oxidative stress increased in pregnant women with iodine deficiency. Biol. Trace Elem. Res. 2014, 157, 211–217. [Google Scholar] [CrossRef]
- Redman, C.W.; Sargent, I.L. Placental debris, oxidative stress and pre-eclampsia. Placenta 2000, 21, 597–602. [Google Scholar] [CrossRef]
- Winkler, R. Iodine—A Potential Antioxidant and the Role of Iodine/Iodide in Health and Disease. Nat. Sci. 2015, 7, 548–557. [Google Scholar] [CrossRef]
- Winkler, R.; Griebenow, S.; Wonisch, W. Effect of iodide on total antioxidant status of human serum. Cell Biochem. Funct. 2000, 18, 143–146. [Google Scholar] [PubMed]
- Lazarus, J. Thyroid Regulation and Dysfunction in the Pregnant Patient. In Endotext [Internet]; Feingold, K.R., Ahmed, S.F., Anawalt, B., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. Available online: https://www.ncbi.nlm.nih.gov/books/NBK279059/ (accessed on 22 March 2025).
- Wilson, K.L.; Casey, B.M.; McIntire, D.D.; Halvorson, L.M.; Cunningham, F.G. Subclinical thyroid disease and the incidence of hypertension in pregnancy. Obstet. Gynecol. 2012, 119 Pt 1, 315–320. [Google Scholar] [CrossRef]
- Lundgaard, M.H.; Sinding, M.M.; Sørensen, A.N.; Handberg, A.; Andersen, S.L. Maternal hypothyroidism and the risk of preeclampsia: A Danish national and regional study. Matern. Health Neonatol. Perinatol. 2024, 10, 16. [Google Scholar] [PubMed]
- Hajifoghaha, M.; Teshnizi, S.H.; Forouhari, S.; Dabbaghmanesh, M.H. Association of thyroid function test abnormalities with preeclampsia: A systematic review and meta-analysis. BMC Endocr. Disord. 2022, 22, 240. [Google Scholar] [CrossRef]
- Canzoneri, B.; Lewis, D.; Groome, L.; Wang, Y. Increased neutrophil numbers account for leukocytosis in women with preeclampsia. Am. J. Perinatol. 2009, 26, 729–732. [Google Scholar]
- Kang, Q.; Li, W.; Yu, N.; Fan, L.; Zhang, Y.; Sha, M.; Xiao, J.; Wu, J.; Kang, Q.; Chen, S. Predictive role of neutrophil-to-lymphocyte ratio in preeclampsia: A meta-analysis including 3982 patients. Pregnancy Hypertens. 2020, 20, 111–118. [Google Scholar]
- Tsukimori, K.; Nakano, H.; Wake, N. Difference in neutrophil superoxide generation during pregnancy between preeclampsia and essential hypertension. Hypertension 2007, 49, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Phung, T.; Vadachkoria, S.; Muy-Rivera, M.; Sanchez, S.; Williams, M. Oxidized low-density lipoprotein (Oxidized LDL) and the risk of preeclampsia. Physiol. Res. 2006, 55, 491–500. [Google Scholar] [CrossRef]
- León-Reyes, G.; Maida-Claros, R.F.; Urrutia-Medina, A.X.; Jorge-Galarza, E.; Guzmán-Grenfell, A.M.; Fuentes-García, S.; Medina-Navarro, R.; Moreno-Eutimio, M.A.; Muñoz-Sánchez, J.L.; Hicks, J.J.; et al. Oxidative profiles of LDL and HDL isolated from women with preeclampsia. Lipids Health Dis. 2017, 16, 90. [Google Scholar]
- Ventura, M.; Melo, M.; Carrilho, F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int. J. Endocrinol. 2017, 2017, 1297658. [Google Scholar]
- Wang, F.; Li, C.; Li, S.; Cui, L.; Zhao, J.; Liao, L. Selenium and thyroid diseases. Front. Endocrinol. 2023, 14, 1133000. [Google Scholar]
- Scazzocchio, E.; Figueras, F.; Crispi, F.; Meler, E.; Masoller, N.; Mula, R.; Gratacos, E. Performance of a first-trimester screening of preeclampsia in a routine care low-risk setting. Am. J. Obstet. Gynecol. 2013, 208, 203.e1–203.e10. [Google Scholar] [PubMed]
- Poon, L.C.; Syngelaki, A.; Akolekar, R.; Lai, J.; Nicolaides, K.H. Combined screening for preeclampsia and small for gestational age at 11–13 weeks. Fetal Diagn. Ther. 2013, 33, 16–27. [Google Scholar] [PubMed]
Cases | Controls | ||
---|---|---|---|
Biomarker | Median (25p, 75p) | Median (25p, 75p) | p |
HDL–C mg/dL | 16.0 (12.0, 29.6) | 21.5 (12.0, 45.8) | 0.080 |
LDL–C mg/dL | 125.0 (87.0, 154.0) | 121.0 (67.0, 134.0) | 0.003 |
Oxidized LDL IU/L | 167.0 (89.0, 221.0) | 82.0 (19.7, 212) | <0.0001 |
Triglycerides mg/dL | 144.5 (84.0, 189.0) | 84.0 (67.8, 139.5) | <0.0001 |
Total Cholesterol mg/dL | 145.0 (125.0, 199.0) | 126.0 (95.3, 145.2) | <0.0001 |
Waist Circumference cm | 79.0 (72.0, 90.0) | 75.0 (70.0, 79.0) | <0.0001 |
Hip circumference cm | 98.0 (87.0, 104.0) | 92.0 (85, 97.3) | 0.001 |
BMI kg/M2 | 24.6 (20.8, 28.0) | 21.8 (19.0, 25.8) | <0.0001 |
FPG mg/dL | 116.0 (99.0, 180.0) | 103.0 (89.0, 125.7) | <0.0001 |
Cortisol nmol/L | 32.9 (18.0, 54.0) | 18.0 (18.0, 32.0) | <0.0001 |
Vitamin C mg/dL | 0.45 (0.21, 2.0) | 0.60 (0.22, 5.0) | 0.002 |
Selenium µg/L | 9.0 (9.0, 17.3) | 44.0 (21.0, 102.7) | <0.0001 |
UIC µg/L | 90.0 (78.0, 157.2) | 351.0 (299.0, 555.0) | <0.0001 |
TSH mIU/L | 6.3 (4.1, 8.0) | 2.5 (0.13, 4.4) | <0.0001 |
T3 ng/mL | 1.32 (1.16, 1.68) | 1.16 (1.0, 1.36) | <0.0001 |
T4 µg/dL | 10.9 (9.3, 12.4) | 9.8 (8.4, 11.5) | <0.0001 |
NO µmo/L | 2.0 (1.0, 6.0) | 20.9 (4.0, 43.3) | <0.0001 |
OxLDL/Albumin ratio | 13.0 (9.0, 16.0) | 3.6 (2.0, 12) | <0.0001 |
Serum Ferritin ng/mL | 213.0 (180.0, 345.0) | 199.0 (167.0, 340.0) | 0.114 |
GGT U/L | 99.0 (88.0, 113.0) | 33.0 (11.0, 99.0) | <0.0001 |
CRP mg/dL | 58.5 (39.0, 66.0) | 57.0 (12.0, 88.0) | 0.024 |
Lymphocyte % | 22.0 (16.0, 25.6) | 26.5 (23.5, 38.5) | <0.0001 |
Serum K+ mmol/L | 3.6 (2.8, 6.0) | 4.0 (3.8, 4.0) | 0.149 |
Serum Mg2+ mmol/L | 0.12 (0.09, 0.19) | 0.97 (0.76, 1.0) | <0.0001 |
K+/Mg2+ ratio | 28.5 (17.3, 44.3) | 4.1 (3.7, 5.3) | <0.0001 |
Variable | B | S.E. | Wald | Sig. | Exp(B) | 95% C.I. Exp(B) |
---|---|---|---|---|---|---|
OxLDL/albumin ratio | 0.160 | 0.061 | 6.99 | 0.008 | 1.174 | 1.042–1.32 |
Lymphocytes | −0.282 | 0.065 | 19.05 | 0.000 | 0.755 | 0.665–0.856 |
UIC | −0.013 | 0.003 | 16.96 | 0.000 | 0.987 | 0.981–0.993 |
K+/Mg2+ ratio | 0.160 | 0.027 | 35.83 | 0.000 | 1.173 | 1.113–1.236 |
TSH | 0.336 | 0.132 | 6.51 | 0.011 | 1.400 | 1.081–1.812 |
FPG | 0.441 | 0.003 | 5.12 | 0.024 | 0.993 | 0.986–0.999 |
Constant | 5.61 | 2.46 | 5.22 | 0.022 | 272.892 |
Analyte | Cut-Off Limit | Sensitivity | Specificity | AUC | 95% CI | p |
---|---|---|---|---|---|---|
K+/Mg2+ | >22 | 93.0% | 95.0% | 0.973 | 0.953–0.993 | <0.0001 |
UIC | <239 µg/L | 98.0% | 80.0% | 0.920 | 0.893–0.946 | <0.0001 |
FPG | >95 mg/dL | 81.2% | 91.3% | 0.860 | 0.822–0.897 | <0.0001 |
TSH | >3.9 mIU/L | 78.0% | 73.0% | 0.812 | 0.771–0.854 | <0.0001 |
Lymphocyte % | <23.5 | 72.7% | 63.2% | 0.773 | 0.729–0.818 | <0.0001 |
OxLDL/Alb Ratio | >7.0 | 80.0% | 65.0% | 0.746 | 0.695–0.797 | <0.0001 |
Selenium | <20 µg/L | 79.3% | 96.0% | 0.885 | 0.843–0.926 | <0.0001 |
Nitric oxide | <10 µg/L | 60% | 94% | 0.784 | 0.730–0.837 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Businge, C.B.; Longo-Mbenza, B.; Kengne, A.P. Circulating Potassium/Magnesium Ratio, Thyroid Stimulating Hormone, Fasting Plasma Glucose, Oxidized LDL/Albumin Ratio, and Urinary Iodine Concentration Are Possible Entities for Screening for Preeclampsia in Low-Resource Settings. Medicina 2025, 61, 600. https://doi.org/10.3390/medicina61040600
Businge CB, Longo-Mbenza B, Kengne AP. Circulating Potassium/Magnesium Ratio, Thyroid Stimulating Hormone, Fasting Plasma Glucose, Oxidized LDL/Albumin Ratio, and Urinary Iodine Concentration Are Possible Entities for Screening for Preeclampsia in Low-Resource Settings. Medicina. 2025; 61(4):600. https://doi.org/10.3390/medicina61040600
Chicago/Turabian StyleBusinge, Charles Bitamazire, Benjamin Longo-Mbenza, and Andre Pascal Kengne. 2025. "Circulating Potassium/Magnesium Ratio, Thyroid Stimulating Hormone, Fasting Plasma Glucose, Oxidized LDL/Albumin Ratio, and Urinary Iodine Concentration Are Possible Entities for Screening for Preeclampsia in Low-Resource Settings" Medicina 61, no. 4: 600. https://doi.org/10.3390/medicina61040600
APA StyleBusinge, C. B., Longo-Mbenza, B., & Kengne, A. P. (2025). Circulating Potassium/Magnesium Ratio, Thyroid Stimulating Hormone, Fasting Plasma Glucose, Oxidized LDL/Albumin Ratio, and Urinary Iodine Concentration Are Possible Entities for Screening for Preeclampsia in Low-Resource Settings. Medicina, 61(4), 600. https://doi.org/10.3390/medicina61040600