Myocardial Function after Coronary Artery Bypass Grafting in Patients with Preoperative Preserved Left Ventricular Ejection Fraction—The Role of the Left Ventricular Longitudinal Strain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients
2.2. 2-D Echocardiography Parameters
2.3. 2D Speckle Tracking Echocardiography
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Preoperative Echocardiographic Characteristics
3.3. LV Function after CABG in Patients Divided According to the Preoperative GLS%
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ma, C.; Han, Y. Thoughts on Future Trends in Cardiology. Cardiol. Discov. 2021, 1, 9–11. [Google Scholar] [CrossRef]
- Windecker, S.; Stortecky, S.; Stefanini, G.G.; Dacosta, B.R.; Rutjes, A.W.; Di Nisio, M.; Siletta, M.G.; Maione, A.; Alfonso, F.; Clemmensen, P.M.; et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: Network meta-analysis. BMJ 2014, 348, g3859. [Google Scholar] [CrossRef] [PubMed]
- Velazquez, E.J.; Lee, K.L.; Deja, M.A.; Jain, A.; Sopko, G.; Marchenko, A.; Ali, I.S.; Pohost, G.; Gradinac, S.; Abraham, W.T.; et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N. Engl. J. Med. 2011, 364, 1607–1616. [Google Scholar] [CrossRef]
- Michler, R.E.; Rouleau, J.L.; Al-Khalidi, H.R.; Bonow, R.O.; Pellikka, P.A.; Pohost, G.M.; Holly, T.A.; Oh, J.K.; Dagenais, F.; Milano, C.; et al. Insights from the STICH trial: Change in left ventricular size after coronary artery bypass grafting with and without surgical ventricular reconstruction. J. Thorac. Cardiovasc. Surg. 2012, 146, 1139–1145.e6. [Google Scholar] [CrossRef]
- Koene, R.J.; Kealhofer, J.V.; Adabag, S.; Vakil, K.; Florea, V.G. Effect of coronary artery bypass graft surgery on left ventricular systolic function. J. Thorac. Dis. 2017, 9, 262–270. [Google Scholar] [CrossRef]
- Yin, Z.-Y.; Li, X.-F.; Tu, Y.-F.; Dong, D.-D.; Zhao, D.-L.; Shen, B. Speckle-Tracking Imaging to Monitor Myocardial Function After Coronary Artery Bypass Graft Surgery. J. Ultrasound Med. 2013, 32, 1951–1956. [Google Scholar] [CrossRef] [PubMed]
- Owan, T.E.; Hodge, D.O.; Herges, R.M.; Jacobsen, S.J.; Roger, V.L.; Redfield, M.M. Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2006, 355, 251–259. [Google Scholar] [CrossRef]
- Notomi, Y.; Shiota, T.; Popović, Z.B.; Weaver, J.A.; Oryszak, S.J.; Greenberg, N.L.; White, R.D.; Thomas, J.D.; Setser, R.M.; Lysyansky, P.; et al. Measurement of Ventricular Torsion by Two-Dimensional Ultrasound Speckle Tracking Imaging. J. Am. Coll. Cardiol. 2005, 45, 2034–2041. [Google Scholar] [CrossRef]
- Saha, S.K.; Kiotsekoglou, A.; Toole, R.S.; Moggridge, J.C.; Nichols, K.J.; Govind, S.; Gopal, A.S. Value of Two-Dimensional Speckle Tracking and Real Time Three-Dimensional Echocardiography for the Identification of Subclinical Left Ventricular Dysfunction in Patients Referred for Routine Echocardiography. Echocardiography 2012, 29, 588–597. [Google Scholar] [CrossRef]
- Thuijs, D.J.F.M.; Milojevic, M.; Stone, G.W.; Puskas, J.D.; Serruys, P.W.; Sabik, J.F., 3rd; Dressler, O.; Crowley, A.; Head, S.J.; Kappetein, A.P. Impact of left ventricular ejection fraction on clinical outcomes after left main coronary artery revascularization: Results from the randomized EXCEL trial. Eur. J. Heart Fail. 2020, 22, 871–879. [Google Scholar] [CrossRef]
- Özer, N.; Kepez, A.; Kaya, B.; Kılıç, H.; Deniz, A.; Arslan, U.; Atalar, E.; Övünç, K.; Aksöyek, S. Determination of left ventricular filling pressure by new echocardiographic methods in patients with coronary artery disease. Int. J. Cardiovasc. Imaging 2007, 24, 141–147. [Google Scholar] [CrossRef]
- Haas, F.; Augustin, N.; Holper, K.; Wottke, M.; Haehnel, C.; Nekolla, S.; Meisner, H.; Lange, R.; Schwaiger, M. Time course and extent of improvement of dysfunctioning myocardium in patients with coronary artery disease and severely depressed left ventricular function after revascularization: Correlation with positron emission tomographic findings. J. Am. Coll. Cardiol. 2000, 36, 1927–1934. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e4. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed]
- Diller, G.-P.; Wasan, B.S.; Kyriacou, A.; Patel, N.; Casula, R.P.; Athanasiou, T.; Francis, D.P.; Mayet, J. Effect of coronary artery bypass surgery on myocardial function as assessed by tissue Doppler echocardiography. Eur. J. Cardio-Thorac. Surg. 2008, 34, 995–999. [Google Scholar] [CrossRef] [PubMed]
- Flameng, W.J.; Shivalkar, B.; Spiessens, B.; Maes, A.; Nuyts, J.; VanHaecke, J.; Mortelmans, L. PET scan predicts recovery of left ventricular function after coronary artery bypass operation. Ann. Thorac. Surg. 1997, 64, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Geer, J.C.; Crago, C.A.; Little, W.C.; Gardner, L.L.; Bishop, S.P. Subendocardial ischemic myocardial lesions associated with severe coronary atherosclerosis. Am. J. Pathol. 1980, 98, 663–680. [Google Scholar] [PubMed]
- Reant, P.; Labrousse, L.; Lafitte, S.; Bordachar, P.; Pillois, X.; Tariosse, L.; Bonoron-Adele, S.; Pasdois, P.; Deville, C.; Roudaut, R.; et al. Experimental Validation of Circumferential, Longitudinal, and Radial 2-Dimensional Strain During Dobutamine Stress Echocardiography in Ischemic Conditions. J. Am. Coll. Cardiol. 2008, 51, 149–157. [Google Scholar] [CrossRef]
- Geyer, H.; Caracciolo, G.; Abe, H.; Wilansky, S.; Carerj, S.; Gentile, F.; Nesser, H.-J.; Khandheria, B.; Narula, J.; Sengupta, P.P. Assessment of Myocardial Mechanics Using Speckle Tracking Echocardiography: Fundamentals and Clinical Applications. J. Am. Soc. Echocardiogr. 2010, 23, 351–369; quiz 453–455. [Google Scholar] [CrossRef]
- Durmaz, T.; Bayram, H.; Bayram, N.; Sari, C.; Keles, T.; Bastug, S.; Bozkurt, E. Effect of coronary artery bypass surgery on left ventricular function as assessed by strain and strain rate imaging. Perfusion 2014, 29, 425–433. [Google Scholar] [CrossRef]
- Luis, S.A.; Yamada, A.; Khandheria, B.K.; Speranza, V.; Benjamin, A.; Ischenko, M.; Platts, D.G.; Hamilton-Craig, C.R.; Haseler, L.; Burstow, D.; et al. Use of three-dimensional speckle-tracking echocardiography for quantitative assessment of global left ventricular function: A comparative study to three-dimensional echocardiography. J. Am. Soc. Echocardiogr. 2014, 27, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Ternacle, J.; Berry, M.; Alonso, E.; Kloeckner, M.; Couetil, J.-P.; Randé, J.-L.D.; Gueret, P.; Monin, J.-L.; Lim, P. Incremental value of global longitudinal strain for predicting early outcome after cardiac surgery. Eur. Hear. J.-Cardiovasc. Imaging 2012, 14, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.-Y.; Marwick, T.H.; Kim, H.-S.; Kim, M.-K.; Hong, K.-S.; Oh, D.-J. Global 2-Dimensional Strain as a New Prognosticator in Patients with Heart Failure. J. Am. Coll. Cardiol. 2009, 54, 618–624. [Google Scholar] [CrossRef]
- Mignot, A.; Donal, E.; Zaroui, A.; Reant, P.; Salem, A.; Hamon, C.; Monzy, S.; Roudaut, R.; Habib, G.; Lafitte, S. Global Longitudinal Strain as a Major Predictor of Cardiac Events in Patients with Depressed Left Ventricular Function: A Multicenter Study. J. Am. Soc. Echocardiogr. 2010, 23, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.E.; Alfirevic, A.; Sessler, D.I.; Popovic, Z.B.; Thomas, J.D. Perioperative Assessment of Myocardial Deformation. Obstet. Anesth. Dig. 2014, 118, 525–544. [Google Scholar] [CrossRef] [PubMed]
- MacIver, D.H.; Adeniran, I.; Zhang, H. Left ventricular ejection fraction is determined by both global myocardial strain and wall thickness. IJC Hear. Vasc. 2015, 7, 113–118. [Google Scholar] [CrossRef]
- Gozdzik, A.; Letachowicz, K.; Grajek, B.B.; Plonek, T.; Obremska, M.; Jasinski, M.; Gozdzik, W. Application of strain and other echocardiographic parameters in the evaluation of early and long-term clinical outcomes after cardiac surgery revascularization. BMC Cardiovasc. Disord. 2019, 19, 189. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, M.; Nicoara, A.; Phillips-Bute, B.G.; Aeschlimann, N.; Milano, C.A.; Mackensen, G.B.; Podgoreanu, M.V.; Velazquez, E.J.; Stafford-Smith, M.; Mathew, J.P.; et al. Utility of a Simple Algorithm to Grade Diastolic Dysfunction and Predict Outcome After Coronary Artery Bypass Graft Surgery. Ann. Thorac. Surg. 2011, 91, 1844–1850. [Google Scholar] [CrossRef] [PubMed]
- Dykun, I.; Kärner, L.; Mahmoud, I.; Hendricks, S.; Totzeck, M.; Al-Rashid, F.; Rassaf, T.; Mahabadi, A.A. Association of echocardiographic measures of left ventricular diastolic dysfunction and hypertrophy with presence of coronary microvascular dysfunction. Int. J. Cardiol. Heart Vasc. 2020, 27, 100493. [Google Scholar] [CrossRef]
Parameter | All Patients n = 59 | Group 1 GLS < −17% (n/%) = 23/39.0 | Group 2 GLS% ≥ −17% (n/%) = 36/61.0 | p |
---|---|---|---|---|
Age (years) | 64.8 ± 7.5 | 65.6 ± 7.6 | 64.3 ± 7.4 | 0.750 |
Gender | ||||
male/female (n/%) | 43/16(72.9/27.1) | 17/6 (73.9/26.1) | 26/10(72.9/27.1) | 0.154 |
BMI (kg/m2) | 28.5 ± 4.5 | 28.9 ± 4.3 | 28.2 ± 4.7 | 0.613 |
Euro SCORE 2 | 1.6 ± 1.1 | 2.04 ± 1.40 | 1.17 ± 0.50 | 0.034 |
NYHA class | 2.2 ± 0.5 | 2.3 ± 0.5 | 2.1 ± 0.5 | 0.314 |
Previous MI (n/%) | 20/33.9 | 8/34.8 | 12/33.3 | 0.564 |
CKD (n/%) | 9/15.2 | 2/8.6 | 7/19.4 | 0.017 |
AF (n/%) | 5/8.5 | 2/8.6 | 3/8.3 | 0.553 |
Smoking (n/%) | 27/45.8 | 9/39.1 | 18/50.0 | 0.292 |
Hypertension (n/%) | 57/96.9 | 23/100 | 34/94.4 | 0.368 |
Dyslipidemia (n/%) | 57/96.6 | 21/91.3 | 36/100 | 0.148 |
Diabetes mellitus (n/%) | 24/40.7 | 11/47.8 | 13/36.1 | 0.423 |
SYNTAX score | 30.9 ± 6.5 | 31.4 ± 7.8 | 30.7 ± 5.6 | 0.304 |
Left the main disease | 21/35.5 | 12/52.2 | 9/25.0 | 0.039 |
Three vessel disease | 48/81.3 | 21/91.3 | 27/75.0 | 0.081 |
Number of grafts | 2.7 ± 0.8 | 2.7 ± 0.8 | 2.8 ± 0.7 | 0.538 |
CPB time (min) | 105.9 ± 26.6 | 110.8 ± 26.8 | 102.8 ± 26.5 | 0.265 |
Ischemic time (min) | 60.2 ± 16.3 | 61.5 ± 18.1 | 58.6 ± 15.5 | 0.363 |
Parameter | All Patients n = 59 | Group 1 GLS < −17% n = 23 | Group 2 GLS% ≥ −17% n = 36 | p |
---|---|---|---|---|
LVIDd (mm) | 49.0 ± 7.9 | 52.9 ± 7.8 | 46.5 ± 7.0 | 0.007 |
LVIDs (mm) | 29.5 ± 8.4 | 33.9 ± 8.9 | 26.8 ± 6.9 | 0.003 |
IVSd (mm) | 13.2 ± 2.2 | 13.1 ± 2.0 | 13.3 ± 2.0 | 0.609 |
PWd (mm) | 11.6 ± 2.1 | 11.2 ± 2.5 | 11.8 ± 1.8 | 0.312 |
LVEDVI (mL/m2) | 45.8 ± 15.9 | 55.1 ± 20.0 | 40.0 ± 8.7 | 0.002 |
LVESVI (mL/m2) | 19.6 ± 16.1 | 22.9 ± 10.4 | 13.4 ± 4.8 | 0.001 |
LVEF (%) | 63.6 ± 8.5 | 58.6 ± 7.0 | 66.8 ± 7.9 | 0.0001 |
MAPSEavarage (mm) | 14.5 ± 2.3 | 13.5 ± 1.8 | 15.0 ± 2.4 | 0.001 |
s’TDI (cm/s) | 6.4 ± 1.4 | 6.0 ± 1.5 | 6.7 ± 1.2 | 0.037 |
LVmass index | 130.4 ± 38.2 | 141.2 ± 41.0 | 126.8 ± 37.4 | 0.019 |
WMSI | 1.1 ± 0.2 | 1.29 ± 0.29 | 1.04 ± 0.07 | 0.0001 |
LV GLS (%) | −17.7 ± 3.9 | −14.0 ± 2.6 | −20.1 ± 2.6 | 0.0001 |
No segments with LV LS < 13% | 3.8 ± 3.8 | 7.4 ± 3.6 | 1.5 ± 1.5 | 0.0001 |
LAVI (mL/m2) | 33.4 ± 10.5 | 36.7 ± 10.1 | 31.3 ± 10.3 | 0.035 |
E/A | 0.9 ± 0.5 | 0.8 ± 0.6 | 0.9 ± 0.5 | 0.231 |
e’ septal (cm/s) | 5.3 ± 1.5 | 5.0 ± 1.2 | 5.6 ± 1.7 | 0.084 |
e’ lateral (cm/s) | 7.5 ± 2.3 | 7.0 ± 2.5 | 7.8 ± 2.2 | 0.150 |
e’ average (cm/s) | 6.5 ± 1.6 | 6.1 ± 1.7 | 6.8 ± 1.5 | 0.054 |
E/e’ average | 11.2 ± 3.7 | 11.7 ± 4.6 | 10.9 ± 3.0 | 0.652 |
Parameter | All Patients n = 59 | Group 1 GLS < −17% n = 23 | Group 2 GLS ≥ −17% n = 36 | ||||||
---|---|---|---|---|---|---|---|---|---|
Before CABG | After CABG | p | Before CABG | After CABG | p | Before CABG | After CABG | p | |
LVIDd (mm) | 49.0 ± 7.9 | 48.5 ± 6.0 | 0.401 | 52.9 ± 7.8 | 50.7 ± 5.9 | 0.069 | 46.5 ± 7.0 | 47.2 ± 5.7 | 0.658 |
LVIDs (mm) | 29.5 ± 8.4 | 28.3 ± 6.8 | 0.115 | 33.9 ± 8.9 | 31.0 ± 5.7 | 0.031 | 26.8 ± 6.9 | 26.5 ± 6.9 | 0.777 |
IVSd (mm) | 13.2 ± 2.2 | 12.5 ± 2.4 | 0.026 | 13.1 ± 2.5 | 12.8 ± 3.1 | 0.951 | 13.3 ± 2.0 | 12.3 ± 2.0 | 0.007 |
PWd (mm) | 11.6 ± 2.1 | 10.9 ± 1.9 | 0.039 | 11.2 ± 2.5 | 10.9 ± 2.0 | 0.531 | 11.8 ± 1.8 | 10.9 ± 1.9 | 0.043 |
LVEDVI (mL/m2) | 45.8 ± 15.9 | 43.4 ± 14.4 | 0.167 | 55.1 ± 20.0 | 50.5 ± 16.1 | 0.191 | 40.0 ± 8.7 | 38.9 ± 11.2 | 0.545 |
LVESVI (mL/m2) | 17.1 ± 8.7 | 19.6 ± 16.1 | 0.182 | 22.9 ± 10.4 | 22.3 ± 8.5 | 0.951 | 13.4 ± 4.8 | 17.9 ± 19.3 | 0.100 |
LVEF (%) | 63.6 ± 8.5 | 60.3 ± 9.6 | 0.018 | 58.6 ± 7.0 | 56.1 ± 9.2 | 0.304 | 66.8 ± 7.9 | 63.1 ± 8.9 | 0.035 |
MAPSEav (mm) | 14.5 ± 2.3 | 15.5 ± 2.1 | 0.002 | 13.5 ± 1.8 | 14.8 ± 1.8 | 0.031 | 15.0 ± 2.4 | 16.0 ± 2.0 | 0.035 |
s’TDI (cm/s) | 6.4 ± 1.4 | 6.4 ± 1.2 | 0.918 | 6.0 ± 1.5 | 5.8 ± 1.3 | 0.697 | 6.7 ± 1.2 | 6.8 ± 0.9 | 0.577 |
LVmass index | 130.4 ± 38.2 | 117.9 ± 34.7 | 0.020 | 146.1 ± 4.5 | 127.2 ± 41.6 | 0.024 | 120.5 ± 30.3 | 112.0 ± 28.6 | 0.272 |
WMSI | 1.1 ± 0.2 | 1.1 ± 0.1 | 0.289 | 1.29 ± 0.29 | 1.18 ± 0.15 | 0.059 | 1.04 ± 0.07 | 1.05 ± 0.11 | 0.679 |
LV GLS (%) | −17.7 ± 3.9 | −18.6 ± 4.3 | 0.030 | −14.0 ± 2.6 | −15.9 ± 3.6 | 0.004 | −20.1 ± 2.6 | −20.3 ± 3.9 | 0.652 |
No.seg.LVLS < 13% | 3.8 ± 3.8 | 3.1 ± 3.3 | 0.073 | 7.4 ± 3.6 | 5.05 ± 3.9 | 0.005 | 1.5 ± 1.5 | 1.8 ± 2.0 | 0.565 |
LAVI (mL/m2) | 33.4 ± 10.5 | 36.6 ± 8.6 | 0.023 | 36.7 ± 10.1 | 39.4 ± 7.5 | 0.181 | 31.3 ± 10.3 | 34.9 ± 8.8 | 0.065 |
E/A | 0.9 ± 0.5 | 0.9 ± 0.4 | 0.360 | 0.89 ± 0.60 | 0.86 ± 0.31 | 0.927 | 0.90 ± 0.50 | 1.04 ± 0.56 | 0.010 |
e’ s (cm/s) | 5.3 ± 1.5 | 6.2 ± 2.2 | 0.021 | 5.0 ± 1.2 | 5.1 ± 1.3 | 0.521 | 5.6 ± 6 ± 1.7 | 6.9 ± 2.5 | 0.020 |
e’ l (cm/s) | 7.5 ± 2.3 | 10.5 ± 3.2 | 0.0001 | 7.0 ± 2.5 | 10.4 ± 3.3 | 0.001 | 7.8 ± 2.2 | 10.6 ± 3.1 | 0.0001 |
e’av. (cm/s) | 6.5 ± 1.6 | 8.4 ± 2.2 | 0.0001 | 6.1 ± 1.7 | 7.7 ± 1.8 | 0.002 | 6.8 ± 1.5 | 8.8 ± 2.4 | 0.0001 |
E/e’ average | 11.2 ± 3.7 | 10.0 ± 3.7 | 0.151 | 11.7 ± 4.6 | 10.7 ± 3.9 | 0.403 | 10.9 ± 3.0 | 9.6 ± 3.5 | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papestiev, V.; Jovev, S.; Risteski, P.; Popov, A.F.; Sokarovski, M.; Andova, V.; Georgievska-Ismail, L. Myocardial Function after Coronary Artery Bypass Grafting in Patients with Preoperative Preserved Left Ventricular Ejection Fraction—The Role of the Left Ventricular Longitudinal Strain. Medicina 2023, 59, 932. https://doi.org/10.3390/medicina59050932
Papestiev V, Jovev S, Risteski P, Popov AF, Sokarovski M, Andova V, Georgievska-Ismail L. Myocardial Function after Coronary Artery Bypass Grafting in Patients with Preoperative Preserved Left Ventricular Ejection Fraction—The Role of the Left Ventricular Longitudinal Strain. Medicina. 2023; 59(5):932. https://doi.org/10.3390/medicina59050932
Chicago/Turabian StylePapestiev, Vasil, Sasko Jovev, Petar Risteski, Aron Frederik Popov, Marjan Sokarovski, Valentina Andova, and Ljubica Georgievska-Ismail. 2023. "Myocardial Function after Coronary Artery Bypass Grafting in Patients with Preoperative Preserved Left Ventricular Ejection Fraction—The Role of the Left Ventricular Longitudinal Strain" Medicina 59, no. 5: 932. https://doi.org/10.3390/medicina59050932