Gait Pattern Differences Between Young Adults and Physically Active Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Ethics
2.2. Participants
2.3. Procedures
2.4. Measures
2.5. Data Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gavelin, H.M.; Dong, C.; Minkov, R.; Bahar-Fuchs, A.; Ellis, K.A.; Lautenschlager, N.T.; Mellow, M.L.; Wade, A.T.; Smith, A.E.; Finke, C.; et al. Combined physical and cognitive training for older adults with and without cognitive impairment: A systematic review and network meta-analysis of randomized controlled trials. Ageing Res Rev. 2021, 66, 101232. [Google Scholar] [CrossRef]
- Ribeiro, F.; Oliveira, J. Aging effects on joint proprioception: The role of physical activity in proprioception preservation. Eur. Rev. Aging Phys. Act. 2007, 4, 71–76. [Google Scholar] [CrossRef]
- Herssens, N.; Verbecque, E.; Hallemans, A.; Vereeck, L.; Van Rompaey, V.; Saeys, W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture 2018, 64, 181–190. [Google Scholar] [CrossRef]
- García-Gomáriz, C.; Blasco, J.M.; Macián-Romero, C.; Guillem-Hernández, E.; Igual-Camacho, C. Effect of 2 years of endurance and high-impact training on preventing osteoporosis in postmenopausal women: Randomized clinical trial. Menopause 2018, 25, 301–306. [Google Scholar] [CrossRef]
- Sherrington, C.; Fairhall, N.J.; Wallbank, G.K.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S.E. Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2019, 1, CD012424. [Google Scholar] [CrossRef] [PubMed]
- Afiah, I.N.; Nakashima, H.; Loh, P.Y.; Muraki, S. An exploratory investigation of changes in gait parameters with age in elderly Japanese women. SpringerPlus 2016, 5, 1069. [Google Scholar] [CrossRef] [PubMed]
- Suri, A.; Rosso, A.L.; VanSwearingen, J.; Coffman, L.M.; Redfern, M.S.; Brach, J.S.; Sejdić, E.; Lipsitz, L. Mobility of Older Adults: Gait Quality Measures Are Associated with Life-Space Assessment Scores. J. Gerontol. Ser. A 2021, 76, e299–e306. [Google Scholar] [CrossRef]
- Pamoukdjian, F.; Paillaud, E.; Zelek, L.; Laurent, M.; Lévy, V.; Landre, T.; Sebbane, G. Measurement of gait speed in older adults to identify complications associated with frailty: A systematic review. J. Geriatr. Oncol. 2015, 6, 484–496. [Google Scholar] [CrossRef]
- Ko, S.-U.; Hausdorff, J.M.; Ferrucci, L. Age-associated differences in the gait pattern changes of older adults during fast-speed and fatigue conditions: Results from the Baltimore longitudinal study of ageing. Age Ageing 2010, 39, 688–694. [Google Scholar] [CrossRef]
- McGibbon, C.A. Toward a better understanding of gait changes with age and disablement: Neuromuscular adaptation. Exerc. Sport Sci. Rev. 2003, 31, 102–108. [Google Scholar] [CrossRef]
- Martins, V.F.; Tesio, L.; Simone, A.; Gonçalves, A.K.; Peyré-Tartaruga, L.A. Determinants of age-related decline in walking speed in older women. PeerJ. 2023, 11, e14728. [Google Scholar] [CrossRef]
- Kowalski, E.; Catelli, D.S.; Lamontagne, M. Gait variability between younger and older adults: An equality of variance analysis. Gait Posture 2022, 95, 176–182. [Google Scholar] [CrossRef]
- Kaczmarczyk, K.; Wiszomirska, I.; Błażkiewicz, M.; Wychowański, M.; Wit, A. First signs of elderly gait for women. Med. Pr. 2017, 68, 441–448. [Google Scholar] [CrossRef]
- Lienhard, K.; Schneider, D.; Maffiuletti, N.A. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med. Eng. Phys. 2013, 35, 500–504. [Google Scholar] [CrossRef]
- Trumpf, R.; Schulte, L.E.; Schroeder, H.; Larsen, R.T.; Haussermann, P.; Zijlstra, W.; Fleiner, T. Physical activity monitoring-based interventions in geriatric patients: A scoping review on intervention components and clinical applicability. Eur. Rev. Aging Phys. Act. 2023, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Ziagkas, E.; Loukovitis, A.; Zekakos, D.X.; Chau, T.D.P.; Petrelis, A.; Grouios, G. A Novel Tool for Gait Analysis: Validation Study of the Smart Insole PODOSmart®. Sensors 2021, 21, 5972. [Google Scholar] [CrossRef] [PubMed]
- Efthymiou, D.; Zekakos, D.X.; Papatriantafyllou, E.; Ziagkas, E.; Petrelis, A.N.; Vassilopoulou, E. Gait Alterations in the Prediction of Metabolic Syndrome in Patients With Schizophrenia: A Pilot Study With PODOSmart ® Insoles. Front. Psychiatry 2022, 13, 756600. [Google Scholar] [CrossRef] [PubMed]
- Loukovitis, A.; Ziagkas, E.; Zekakos, D.X.; Petrelis, A.; Grouios, G. Test-Retest Reliability of PODOSmart® Gait Analysis Insoles. Sensors 2021, 21, 7532. [Google Scholar] [CrossRef]
- McCallum, C.; Rooksby, J.; Gray, C.M. Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review. JMIR mHealth uHealth 2018, 6, e9054. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Age-related differences in walking stability. Age Ageing 2003, 32, 137–142. [Google Scholar] [CrossRef]
- Chung, E.; Lee, S.H.; Lee, H.J.; Kim, Y.H. Comparative study of young-old and old-old people using functional evaluation, gait characteristics, and cardiopulmonary metabolic energy consumption. BMC Geriatr. 2023, 23, 400. [Google Scholar] [CrossRef]
- Rampp, A.; Barth, J.; Schülein, S.; Gaßmann, K.G.; Klucken, J.; Eskofier, B.M. Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients. IEEE Trans. Biomed. Eng. 2015, 62, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- McClelland, J.A.; Webster, K.E.; Feller, J.A.; Menz, H.B. Knee kinematics during walking at different speeds in people who have undergone total knee replacement. Knee 2011, 18, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Chui, K.K.; Lusardi, M.M. Spatial and temporal parameters of self-selected and fast walking speeds in healthy community-living adults aged 72–98 years. J. Geriatr. Phys. Ther. 2010, 33, 173–183. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.; Caulfield, B.; Ward, T.; Johnston, W.; Doherty, C. Wearable Inertial Sensor Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. Sports Med. 2018, 48, 1221–1246. [Google Scholar] [CrossRef]
- Cotrobas-Dascalu, V.-T.; Badau, D.; Stoica, M.; Dreve, A.A.; Predescu, C.M.L.; Gherghel, C.L.; Bratu, M.; Raducu, P.; Oltean, A.; Badau, A. Impact of Kinesiotherapy and Hydrokinetic Therapy on the Rehabilitation of Balance, Gait and Functional Capacity in Patients with Lower Limb Amputation: A Pilot Study. J. Clin. Med. 2022, 11, 4108. [Google Scholar] [CrossRef]
- Hollman, J.H.; McDade, E.M.; Petersen, R.C. Normative spatiotemporal gait parameters in older adults. Gait Posture 2011, 34, 111–118. [Google Scholar] [CrossRef]
- Lorena Cerda, A. Manejo del trastorno de marcha del adulto mayor. Rev. Med. Clin. Condes. 2014, 25, 265–275. [Google Scholar] [CrossRef]
- Espy, D.D.; Yang, F.; Bhatt, T.; Pai, Y.C. Independent influence of gait speed and step length on stability and fall risk. Gait Posture 2010, 32, 378–382. [Google Scholar] [CrossRef]
- Klotzbier, T.J.; Wollesen, B.; Vogel, O.; Rudisch, J.; Cordes, T.; Jöllenbeck, T.; Vogt, L. An interrater reliability study of gait analysis systems with the dual task paradigm in healthy young and older adults. Eur. Rev. Aging Phys. Act. 2021, 18, 17. [Google Scholar] [CrossRef]
- Rudisch, J.; Jöllenbeck, T.; Vogt, L.; Cordes, T.; Klotzbier, T.J.; Vogel, O.; Wollesen, B. Agreement and consistency of five different clinical gait analysis systems in the assessment of spatiotemporal gait parameters. Gait Posture 2021, 85, 55–64. [Google Scholar] [CrossRef]
- Hita-Contreras, F.; Bueno-Notivol, J.; Martínez-Amat, A.; Cruz-Díaz, D.; Hernandez, A.V.; Pérez-López, F.R. Effect of exercise alone or combined with dietary supplements on anthropometric and physical performance measures in community-dwelling elderly people with sarcopenic obesity: A meta-analysis of randomized controlled trials. Maturitas 2018, 116, 24–35. [Google Scholar] [CrossRef]
- Wipperman, M.F.; Lin, A.Z.; Gayvert, K.M.; Lahner, B.; Somersan-Karakaya, S.; Wu, X.; Im, J.; Lee, M.; Koyani, B.; Setliff, I.; et al. Digital wearable insole-based identification of knee arthropathies and gait signatures using machine learning. Elife 2024, 13, e86132. [Google Scholar] [CrossRef]
- Arumugaraja, M.; Padmapriya, B.; Poornachandra, S. Design and development of foot worn piezoresistive sensor for knee pain analysis with supervised machine learning algorithms based on gait pattern. Measurement 2022, 200, 111603. [Google Scholar] [CrossRef]
Name of Variable | Definition | ICC Value Reported |
---|---|---|
Stride length | Distance travelled by the Right foot in a gait cycle | 0.912 |
Cadence | Number of steps taken per minute. | 0.990 |
Speed | The speed at which the body moves in a straight line while walking. | 0.916 |
Contact time | Duration the foot remains in contact with the ground during each step. | 0.989 |
Swing time | The duration between foot lift and heel strike for each foot during the stride cycle is used to determine the swing time, which is the length of the section of the gait cycle when the limb is not in contact with the ground. | 0.918 |
Double support | This is the percentage of the gait cycle during which both limbs contact the ground. | 0.784 |
Support phase duration | The stance phase’s first sub-component. When the heel of the right foot strikes the ground and absorbs the impact, the support phase begins. It comes to an end when the toes touch the ground. | 0.862 |
Heel strike angle | Angle at which the heel first contacts the ground during walking | 0.930 |
Toe-off progression angle | Angle at which the toe lifts off ground at the end of the stance phase | 0.975 |
Propulsion phase duration | The stance phase’s third sub-component. The time between the heel and toe lifting events is referred to as propulsion. | 0.799 |
Step progression angle | During the flat foot phase, the angle between the walking path and the foot’s orientation. | 0.755 |
Stepping | During initial contact, the angle of flexion/extension of the foot on the earth’s surface. | 0.914 |
Circumduction | Perpendicular to the progression line, the distance between the center of each foot’s heels. | 0.949 |
Young Adults’ Group (n = 40) Mean (SD) | Active Old Adults’ Group (n = 41) Mean (SD) | Between-Group Differences p-Value | |
---|---|---|---|
Sex (male/female) | 20/20 | 10/31 | |
Age (years) | 26.2 (7.2) | 70.1 (4.7) | <0.001 * |
Height (cm) | 170.5 (10.9) | 158.3 (6.8) | 0.200 |
Weight (kg) | 74.1 (19.5) | 69.6 (9.9) | <0.001 * |
Body mass index (kg/m2) | 25.2 (5.4) | 27.8 (3.5) | 0.013 * |
FPI-R | 3.7 (2.7) | 2.0 (3.3) | 0.010 * |
FPI-L | 3.9 (2.5) | 2.4 (3.6) | 0.030 |
Foot | Young Adults (n = 40) | Active Old Adults (n = 41) | Between-Group Comparison | Effect Size | |
---|---|---|---|---|---|
Mean (SD) | Mean (SD) | p-Value | d Cohen’s | ||
Stride length (m) | R | 1.39 (0.10) | 1.33 (0.10) | 0.009 * | 0.59 |
L | 1.40 (0.10) | 1.33 (0.11) | 0.011 * | 0.66 | |
Cadence (steps/minute) | Both | 112.7 (8.4) | 123.12 (5.63) | 0.000 * | 1.46 |
Speed (m/s) | Both | 4.74 (0.47) | 4.90 (0.35) | 0.097 | 0.38 |
Contact time (ms) | R | 639.19 (54.50) | 594.50 (37.55) | 0.000 * | 0.96 |
L | 634.84 (53.10) | 583.292 (46.07) | 0.000 * | 1.04 | |
Swing time (ms) | R | 408.18 (27.01) | 365.707 (18.06) | 0.000 * | 1.85 |
L | 408.02 (25.57) | 366.707 (19.65) | 0.000 * | 1.81 | |
Double support time (ms) | R | 114.90 (20.76) | 107.16 (14.14) | 0.054 | 0.44 |
L | 114.00 (20.84) | 106.93 (14.10) | 0.079 | 0.40 | |
Mean | 114.45 (20.73) | 107.04 (14.12) | 0.065 | 0.42 | |
Support phase time (ms) | R | 101.70 (13.12) | 87.70 (10.92) | 0.000 * | 1.16 |
L | 103.15 (12,99) | 89.12 (17.10) | 0.000 * | 0.92 | |
Heel strike angle (deg) | R | −20.09 (4.25) | −18.8 (4.74) | 0.204 | 0.28 |
L | −17.49 (4.15) | −16.24 (4.29) | 0.187 | 0.29 | |
Toe-off progression angle (deg) | R | −2.717 (4.30) | −0.975 (3.19) | 0.042 * | 0.46 |
L | −5.49 (4.28) | −3.41 (2.91) | 0.012 * | 0.57 | |
Propulsion time | R | 223.87 (38.52) | 233.41 (19.49) | 0.163 | 0.30 |
L | 1.49 (0.64) | 1.36 (0.45) | 0.264 | 0.23 | |
Step progression angle (deg) | R | 11.17 (5.77) | 11.58 (4.41) | 0.721 | 0.08 |
L | 6.71 (5.09) | 8.51 (4.54) | 0.012 * | 0.37 | |
Stepping (deg) | R | 25.45 (3.41) | 23.43 (6.31) | 0.078 | 0.40 |
L | 27.66 (2.97) | 26.43 (5.65) | 0.227 | 0.27 | |
Toe off angle (deg) | R | 53.56 (8.37) | 53.63 (4.58) | 0.961 | 0.01 |
L | 52.47 (8.65) | 52.68 (5.30) | 0.895 | 0.03 | |
Circumduction (cm) | R | 3.12 (1.44) | 3.04 (0.83) | 0.774 | 0.07 |
L | 2.81 (1.29) | 2.46 (0.77) | 0.142 | 0.33 |
Measure | Foot | Sex | Young Adults | Active Old Adults | Between-Groups | ||
---|---|---|---|---|---|---|---|
Mean (SD) | p-Value | Mean (SD) | p-Value | p-Value | |||
Stride Length (m) | R | Men | 1.41 (0.09) | 0.403 | 1.40 (0.03) | 0.019 * | 0.792 |
Women | 1.38 (0.11) | 1.31 (0.09) | 0.021 * | ||||
L | Men | 1.41 (0.08) | 0.295 | 1.39 (0.01) | 0.059 | 0.607 | |
Women | 1.38 (0.11) | 1.31 (0.11) | 0.049 * | ||||
Cadence (steps/min) | Both | Men | 109.76 (7.99) | 0.026 * | 120.10 (3.60) | 0.050 * | 0.001 * |
Women | 115.64 (8.02) | 124.09 (5.86) | <0.001 * | ||||
Speed (m/s) | Both | Men | 4.65 (0.43) | 0.207 | 5.03 (0.42) | 0.221 | 0.033 * |
Women | 4.48 (0.51) | 4.87 (0.32) | 0.866 | ||||
Contact time (ms) | R | Men | 663.99 (54.89) | 0.003 * | 597.20 (38.42) | 0.128 | 0.002 * |
Women | 614.40 (42.29) | 576.32 (36.43) | 0.001 * | ||||
L | Men | 658.99 (55.06) | 0.003 * | 595.60 (37.90) | 0.338 | 0.003 * | |
Women | 610.70 (39.10) | 579.32 (48.30) | 0.019 * | ||||
Swing time (ms) | R | Men | 417.05 (31.30) | 0.036 * | 378.20 (13.87) | 0.010 * | 0.001 * |
Women | 399.31 (18.77) | 361.67 (17.56) | 0.000 * | ||||
L | Men | 415.97 (29.34) | 0.048 * | 379.40 (17.92) | 0.017 * | 0.001 * | |
Women | 400.07 (18.67) | 362.61 (18.65) | 0.000 * | ||||
Double support time (ms) | R | Men | 123.25 (20.15) | 0.009 * | 109.27 (16.33) | 0.594 | 0.068 |
Women | 106.55(18.21) | 106.48 (13.58) | 0.987 | ||||
L | Men | 122.88 (20.22) | 0.005 * | 108.98 (16.21 | 0.604 | 0.070 | |
Women | 105.12 (17.81) | 106.27 (13.58) | 0.796 | ||||
M | Men | 123.07 (20.18) | 0.007 * | 109.12 (16.27) | 0.599 | 0.069 | |
Women | 105.84 (17.84) | 106.37 (13.58) | 0.903 | ||||
Support phase time (ms) | R | Men | 99.44 (14.38) | 0.282 | 84.20 (5.41) | 0.102 | 0.003 * |
Women | 103.96 (11.65) | 88.83 (12.04) | <0.001 * | ||||
L | Men | 100.64 (12.93) | 0.226 | 90.30 (9.95) | 0.806 | 0.035 * | |
Women | 105.67 (12.89) | 88.74 (18.96) | <0.001 * | ||||
Heel strike angle (deg) | R | Men | 20.96 (4.87) | 0.200 | 23.00(3.97) | 0.001 * | 0.263 |
Women | −19.22 (3.43) | −17.45 (4.18) | 0.122 | ||||
L | Men | 18.66 (4.32) | 0.076 | 19.70 (4.90) | 0.002 * | 0.557 | |
Women | −16.33 (3.72) | −15.12 (3.48) | 0.248 | ||||
Toe-off angle (deg) | R | Men | −1.75 (4.45) | 0.159 | −0.60 (1.71) | 0.675 | 0.039 * |
Women | −3.68 (4.03) | −1.09 (3.56) | 0.020 * | ||||
L | Men | −4.98 (3.90) | 0.455 | −2.60 (2.54) | 0.316 | 0.093 | |
Women | −4.98 (3.90) | 2.60 (2.54) | 0.057 | ||||
Step progression angle (deg) | R | Men | 13.54 (6.37) | 0.008 * | 14.50 (3.53) | 0.014 * | 0.665 |
Women | 8.80 (3.98) | 10.64 (4.30) | 0.131 | ||||
L | Men | 8.457(5.79) | 0.030 * | 10.30 (6.10) | 0.155 | 0.417 | |
Women | 4.98 (3.65) | 7.935 (3.85) | 0.009 * | ||||
Stepping (deg) | R | Men | 25.09 (3.74) | 0.513 | 26.90 (4.58) | 0.045 * | 0.258 |
Women | 25.81 (3.10) | 22.32 (6.45) | 0.029 * | ||||
L | Men | 27.97 (3.30) | 0.521 | 29.70 (5.18) | 0.034 * | 0.275 | |
Women | 27.36 (2.65) | 25.38 (5.49) | 0.092 | ||||
Toe off angle (deg) | R | Men | 52.58 (7.83) | 0.469 | 53.70 (4.92) | 0.959 | 0.686 |
Women | 54.53 (8.97) | 53.61 (4.55) | 0.674 | ||||
L | Men | 51.21 (8.49) | 0.366 | 51.70 (7.14) | 0.600 | 0.879 | |
Women | 53.72 (8.84) | 53.00 (4.66) | 0.737 | ||||
Circumduction (cm) | R | Men | 3.34 (1.45) | 0.339 | 3.20 (0.63) | 0.517 | 0.768 |
Women | 2.90 (1.42) | 3.00 (0.89) | 0.766 | ||||
L | Men | 3.03 (1.31) | 0.299 | 2.80 (0.63) | 0.117 | 0.605 | |
Women | 2.59(1.27) | 2.35 (0.97) | 0.404 |
Independent Measure | Mean (SD) | Dependent Measure | Mean (SD) | Pearson r | p-Value |
---|---|---|---|---|---|
Age (years) | 48.15 (6.12) | Right stride length (m) | 1.36 (0.10) | −0.285 | 0.010 * |
Left stride length (m) | 1.36 (0.11) | −0.287 | 0.009 * | ||
Cadence (steps per minute) | 117.97 (8.84) | 0.590 | <0.001 * | ||
Speed | 4.83 (0.43) | 0.176 | 0.117 | ||
Right Contact time (ms) | 609.94 (54.75) | −0.504 | <0.001 * | ||
Left Contact time (ms) | 608.75 (55.76) | −0.462 | <0.001 * | ||
Right Swing time (ms) | 386.68 (31.23) | −0.662 | <0.001 * | ||
Left Swing time (ms) | 387.1 (30.73) | −0.66 | <0.001 * | ||
Right Double support (ms) | 110.98 (18.04) | −0.192 | 0.087 | ||
Left Double support (ms) | 110.42 (18.00) | −0.172 | 0.124 | ||
Mean Double support (ms) | 110.7 (17.98) | −0.182 | 0.103 | ||
Right duration of the support phase (ms) | 94.61 (13.90) | −0.524 | <0.001 * | ||
Left duration of the support phase (ms) | 96.05 (16.69) | 0.439 | <0.001 * | ||
Right foot propulsion phase (ms) | 226.92 (31.32) | 0.117 | 0.299 | ||
Left foot propulsion phase (ms) | 228.7 (30.60) | 0.173 | 0.122 | ||
Right Step progression angle (deg) | 11.38 (5.10) | 0.049 | 0.663 | ||
Left Step progression angle (deg) | 7.63 (4.88) | 0.185 | 0.099 | ||
Right Stepping (deg) | 24.44 (5.16) | −0.224 | 0.045 | ||
Left Stepping (deg) | 27.05 (4.55) | −0.115 | 0.227 | ||
Right Toe off angle (deg) | 53.60 (6.68) | −0.002 | 0.141 | ||
Left Toe off angle (deg) | 52.58 (7.11) | 0.001 | 0.986 | ||
Right Circumduction (cm) | 3.08 (1.17) | −0.007 | 0.951 | ||
Left Circumduction (cm) | 2.63 (1.08) | −0.146 | 0.193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Gomariz, C.; Domínguez-Navarro, F.; Fernández-Benet, M.M.; Blasco, J.-M.; Hernández-Guillén, D.; Sanchis-Sales, E. Gait Pattern Differences Between Young Adults and Physically Active Older Adults. Medicina 2025, 61, 1752. https://doi.org/10.3390/medicina61101752
García-Gomariz C, Domínguez-Navarro F, Fernández-Benet MM, Blasco J-M, Hernández-Guillén D, Sanchis-Sales E. Gait Pattern Differences Between Young Adults and Physically Active Older Adults. Medicina. 2025; 61(10):1752. https://doi.org/10.3390/medicina61101752
Chicago/Turabian StyleGarcía-Gomariz, Carmen, Fernando Domínguez-Navarro, Mercedes María Fernández-Benet, José-María Blasco, David Hernández-Guillén, and Enrique Sanchis-Sales. 2025. "Gait Pattern Differences Between Young Adults and Physically Active Older Adults" Medicina 61, no. 10: 1752. https://doi.org/10.3390/medicina61101752
APA StyleGarcía-Gomariz, C., Domínguez-Navarro, F., Fernández-Benet, M. M., Blasco, J.-M., Hernández-Guillén, D., & Sanchis-Sales, E. (2025). Gait Pattern Differences Between Young Adults and Physically Active Older Adults. Medicina, 61(10), 1752. https://doi.org/10.3390/medicina61101752