A Higher Charlson Comorbidity Index Is a Risk Factor for Hip Fracture in Older Adults During Low-Temperature Periods: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Bone Mineral Density Assessment and T-Score Determination
2.3. Measurement of Other Clinical Factors
2.4. Meteorology Data
2.5. Statistics
2.6. Assistance with Language Editing
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katsoulis, M.; Benetou, V.; Karapetyan, T.; Feskanich, D.; Grodstein, F.; Pettersson-Kymmer, U.; Eriksson, S.; Wilsgaard, T.; Jorgensen, L.; Ahmed, L.A.; et al. Excess Mortality after Hip Fracture in Elderly Persons from Europe and the USA: The Chances Project. J. Intern. Med. 2017, 281, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.L.; Ang, S.B.; Chadha, M.; Chow, E.S.; Chung, Y.S.; Hew, F.L.; Jaisamrarn, U.; Ng, H.; Takeuchi, Y.; Wu, C.H.; et al. An Updated Hip Fracture Projection in Asia: The Asian Federation of Osteoporosis Societies Study. Osteoporos. Sarcopenia 2018, 4, 16–21. [Google Scholar] [CrossRef]
- Chen, I.J.; Chiang, C.Y.; Li, Y.H.; Chang, C.H.; Hu, C.C.; Chen, D.W.; Chang, Y.; Yang, W.E.; Shih, H.N.; Ueng, S.W.; et al. Nationwide Cohort Study of Hip Fractures: Time Trends in the Incidence Rates and Projections up to 2035. Osteoporos. Int. 2015, 26, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Noda, T.; Kubo, S.; Myojin, T.; Nishioka, Y.; Higashino, T.; Imamura, T. Variation in Fracture Risk by Season and Weather: A Comprehensive Analysis across Age and Fracture Site Using a National Database of Health Insurance Claims in Japan. Bone 2019, 120, 512–518. [Google Scholar] [CrossRef]
- Johnson, N.A.; Stirling, E.; Alexander, M.; Dias, J.J. The Relationship between Temperature and Hip and Wrist Fracture Incidence. Ann. R. Coll. Surg. Engl. 2020, 102, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Roman Ortiz, C.; Tenias, J.M.; Estarlich, M.; Ballester, F. Systematic Review of the Association between Climate and Hip Fractures. Int. J. Biometeorol. 2015, 59, 1511–1522. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Hong, J.; Radnaabaatar, M.; Park, S.Y.; Jung, J. Effect of Meteorological Factors and Air Pollutants on Fractures: A Nationwide Population-Based Ecological Study. BMJ Open 2021, 11, e047000. [Google Scholar] [CrossRef]
- Koren, L.; Barak, A.; Norman, D.; Sachs, O.; Peled, E. Effect of Seasonality, Weather and Holidays on the Incidence of Proximal Hip Fracture. Isr. Med. Assoc. J. 2014, 16, 299–302. [Google Scholar]
- Chow, K.P.; Fong, D.Y.T.; Wang, M.P.; Wong, J.Y.H.; Chau, P.H. Meteorological Factors to Fall: A Systematic Review. Int. J. Biometeorol. 2018, 62, 2073–2088. [Google Scholar] [CrossRef] [PubMed]
- Dahl, C.; Madsen, C.; Omsland, T.K.; Søgaard, A.J.; Tunheim, K.; Stigum, H.; Holvik, K.; Meyer, H.E. The Association of Cold Ambient Temperature with Fracture Risk and Mortality: National Data from Norway-a Norwegian Epidemiologic Osteoporosis Studies (Norepos) Study. J. Bone Min. Res. 2022, 37, 1527–1536. [Google Scholar] [CrossRef]
- Nishimura, H.; Nawa, N.; Ogawa, T.; Fushimi, K.; Fujiwara, T. Association of Ambient Temperature and Sun Exposure with Hip Fractures in Japan: A Time-Series Analysis Using Nationwide Inpatient Database. Sci. Total Environ. 2022, 807 Pt 1, 150774. [Google Scholar] [CrossRef] [PubMed]
- Mazzucchelli, R.; Crespi-Villarias, N.; Perez-Fernandez, E.; Reguera, M.L.D.; Illescas, O.G.; Quiros, J.; Garcia-Vadillo, A.; Carmona, L.; Rodriguez-Caravaca, G.; de Miguel, A.G. Weather Conditions and Their Effect on Seasonality of Incident Osteoporotic Hip Fracture. Arch. Osteoporos. 2018, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Solbakken, S.M.; Magnus, J.H.; Meyer, H.E.; Emaus, N.; Tell, G.S.; Holvik, K.; Grimnes, G.; Forsmo, S.; Schei, B.; Sogaard, A.J.; et al. Impact of Comorbidity, Age, and Gender on Seasonal Variation in Hip Fracture Incidence. A Norepos Study. Arch. Osteoporos. 2014, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (Strobe) Statement: Guidelines for Reporting Observational Studies. PLoS Med. 2007, 4, e296. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Hsueh, I.P.; Lee, M.M.; Hsieh, C.L. Psychometric Characteristics of the Barthel Activities of Daily Living Index in Stroke Patients. J. Formos. Med. Assoc. 2001, 100, 526–532. [Google Scholar] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and Validating the Charlson Comorbidity Index and Score for Risk Adjustment in Hospital Discharge Abstracts Using Data from 6 Countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Reyes, C.; Estrada, P.; Nogues, X.; Orozco, P.; Cooper, C.; Diez-Perez, A.; Formiga, F.; Gonzalez-Macias, J.; Prieto-Alhambra, D. The Impact of Common Co-Morbidities (as Measured Using the Charlson Index) on Hip Fracture Risk in Elderly Men: A Population-Based Cohort Study. Osteoporos. Int. 2014, 25, 1751–1758. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Hu, J.; Lu, B.; Zhou, W.; Tan, B. Prevalence and Risk Factors of Hip Fracture in a Middle-Aged and Older Chinese Population. Bone 2019, 122, 143–149. [Google Scholar] [CrossRef]
- McKevitt, S.; Healey, E.; Jinks, C.; Rathod-Mistry, T.; Quicke, J. The Association between Comorbidity and Physical Activity Levels in People with Osteoarthritis: Secondary Analysis from Two Randomised Controlled Trials. Osteoarthr. Cartil. Open 2020, 2, 100057. [Google Scholar] [CrossRef]
- Hayashi, Y.; Schmidt, S.M.; Fange, A.M.; Hoshi, T.; Ikaga, T. Lower Physical Performance in Colder Seasons and Colder Houses: Evidence from a Field Study on Older People Living in the Community. Int. J. Environ. Res. Public Health 2017, 14, 651. [Google Scholar] [CrossRef]
- Timmermans, E.J.; van der Pas, S.; Dennison, E.M.; Maggi, S.; Peter, R.; Castell, M.V.; Pedersen, N.L.; Denkinger, M.D.; Edwards, M.H.; Limongi, F.; et al. The Influence of Weather Conditions on Outdoor Physical Activity among Older People with and without Osteoarthritis in 6 European Countries. J. Phys. Act. Health 2016, 13, 1385–1395. [Google Scholar] [CrossRef]
- Al-Azzani, W.; Mak, D.A.M.; Hodgson, P.; Williams, R. Epidemic of Fractures during a Period of Snow and Ice: Has Anything Changed 33 Years On? BMJ Open 2016, 6, e010582. [Google Scholar] [CrossRef] [PubMed]
- Murray, I.R.; Howie, C.R.; Biant, L.C. Severe Weather Warnings Predict Fracture Epidemics. Injury 2011, 42, 687–690. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, J.L.; Procter-Gray, E.; Hannan, M.T.; Li, W. Heterogeneity of Falls among Older Adults: Implications for Public Health Prevention. Am. J. Public Health 2012, 102, 2149–2156. [Google Scholar] [CrossRef]
- Kelekar, U.; Gupta, D.D.; Shepherd, J.G.; Sule, A.A. Risk Factors of Fall-Related Emergency Department Visits by Fall Location of Older Adults in the Us. West. J. Emerg. Med. 2021, 22, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, Z.H.; Wang, Q.R.; Su, Y.J.; Lu, Y.Y.; Zhang, C.L.; Tsai, H.P.; Wu, C.H. Stroke and Osteoporosis: A Taiwan Cohort Study. Postgrad. Med. J. 2021, 97, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Luan, L.; Li, R.; Wang, Z.; Hou, X.; Gu, W.; Wang, X.; Yan, S.; Xu, D. Stroke Increases the Risk of Hip Fracture: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2016, 27, 3149–3154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Guo, L.; Yu, Y.; Chen, S.; Gao, L.; Hou, X.; Tian, F.; Wu, S. New-Onset Stroke on the Risk of Hip Fracture: The Kailuan Cohort Study in China. BMC Public Health 2023, 23, 925. [Google Scholar] [CrossRef] [PubMed]
- Beckwée, D.; Cuypers, L.; Lefeber, N.; De Keersmaecker, E.; Scheys, E.; Van Hees, W.; Perkisas, S.; De Raedt, S.; Kerckhofs, E.; Bautmans, I.; et al. Skeletal Muscle Changes in the First Three Months of Stroke Recovery: A Systematic Review. J. Rehabil. Med. 2022, 54, jrm00308. [Google Scholar] [CrossRef]
- Ogawa, T.; Yoshii, T.; Morishita, S.; Moriwaki, M.; Okawa, A.; Nazarian, A.; Fushimi, K.; Fujiwara, T. Seasonal Impact on Surgical Site Infections in Hip Fracture Surgery: Analysis of 330,803 Cases Using a Nationwide Inpatient Database. Injury 2020, 52, 898–904. [Google Scholar] [CrossRef]
- Hasan, O.; Amin, M.; Mahmood, F.; Rabbani, A.; Rabbani, U.; Noordin, S. Seasonal Influence on Postoperative Hip Fracture Complications: Retrospective Cohort of More than 1000 Patients from a Tertiary-Care University Hospital. Ann. Med. Surg. 2020, 56, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Ng, M.; Song, S.; George, J.; Khlopas, A.; Sodhi, N.; Ng, K.; Sultan, A.A.; Piuzzi, N.S.; Mont, M.A. Associations between Seasonal Variation and Post-Operative Complications after Total Hip Arthroplasty. Ann. Transl. Med. 2017, 5 (Suppl. S3), S33. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, N.; Piuzzi, N.S.; Dalton, S.E.; George, J.; Ng, M.; Khlopas, A.; Sultan, A.A.; Higuera, C.A.; Mont, M.A. What Influence Does the Time of Year Have on Postoperative Complications Following Total Knee Arthroplasty? J. Arthroplast. 2018, 33, 1908–1913. [Google Scholar] [CrossRef]
- Anthony, C.A.; Peterson, R.A.; Sewell, D.K.; Polgreen, L.A.; Simmering, J.E.; Callaghan, J.J.; Polgreen, P.M. The Seasonal Variability of Surgical Site Infections in Knee and Hip Arthroplasty. J. Arthroplast. 2018, 33, 510–514.e1. [Google Scholar] [CrossRef] [PubMed]
- Leavy, B.; Aberg, A.C.; Melhus, H.; Mallmin, H.; Michaelsson, K.; Byberg, L. When and Where Do Hip Fractures Occur? A Population-Based Study. Osteoporos. Int. 2013, 24, 2387–2396. [Google Scholar] [CrossRef]
Clinical Characteristics (n = 506) | Mean ± SD/Number (Percentage) | Temperature Correlation p-Value (Pearson Coefficient) |
---|---|---|
Age | 80.8 ± 9.6 | 0.03 (−0.095) |
Sex | Male: 146 (29%) Female: 360 (71%) | 0.63 |
Comorbidities | ||
Hypertension | 328 (65%) | 0.11 |
Type 2 diabetes mellitus | 119 (24%) | 0.08 |
CKD stage V or ESRD | 44 (8.7%) | 0.28 |
Malignant cancer history | 65 (13%) | 0.21 |
Cerebrovascular diseases | 54 (11%) | 0.02 |
Charlson Comorbidity Index | 4.8 ± 1.8 | 0.001 (−0.18) |
BMI | 22.3 ± 3.8 | 0.08 |
T-score (n = 420) | −3.8 ± 1.1 | 0.26 |
Pre-injury Barthel Index | 86.3 ± 21.6 | 0.02 (0.10) |
Pre-operation laboratory data | ||
Hb (gm/dL) | 12.1 ± 2.2 | 0.86 |
eGFR (mL/min/1.73 m2) | 76.7 ± 35.9 | 0.76 |
Platelet (1000/μL) | 207.9 ± 81.3 | 0.14 |
WBCs (1000/uL) | 12.9 ± 41.3 | 0.47 |
PTH (pg/mL) (n = 432) | 67.6 ± 203.9 | 0.39 |
25(OH)D (n = 364) | 20.0 ± 10.4 | 0.33 |
Albumin level (g/dL) (n = 461) | 3.1 ± 0.9 | 0.72 |
Fracture site | ||
Right | 247 (49%) | 0.81 |
Left | 259 (51%) | |
Fracture type | ||
Femoral neck fracture | 263 (52%) | 0.83 |
Peritrochanteric fracture | 243 (48%) | |
Falling location (n = 478) | Indoor: 359 (75%) | |
Outdoor: 119 (25%) |
Variables | β | 95% CI | p-Value | |
---|---|---|---|---|
Lower Limit | Upper Limit | |||
Age | −0.005 | −0.06 | 0.05 | 0.87 |
CCI | −0.48 | −0.80 | −0.16 | 0.005 |
Barthel Index | 0.015 | −0.01 | 0.04 | 0.23 |
CVDs | −0.91 | −2.68 | 0.83 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, M.-H.; Kuo, Y.-J.; Huang, S.-W.; Tran, D.N.A.; Chuang, T.-Y.; Chen, Y.-P.; Lin, C.-Y. A Higher Charlson Comorbidity Index Is a Risk Factor for Hip Fracture in Older Adults During Low-Temperature Periods: A Cross-Sectional Study. Medicina 2024, 60, 1962. https://doi.org/10.3390/medicina60121962
Chiang M-H, Kuo Y-J, Huang S-W, Tran DNA, Chuang T-Y, Chen Y-P, Lin C-Y. A Higher Charlson Comorbidity Index Is a Risk Factor for Hip Fracture in Older Adults During Low-Temperature Periods: A Cross-Sectional Study. Medicina. 2024; 60(12):1962. https://doi.org/10.3390/medicina60121962
Chicago/Turabian StyleChiang, Ming-Hsiu, Yi-Jie Kuo, Shu-Wei Huang, Duy Nguyen Anh Tran, Tai-Yuan Chuang, Yu-Pin Chen, and Chung-Ying Lin. 2024. "A Higher Charlson Comorbidity Index Is a Risk Factor for Hip Fracture in Older Adults During Low-Temperature Periods: A Cross-Sectional Study" Medicina 60, no. 12: 1962. https://doi.org/10.3390/medicina60121962
APA StyleChiang, M.-H., Kuo, Y.-J., Huang, S.-W., Tran, D. N. A., Chuang, T.-Y., Chen, Y.-P., & Lin, C.-Y. (2024). A Higher Charlson Comorbidity Index Is a Risk Factor for Hip Fracture in Older Adults During Low-Temperature Periods: A Cross-Sectional Study. Medicina, 60(12), 1962. https://doi.org/10.3390/medicina60121962