Novel Visual Grade and Hounsfield Unit Predict Adequate Bone Strength for Cementless Total Knee Arthroplasty
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Patient Demographics
2.3. Hounsfiled Unit Measurement
2.4. Definition of Visual Grading System
2.5. Reliability of Visual Grading System
2.6. Bone Strength Measurement
2.7. Definition of Mechanical Criteria for Cementless TKA Suitability
2.8. Statistical Analysis
3. Results
3.1. Correlations of Visual Grade and Hounsfield Units with Actual Bone Strength
3.2. Diagnostic Performance of Visual Grade and Hounsfield Units for Cementless TKA Suitability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AP | Anteroposterior |
| AUC | Area under the curve |
| BMD | Bone mineral density |
| BMI | Body mass index |
| cBMD | Central bone mineral density |
| CT | Computed tomography |
| DECT | Dual-energy computed tomography |
| DEXA | Dual-energy X-ray absorptiometry |
| EWS | Estimated withstanding strength |
| HU | Hounsfield unit |
| ICC | Intraclass correlation coefficient |
| ML | Mediolateral |
| MRS | Minimum required strength |
| QCT | Quantitative computed tomography |
| ROC | Receiver operating characteristic |
| ROI | Region of interest |
| TKA | Total knee arthroplasty |
References
- Ashkenazi, I.; Lawrence, K.W.; Kaplan, M.; Arshi, A.; Rozell, J.C.; Schwarzkopf, R.; Lajam, C.M. Demographic and Socioeconomic Trends of Patients Undergoing Total Knee Arthroplasty From 2013 to 2022—An Analysis From an Urban Orthopaedic Hospital. J. Arthroplasty 2024, 39, 2158–2165. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Choi, B.S.; Ro, D.H.; Lee, M.C.; Han, H.S. Fixed-Bearing and Higher Postoperative Knee Flexion Angle as Predictors of Satisfaction in Asian Patients Undergoing Posterior-Stabilized Total Knee Arthroplasty. Clin. Orthop. Surg. 2024, 16, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467, 2606–2612. [Google Scholar] [CrossRef]
- Dy, C.J.; Marx, R.G.; Bozic, K.J.; Pan, T.J.; Padgett, D.E.; Lyman, S. Risk factors for revision within 10 years of total knee arthroplasty. Clin. Orthop. Relat. Res. 2014, 472, 1198–1207. [Google Scholar] [CrossRef]
- Lawrence, K.W.; Sobba, W.; Rajahraman, V.; Schwarzkopf, R.; Rozell, J.C. Does body mass index influence improvement in patient reported outcomes following total knee arthroplasty? A retrospective analysis of 3918 cases. Knee Surg. Relat. Res. 2023, 35, 21. [Google Scholar] [CrossRef]
- Abdel, M.P.; Carender, C.N.; Berry, D.J. Current Practice Trends in Primary Hip and Knee Arthroplasties Among Members of the American Association of Hip and Knee Surgeons. J. Arthroplast. 2023, 38, 1921–1927.e3. [Google Scholar] [CrossRef]
- The AAOS American Joint Replacement Registry (AJRR). 2022 Annual Report; American Academy of Orthopaedic Surgeons: Rosemont, IL, USA, 2022. [Google Scholar]
- Kamath, A.F.; Siddiqi, A.; Malkani, A.L.; Krebs, V.E. Cementless Fixation in Primary Total Knee Arthroplasty: Historical Perspective to Contemporary Application. J. Am. Acad. Orthop. Surg. 2021, 29, e363–e379. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Fairen, M.; Hernandez-Vaquero, D.; Murcia, A.; Torres, A.; Llopis, R. Trabecular metal in total knee arthroplasty associated with higher knee scores: A randomized controlled trial. Clin. Orthop. Relat. Res. 2013, 471, 3543–3553. [Google Scholar] [CrossRef]
- Restrepo, S.; Smith, E.B.; Hozack, W.J. Excellent mid-term follow-up for a new 3D-printed cementless total knee arthroplasty. Bone Jt. J. 2021, 103-B, 32–37. [Google Scholar] [CrossRef]
- Laende, E.K.; Richardson, C.G.; Dunbar, M.J. Predictive value of short-term migration in determining long-term stable fixation in cemented and cementless total knee arthroplasties. Bone Jt. J. 2019, 101-B, 55–60. [Google Scholar] [CrossRef]
- Hongsdusit, N.; von Muhlen, D.; Barrett-Connor, E. A comparison between peripheral BMD and central BMD measurements in the prediction of spine fractures in men. Osteoporos. Int. 2006, 17, 872–877. [Google Scholar] [CrossRef]
- Suh, D.; Kwak, D.S.; Kim, Y.D.; Park, S.; Cho, N.; Koh, I.J. Central Bone Mineral Density Is Not a Useful Tool to Predict Bone Strength of the Distal Femur for Cementless Total Knee Arthroplasty. Clin. Orthop. Surg. 2024, 16, 917–924. [Google Scholar] [CrossRef]
- Yoon, C.; Chang, M.J.; Chang, C.B.; Chai, J.W.; Jeong, H.; Song, M.K.; Shin, J.H.; Kang, S.-B. Bone Mineral Density Around the Knee Joint: Correlation With Central Bone Mineral Density and Associated Factors. J. Clin. Densitom. 2020, 23, 82–91. [Google Scholar] [CrossRef]
- Schreiber, J.J.; Anderson, P.A.; Rosas, H.G.; Buchholz, A.L.; Au, A.G. Hounsfield units for assessing bone mineral density and strength: A tool for osteoporosis management. J. Bone Jt. Surg. Am. 2011, 93, 1057–1063. [Google Scholar] [CrossRef]
- Engelke, K.; Libanati, C.; Fuerst, T.; Zysset, P.; Genant, H.K. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr. Osteoporos. Rep. 2013, 11, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Arentsen, L.; Hansen, K.E.; Yagi, M.; Takahashi, Y.; Shanley, R.; McArthur, A.; Bolan, P.; Magome, T.; Yee, D.; Froelich, J.; et al. Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density. J. Bone Min. Metab. 2017, 35, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Lee, S.W.; In, Y.; Kim, M.S.; Kim, Y.D.; Lee, S.Y.; Lee, J.W.; Koh, I.J. Dual-Energy CT-Based Bone Mineral Density Has Practical Value for Osteoporosis Screening around the Knee. Medicina 2022, 58, 1085. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, F.; Moldovan, L. A Modeling Study for Hip Fracture Rates in Romania. J. Clin. Med. 2025, 14, 3162. [Google Scholar] [CrossRef]
- Alimy, A.R.; Thiessen, M.L.; Strahl, A.; Boese, C.K.; von Kroge, S.; Beil, F.T.; Rolvien, T.; Ries, C. Sex-Specific Association of Clinical Parameters and Components of Femoral Bone Quality in Patients Undergoing Total Hip Arthroplasty. Calcif. Tissue Int. 2024, 115, 570–580. [Google Scholar] [CrossRef]
- Dunham, C.E.; Takaki, S.E.; Johnson, J.A.; Dunning, C.E. Mechanical properties of cancellous bone of the distal humerus. Clin. Biomech. 2005, 20, 834–838. [Google Scholar] [CrossRef]
- Gordon, K.D.; Duck, T.R.; King, G.J.; Johnson, J.A. Mechanical properties of subchondral cancellous bone of the radial head. J. Orthop. Trauma 2003, 17, 285–289. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Patil, S.; Steklov, N.; Chien, S.; Colwell, C.W., Jr. In vivo knee moments and shear after total knee arthroplasty. J. Biomech. 2007, 40 (Suppl. 1), S11–S17. [Google Scholar] [CrossRef]
- Kutzner, I.; Heinlein, B.; Graichen, F.; Bender, A.; Rohlmann, A.; Halder, A.; Beier, A.; Bergmann, G. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 2010, 43, 2164–2173. [Google Scholar] [CrossRef]
- D’Lima, D.D.; Steklov, N.; Patil, S.; Colwell, C.W., Jr. The Mark Coventry Award: In vivo knee forces during recreation and exercise after knee arthroplasty. Clin. Orthop. Relat. Res. 2008, 466, 2605–2611. [Google Scholar] [CrossRef] [PubMed]
- Churchill, R.S.; Chuinard, C.; Wiater, J.M.; Friedman, R.; Freehill, M.; Jacobson, S.; Spencer, E., Jr.; Holloway, G.B.; Wittstein, J.; Lassiter, T.; et al. Clinical and Radiographic Outcomes of the Simpliciti Canal-Sparing Shoulder Arthroplasty System: A Prospective Two-Year Multicenter Study. J. Bone Jt. Surg. Am. 2016, 98, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Nickel, B.; Krueger, D.; Borchardt, G.; Andersen, L.; Illgen, R.; Hennessy, D.; Hetzel, S.; Binkley, N.; Anderson, P.A. Intraoperative physician assessment of bone: Correlation to bone mineral density. Osteoporos. Int. 2023, 34, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.L.; Nappo, K.E.; Wolfe, J.A.; Wade, S.M.; Brooks, D.I.; Potter, B.K.; Forsberg, J.A.; Tintle, S.M. Proximal Femur Hounsfield Units on CT Colonoscopy Correlate with Dual-energy X-ray Absorptiometry. Clin. Orthop. Relat. Res. 2019, 477, 850–860. [Google Scholar] [CrossRef]
- Hayden, A.; Cotter, E.J.; Hennick, T.; Hetzel, S.; Wollaeger, J.; Anderson, S.; Grogan, B.F. Bone quality in total shoulder arthroplasty: A prospective study correlating computed tomography Hounsfield units with thumb test and fracture risk assessment tool score. JSES Int. 2023, 7, 628–635. [Google Scholar] [CrossRef]
- Gruenewald, L.D.; Koch, V.; Martin, S.S.; Yel, I.; Mahmoudi, S.; Bernatz, S.; Eichler, K.; Gruber-Rouh, T.; Dos Santos, D.P.; D’aNgelo, T.; et al. Dual-Energy CT-based Opportunistic Volumetric Bone Mineral Density Assessment of the Distal Radius. Radiology 2023, 308, e223150. [Google Scholar] [CrossRef]
- Dall’Ara, E.; Varga, P.; Pahr, D.; Zysset, P. A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images. Med. Phys. 2011, 38, 2602–2608. [Google Scholar] [CrossRef]
- Gandikota, G.; Fakuda, T.; Finzel, S. Computed tomography in rheumatology—From DECT to high-resolution peripheral quantitative CT. Best. Pr. Res. Clin. Rheumatol. 2020, 34, 101641. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Beller, G.; Felsenberg, D. Quantification of bone mineral density precision according to repositioning errors in peripheral quantitative computed tomography (pQCT) at the radius and tibia. J. Musculoskelet Neuronal Interact. 2009, 9, 18–24. [Google Scholar]
- Koh, I.J.; Kim, T.K.; Chang, C.B.; Cho, H.J.; In, Y. Trends in use of total knee arthroplasty in Korea from 2001 to 2010. Clin. Orthop. Relat. Res. 2013, 471, 1441–1450. [Google Scholar] [CrossRef]
- Park, J.; Chaar, O.; Narayanakurup, J.; Abdelhamead, A.S.A.; Ro, D.H.; Kim, S.E. Do knee alignment patterns differ between Middle Eastern and East Asian populations? A propensity-matched analysis using artificial intelligence. Knee Surg. Relat. Res. 2025, 37, 11. [Google Scholar] [CrossRef] [PubMed]
- Di Maria, F.; Das, S.; Abermann, E.; Hoser, C.; Fink, C. Pulsed lavage is associated with better quality of bone-cement-implant interface in knee arthroplasties (TKA/UKA) compared to syringe lavage in vitro; however, clinical data are missing: A systematic review. J. Exp. Orthop. 2024, 11, e12027. [Google Scholar] [CrossRef] [PubMed]





| Characteristics | Values (n = 131) | |
|---|---|---|
| Age (year) | 68.4 ± 5.3 (53 to 86) | |
| Sex (women) | 102 (78) | |
| Height (cm) | 155.5 ± 7.3 (143.1 to 177.2) | |
| Weight (kg) | 64.9 ± 9.0 (45.4 to 91.5) | |
| BMI (kg/m2) | 26.8 ± 3.2 (19.6 to 36.3) | |
| Osteoporosis status | ||
| Lumbar spine | Femur neck | |
| DEXA (T score) | −0.4 ± 1.6 (−3.6 to 4.9) | −1.2 ± 1.0 (−3.5 to 2.5) |
| Number of patients † | ||
| Normal (T score > −1.0) | 84 (64) | 53 (41) |
| Osteopenia (−1.0 ≤ T score ≤ −2.5) | 38 (29) | 65 (50) |
| Osteoporosis (T score < −2.5) | 9 (6) | 13 (9) |
| Grade | Definition |
|---|---|
| Excellent | The resected bone surface exhibits a well-preserved cortical and trabecular architecture with rare or minimal porous defects. The contour of the resected surface remains intact and sharply defined, indicating optimal bone integrity suitable for cementless fixation. |
| Good | The surface shows multiple pores of <2 mm in diameter scattered across the resected area. Despite the presence of these small defects, the overall bony contour is well maintained, suggesting acceptable quality for mechanical interlocking. |
| Fair | The bone surface displays frequent porous defects > 2 mm. While the general contour of the resected area is preserved, the presence of large and numerous pores raises concerns about consistent implant support across the surface. |
| Poor | The surface is characterized by widespread porous defects > 2 mm in size, accompanied by clear collapse of the intended resection contour. This reflects compromised bone quality, potentially unsuitable for cementless fixation. |
| Parameters (n = 131) | Mean ± SD | Range (min–max) |
|---|---|---|
| First failure force (N) | 66.0 ± 42.5 | 6.7~202.5 |
| Displacement at first failure (mm) | 0.9 ± 0.3 | 0.3~1.8 |
| Maximal force (N) | 85.6 ± 47.0 | 14.6~244.0 |
| Displacement at maximal failure (mm) | 1.8 ± 0.3 | 0.4~2.0 |
| Stiffness (N/mm) | 119.4 ± 88.6 | 12.0~533.8 |
![]() | Size * | Patient Number (%) | AP (mm) | ML (mm) | Area × 2 (mm2) | Area Ratio |
| 1 | 6 (5) | 16.8 | 21.4 | 719 | 25.4 | |
| 2 | 20 (15) | 18.1 | 22.9 | 829 | 29.3 | |
| 3 | 51 (39) | 19.3 | 24.4 | 942 | 33.3 | |
| 4 | 35 (27) | 19.3 | 25.9 | 998 | 35.3 | |
| 5 | 13 (10) | 20.2 | 27.4 | 1107 | 39.1 | |
| 6 | 6 (5) | 22.3 | 28.9 | 1289 | 45.5 |
| Visual Grade | HU | First Failure Load (N) |
|---|---|---|
| Poor | 27.6 ± 33.3 | 21.6 ± 10.0 |
| Fair | 50.8 ± 29.1 | 33.6 ± 10.6 |
| Good | 104.3 ± 30.4 | 67.7 ± 15.5 |
| Excellent | 115.7 ± 29.5 | 127.5 ± 34.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.H.; Kwak, D.-S.; Lee, S.-W.; Kim, Y.D.; Cho, N.; Koh, I.J. Novel Visual Grade and Hounsfield Unit Predict Adequate Bone Strength for Cementless Total Knee Arthroplasty. Medicina 2025, 61, 2018. https://doi.org/10.3390/medicina61112018
Lee DH, Kwak D-S, Lee S-W, Kim YD, Cho N, Koh IJ. Novel Visual Grade and Hounsfield Unit Predict Adequate Bone Strength for Cementless Total Knee Arthroplasty. Medicina. 2025; 61(11):2018. https://doi.org/10.3390/medicina61112018
Chicago/Turabian StyleLee, Dong Hwan, Dai-Soon Kwak, Sheen-Woo Lee, Yong Deok Kim, Nicole Cho, and In Jun Koh. 2025. "Novel Visual Grade and Hounsfield Unit Predict Adequate Bone Strength for Cementless Total Knee Arthroplasty" Medicina 61, no. 11: 2018. https://doi.org/10.3390/medicina61112018
APA StyleLee, D. H., Kwak, D.-S., Lee, S.-W., Kim, Y. D., Cho, N., & Koh, I. J. (2025). Novel Visual Grade and Hounsfield Unit Predict Adequate Bone Strength for Cementless Total Knee Arthroplasty. Medicina, 61(11), 2018. https://doi.org/10.3390/medicina61112018


