Platelet Activity and Its Correlation with Inflammation and Cell Count Readings in Chronic Heart Failure Patients with Reduced Ejection Fraction
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Population
2.2. Tests and Blood Sampling
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Patients
3.2. The Differences in Cell Readings between CHF Patient Groups
3.3. The Differences in the Other Laboratory Readings between CHF Patient Groups
3.4. The Correlation between Clinical and Complete Blood Count Readings
3.5. Correlation between Laboratory and Clinical Readings
3.6. Correlations between Complete Blood Counts and Other Laboratory Readings
3.7. Correlations between Complete Blood Count Readings and Drug Usage
4. Discussion
4.1. Platelets
4.2. Monocytes and Neutrophils
4.3. Lymphocyte
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, L.; Wu, Y.; Lip, G.Y.H.; Yin, P.; Hu, Y. Heart failure and risk of venous thromboembolism: A systematic review and meta-analysis. Lancet Haematol. 2016, 3, e30–e44. [Google Scholar] [CrossRef]
- Ota, S.; Ymada, N.; Tsui, A.; Ishikura, K.; Nakamura, M.; Ito, M. Incidence and clinical predictors of deep vein thrombosis in patients hospitalized with heart failure in Japan. Circ. J. 2009, 73, 1513–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorensen, H.T.; Horvath-Puho, E.; Lash, T.L.; Christiansen, C.F.; Pesavento, R.; Pedersen, L.; Baron, J.A.; Prandoni, P. Heart disease may be a risk factor for pulmonary embolism without peripheral deep venous thrombosis. Circulation 2011, 124, 1435–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mebazaa, A.; Spiro, T.E.; Buller, H.R.; Haskell, L.; Hu, D.; Hull, R.; Merli, G.; Schellong, S.W.; Spyropoulos, A.C.; Tapson, V.F.; et al. Predicting the risk of venous thromboembolism in patients hospitalized with heart failure. Circulation 2014, 130, 410–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mongirdienė, A.; Kuršvietienė, L.; Kašauskas, A. The coagulation system changes in patients with chronic heart failure. Medicina 2010, 46, 642–647. [Google Scholar]
- Franco, A.T.; Corken, A.; Ware, J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015, 126, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Nikolsky, E.; Grines, C.L.; Cox, D.A.; Garcia, E.; Tcheng, J.E.; Sadeghi, M.; Mehran, R.; Lansky, A.J.; Na, Y.; Stone, G.W. Impact of baseline platelet count in patients undergoing primary percutaneous coronary intervention in acute myocardial infarction (from the CADILLAC trial). Am. J. Cardiol. 2007, 99, 1055–1061. [Google Scholar] [CrossRef]
- Stumpf, C.; Lehner, C.; Eskafi, S.; Raaz, D.; Yilmaz, A.; Ropers, S.; Schmeisser, A.; Ludwig, J.; Daniel, W.G.; Garlichs, C.D. Enhanced levels of CD154 (CD40 ligand) on platelets in patients with chronic heart failure. Eur. J. Heart Fail. 2003, 5, 629–637. [Google Scholar] [CrossRef]
- Pellicori, P.; Zhang, J.; Cuthberg, J.; Urbinati, A.; Shah, P.; Kazmi, S.; Clark, A.L.; Cleland, J.G. High-sensitivity C-reactive protein in chronic heart failure: Patient characteristics, phenotypes, and mode of death. Cardiovasc. Res. 2020, 116, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Glezeva, N.; Gilmer, J.F.; Watson, C.J.; Ledwidge, M. A central role for monocyte-platelet interactions in heart failure. J. Card. Pharm. Therap. 2016, 21, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kim, N.Y.; Na, S.H.; Youn, Y.H.; Shin, C.S. Reference values of neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio and mean platelet volume in healthy adults in South Korea. Medicine 2018, 97, e11138. [Google Scholar] [CrossRef]
- Durmus, E.; Kivrak, T.; Gerin, F.; Sunbul, M.; Sari, I.; Erdogan, O. Neutrophil-to-lymphocyte ratio and platelet-to lymphocyte ratio are predictors of heart failure. Arq. Bras. Cardiol. 2015, 105, 606–613. [Google Scholar] [CrossRef]
- Mann, D.L. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ. Res. 2015, 116, 1254–1268. [Google Scholar] [CrossRef] [Green Version]
- Dickstein, K.; Cohen-Solal, A.; Filippatos, G.; McMurray, J.V.; Ponikowski, P.; Poole-Wilson, P.A.; Stromberg, A.; van Veldhuisen, D.J.; Atar, D.; Hoes, A.V.; et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: The Task Force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur. Heart J. 2008, 29, 2388–2442. [Google Scholar] [CrossRef]
- Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194, 927–929. [Google Scholar] [CrossRef] [PubMed]
- Landgell, R.D.; Wagner, R.H.; Brinkhous, K.M. Effect of antihemophilic factor on one-stage clotting tests. J. Lab. Clin. Med. 1953, 41, 637–640. [Google Scholar]
- Larrien, M.J.; Weilland, C. Utilization de la cephaline dans les de coagulation. Nouv. Rev. Hematol. 1957, 12, 199–210. [Google Scholar]
- Libby, P.; Simon, D.I. Inflammation and thrombosis: The clot thickens. Circulation 2001, 103, 1718–1720. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.; Choudhury, A.; Patel, J.; Lip, G.Y. Soluble, platelet-bound, and total P-selectin as indices of platelet activation in congestive heart failure. Ann. Med. 2009, 41, 45–51. [Google Scholar] [CrossRef]
- Mongirdienė, A.; Laukaitienė, J.; Skipskis, V.; Kašauskas, A. The effect of oxidant hypochlorous acid on platelet aggregation and dityrosine concentration in CHF patients and healthy controls. Medicina 2019, 55, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizioli, L.; Muscari, S.; Muscari, A. The relationship of mean platelet volume with the risk and prognosis of cardiovascular diseases. Int. J. Clin. Pract. 2009, 63, 1509–1515. [Google Scholar] [CrossRef]
- Papanas, N.; Symoenidis, G.; Maltezos, E.; Mavridis, G.; Karavageli, E.; Vosnakidis, T.; Lakasas, G. Mean platelet volume in patients with type 2 diabetes mellitus. Platelets 2004, 15, 475–478. [Google Scholar] [CrossRef]
- Gasparian, A.Y.; Ayvazian, L.; Mikhailidis, D.P.; Kitas, G.D. Mean platelet volume: A link between thrombosis and inflammation? Curr. Pharm. 2011, 17, 47–58. [Google Scholar] [CrossRef]
- Lancé, M.D.; Sloep, M.; Henskens, Y.M.; Marcus, M.A. Mean platelet volume as a diagnostic marker for cardiovascular disease: Drawbacks of preanalytical conditions and measuring techniques. Clin. Appl. Thromb. Hemost. 2012, 18, 561–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurbel, P.A.; Gattis, W.A.; Fuzaylov, S.F. Evaluation of platelets in heart failure: Is platelet activity related to etiology, functional class, or clinical outcomes? Am. Heart J. 2002, 143, 1068–1075. [Google Scholar] [CrossRef]
- Braekkan, S.K.; Mathiesen, E.B.; Njolstad, I.; Wilsgaard, T.; Stormer, J.; Hansen, J.B. Mean platelet volume is a risk factor for venous thromboembolism: The Tromso study. J. Thromb. Haemost. 2009, 8, 157–162. [Google Scholar] [CrossRef]
- Chung, I.; Choudhury, A.; Lip, I.H. Platelet activation in acute, decompensated congestive heart failure. Thromb. Res. 2007, 120, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, C.R.; Blann, A.D.; Watson, R.D.; Lip, G.Y. Abnormalities of hemorrheological, endothelial, and platelet function in patients with chronic heart failure in sinus rhythm. Circulation 2001, 103, 1746–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, I.; Lip, G.Y.H. Platelets and heart failure. Eur. Heart J. 2006, 27, 2623–2631. [Google Scholar] [CrossRef] [Green Version]
- Larsson, P.T.; Schwieler, J.H.; Wallen, N.H. Platelet activation during angiotensin II infusion in healthy volunteers. Blood Coagul. Fibrinolysis. 2000, 11, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Huczek, Z.; Kochman, J.; Filipiak, K.J.; Horszczaruk, G.J.; Grabowski, M.; Piatkowski, R.; Wilczynska, J.; Zielinski, A.; Meier, B.; Opolski, G. Mean platelet volume on admission predicts impaired reperfusion and long-term mortality in acute myocardial infarction treated with primary percutaneous coronary intervention. J. Am. Coll. Cardiol. 2005, 46, 284–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budak, Y.U.; Huysal, K.; Demirci, H. Correlation between platelet volume and B-type natriuretic peptide concentration in emergency patients with heart failure. Biochem. Med. 2015, 25, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueland, T.; Aukrust, P.; Yndestad, A.; Otterdal, K.; Froland, S.S.; Dickstein, K.; Kjekshus, J.; Gullestad, L.; Damas, J.K. Soluble CD40 ligand in acute and chronic heart failure. Eur. Heart J. 2005, 26, 1101–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henn, V.; Slupsky, J.R.; Grafe, M.; Anagnostopoulos, I.; Forster, R.; Muller-Berghaus, G.; Kroszek, R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature 1998, 391, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Aliberti, G.; Proietta, M.; Pulignano, I.; Del Porto, F.; Tammeo, A.; Trappolini, M. Association between fibrinogen plasma levels and platelet counts in an outpatient population and in patients with coronary heart disease. Blood Coagul. Fibrinolysis 2010, 21, 216–220. [Google Scholar] [CrossRef]
- Centola, M.; Maloberti, A.; Castini, D.; Persampieri, S.; Sabatelli, L.; Ferrante, G.; Lucreziotti, S.; Morici, N.; Sacco, A.; Oliva, F.; et al. Impact of admission serum acid uric levels on in-hospital outcomes in patients with acute coronary syndrome. Eur. J. Intern. Med. 2020, 82, 62–67. [Google Scholar] [CrossRef]
- Muiesan, M.L.; Salvetti, M.; Virdis, A.; Masi, S.; Casiglia, E.; Tikhonoff, V.; Barbagallo, C.M.; Bombelli, M.; Cicero, A.F.G.; Cirillo, M.; et al. Serum uric acid, predicts heart failure in a large Italian cohort: Search for a cut-off value the Uric acid Right for heart Health study. J. Hypertens. 2021, 39, 62–69. [Google Scholar] [CrossRef]
- Shahid, F.; Lip, Y.H.; Shantsila, E. Role of monocytes in heart failure and atrial fibrillation. J. Am. Heart Assoc. 2018, 7, e007849. [Google Scholar] [CrossRef] [Green Version]
- Charach, G.; Rogowski, O.; Karniel, E.; Charach, L.; Grosskopf, I.; Novikov, I. Monocytes may be favorable biomarker and predictor of long-term outcomes in patients with chronic heart failute. Medicine 2019, 98, e17108. [Google Scholar] [CrossRef]
- Wrigley, B.J.; Shantsila, E.; Tapp, L.D. Increased formation of monocyteplatelet aggregates in ischemic heart failure. Circ. Heart Fail. 2013, 6, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Tallone, T.; Turconi, G.; Soldati, G.; Pedrazzini, G.; Moccetti, T.; Vassalli, G. Heterogeneity of human monocytes: An optimized four-color flow cytometry protocol for analysis of monocyte subsets. J. Cardiovasc. Transl. Res. 2011, 4, 211–219. [Google Scholar] [CrossRef]
- Van Craenenbroeck, A.H.; Van Ackeren, K.; Hoymans, V.Y.; Roeykens, J.; Verpooten, G.A.; Vrints, C.J.; Couttenye, M.M.; Van Craenenbroeck, E.M. Acute exercise-induced response of monocytes subtypes in chronic heart and renal failure. Mediat. Inflamm. 2014, 2014, 216534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Yin, Y.; Zhou, R.; Lin, J.; Li, J.; Ye, J. Changes of monocyte subsets in patients with acute coronary syndrome and correlation with myocardial injury markers. Int. J. Clin. Exp. Pathol. 2015, 8, 7266–7271. [Google Scholar] [PubMed]
- Barisione, C.; Garibaldi, S.; Ghigliotti, G.; Fabbi, P.; Altieri, P.; Casale, M.C.; Spallarosa, P.; Bertero, G.; Galbi, M.; Corsiglia, L.; et al. CD14CD16 monocyte subset levels In heart failure patients. Dis. Markers 2010, 28, 115–124. [Google Scholar] [CrossRef]
- Thomas, G.; Tacke, R.; Hedrick, C.C.; Hanna, R.N. Nonclassical patrolling monocyte function in the vasculature. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1306–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hristov, M.; Heine, G.H. Monocyte subsets in atherosclerosis. Hamostaseologie 2015, 35, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Amir, O.; Spivak, I.; Lavi, I.; Rahat, M.A. Changes in the monocytic subsets CD14(dim)CD16+ and CD14(++)CD16(-) in chronic systolic heart failure patients. Mediat. Inflamm. 2012, 2012, 616384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westermann, D.; Lindner, D.; Kasner, M.; Zietsch, C.; Savvatis, K.; Escher, F.; Von Schlippenbach, J.; Skurk, C.; Steendijk, P.; Riad, A.; et al. Cardiac inflammation contributes to changes in the extracellular matrix in patients with heart failure and normal ejection fraction. Circ. Heart Fail. 2011, 4, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Shimoni, S.; Meledin, V.; Bar, I.; Fabricant, J.; Gandelman, G.; George, J. Circulating CD14(+) monocytes in patients with aortic stenosis. J. Geriatr. Cardiol. 2016, 13, 81–87. [Google Scholar] [CrossRef]
- Woitas, R.P.; Schwab, S. Neutrophil counts and their potential prognostic value in cardiovascular diseases. J. Lab. Precis. Med. 2017, 2, 30. [Google Scholar] [CrossRef]
- Pfister, R.; Sharp, S.J.; Luben, R.; Wareham, N.J.; Khaw, K. Differential white blood cell count and incident heart failure in men and women in the EPIC-Norfolk study. Eur. Heart J. 2012, 33, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Soehnlein, O.; Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 2010, 10, 427–439. [Google Scholar] [CrossRef]
- Shah, A.D.; Denaxas, S.; Nicholas, O.; Hingorani, A.D.; Hemingway, H. Neutrophil Counts and Initial Presentation of 12 Cardiovascular Diseases: A CALIBER Cohort Study. J. Am. Coll. Cardiol. 2017, 69, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Ambrosy, A.P.; Greene, S.J.; Mentz, R.J.; Subacius, H.P.; Maggioni, A.P.; Swedberg, K.; Nodari, S.; Zannad, F.; Konstam, M.A.; et al. Predictive Value of Low Relative Lymphocyte Count in Patients Hospitalized for Heart Failure With Reduced Ejection Fraction: Insights from the EVEREST Trial. Circ. Heart Fail. 2012, 5, 750–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, N.; Noma, T.; Ishihara, Y.; Miyauchi, Y.; Takabatake, W.; Oomizu, S.; Yamaoka, G.; Ishizawa, M.; Namba, T.; Murakami, K.; et al. Prognostic value of circulating regulatory T cells for worsening heart failure in heart failure patients with reduced ejection fraction. Int. Heart J. 2014, 55, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical Variables | I NYHA | II NYHA | III NYHA | IV NYHA | p Value |
---|---|---|---|---|---|
(n = 26) | (n = 78) | (n = 54) | (n = 27) | ||
Age, years (mean ± SD) | 51.50 ± 7.99 | 53.95 ± 13.53 | 54.37 ± 9.49 | 57.78 ± 14.86 | 0.295 |
Male (n (%)) | 21 (80.8) | 67 (85.7) | 48 (88.9) | 18 (66.7) | 0.070 * |
Female (n (%)) | 5 (19.2) | 11 (14.1) | 6 (11.1) | 9 (33.3) | 0.070 * |
Left ventricular ejection | 34.28 ± 11.45 | 30.80 ± 10.99 d,e | 27.71 ± 12.25 | 25.76 ± 11.07 | <0.015 |
fraction (%, mean ± SD) | |||||
6 min. walking test, m (mean ± SD) | 518.65 ± 107.74 b,c | 471.23 ± 82.96 d,e | 378.9 ± 127.10 | 273.18 ± 143.18 | <0.005 |
BMI (median, min-max) | 29.38 (21–37) a,c | 27.38(19–43) | 26.54(21–44) | 25.00(21–45) | <0.029 |
SBP (mean ± SD) | 138.38 ± 18.39 abc | 124.81 ± 17.84 | 123.85 ± 20.73 | 115.56 ± 23.99 | <0.015 |
DBP (mean ± SD) | 85.27 ± 10.83 c | 82.12 ± 12.45 | 81.13 ± 14.33 | 75.30 ± 11.95 | 0.015 |
Variables | I NYHA (n = 26) | II NYHA (n = 78) | III NYHA (n = 54) | IV NYHA (n = 27) | p-Value |
---|---|---|---|---|---|
Diuretics (n) | 9 (28%) | 29 (37%) | 31 (50%) | 11 (35%) | 0.28 |
Beta-blockers (n) | 18 (56%) | 48 (62%) | 35 (56%) | 12 (38%) | 0.211 |
ACE-inhibitors (n) | 15 (57.7%) | 43 (55.1%) | 29 (53.7%) | 14 (51.9%) | 0.976 |
Nitrates (n) | 2 (7%) | 3 (4%) | 5 (9.3%) | 3 (11.5%) | 0.534 |
Digoxin (n) | 1 (3.8%) | 5 (6%) | 4 (7%) | 6 (22%) | 0.12 |
Statines (n) | 3 (11.5%) | 3 (4%) | 4 (7%) | 1 (4%) | 0.91 |
Heparine (n) | 0 | 1 (1%) | 4 (7%) | 1 (4%) | 0.201 |
Calcium channel blockers (n) | 0 | 1 (1%) | 1 (2%) | 3 (10%) | 0.051 |
Thrombosis (n) | 0 | 3 (15%) | 0 | 2 (12.5%) | 0.413 |
Readings | I NYHA (n = 26) | II NYHA (n = 78) | III NYHA (n = 54) | IV NYHA (n = 27) | p Value |
---|---|---|---|---|---|
Platelet count × 109/L (mean ± SD) | 227.29 ± 54.52 | 222.83 ± 63.09 | 217.83 ± 55.29 | 218.95 ± 124.89 | 0.972 |
MPV, Fl (mean ± SD) | 9.25 ± 0.46 a | 9.65 ± 1.22 b | 9.78 ± 1.15 c | 10.75 ± 1.2 | <0.005 |
Leukocyte count × 109/L (mean ± SD) | 7.17 ± 2.11 | 7.10 ± 2.07 | 6.82 ± 1.83 | 7.31 ± 1.85 | 0.878 |
NEU, % (mean ± SD) | 58.65 ± 9.55 a | 62.61 ± 8.02 | 58.56 ± 10.35 c | 65.86 ± 8.99 | 0.034 |
NEU count × 109/L (mean ± SD) | 4.20 ± 1.32 | 4.52 ± 1.34 | 4.11 ± 1.64 c | 4.99 ± 1.73 | 0.028 |
LIMPHO, % (mean ± SD) | 28.53 ± 8.82 a | 24.48 ± 7.14 | 28.05 ± 9.66 c | 20.35 ± 6.15 | <0.009 |
LIMPHO count × 109/L (mean ± SD) | 2.09 ± 0.85 a | 1.70 ± 0.56 | 1.88 ± 0.59 c | 1.44 ± 0.40 | 0.005 |
MONO, % (mean ± SD) | 8.23 ± 1.84 a | 8.7 ± 2.77 | 8.90 ± 3.41 | 10.67 ± 3.63 | 0.045 |
MONO count × 109/L (mean ± SD) | 0.59 ± 0.21 a | 0.61 ± 0.25 | 0.60 ± 0.25 | 0.76 ± 0.27 | 0.014 |
Readings | I NYHA (n = 26) | II NYHA (n = 78) | III NYHA (n = 54) | IV NYHA (n = 27) | p Value |
---|---|---|---|---|---|
NT-proBNP, ng/L (median, min-max) | 222.9 (29.0–2160) a,b,c | 702 (45.2–6501) | 1496.5 (159–15377) | 2095.5 (450.9–7649) | <0.007 * |
CRP, mg/L (median, min-max) | 3.12 (1.0–15.50) | 3.13 (0.60–40.80) | 3.15 (1.00–41.00) | 4.62 (2.20–90.50) | 0.668 * |
Fibrinogen, g/L (median, min-max) | 3.59 (2.6–5.3) | 3.60 (2.2–7.9) | 3.74 (2.3–7.5) | 4.00 (2.7–5.1) | 0.395 * |
Cortisolm, nM (mean ± sd) | 470.35 ± 165.71 | 476.32 ± 157.17 | 480.01 ± 166.90 | 439.14 ± 160.10 | 0.995 |
Cortisole, nM (mean ± sd) | 349.31 ± 154.37 | 369.86 ± 122.54 | 370.18 ± 119.49 | 440.87 ± 143.39 | 0.059 |
Cortisolm-cortisole, nM (mean ± sd) | 121.04 ± 179.16 c,d | 78.14 ± 158.19 | 108.82 ± 161.89 | 90.18 ± 162.09 | <0.021 |
Platelet aggregation, ADP,% (mean ± sd) | 68.33 ± 9.66 b | 71.50 ± 11.26 f | 75.38 ± 8.94 | 70.62 ± 12.11 | <0.023 |
Platelet aggregation, ADR,% ( mean± sd) | 72.88 ± 11.91 a,b | 80.94 ± 9.65 | 81.02 ± 11.85 | 78.42 ± 15.46 | 0.002 |
Readings | Age | BMI | NYHA | PLT | MPV | CRP |
---|---|---|---|---|---|---|
Leucocyte count × 109 | 0.306, 0.00001 | |||||
Neutrophil count × 109 | 0.183, 0.041 | 0.379, 0.0001 | ||||
Lymphocyte count × 109 | 0.250, 0.001 | 0.319, 0.029 | -0.186, 0.026 | |||
Lymphocyte% | 0.257, 0.004 | −0.230, 0.021 | ||||
Monocyte count × 109 | 0.180, 0.022 | 0.172, 0.041 | 0.218, 0.014 | 0.317, 0.0001 | 0.371, 0.0001 | |
Monocyte% | 0.293, 0.0001 | 0.212, 0.011 | 0.419, 0.0001 | |||
MPV | 0.214, 0.006 | 0.311, 0.0001 | ||||
PLT | 0.307, 0.008 | |||||
Age | 0.145, 0.049 | 0.250, 0.0001 | ||||
NYHA | 0.145, 0.049 | −0.210, 0.007 | 0.311, 0.0001 |
Readings | CRP | Fibrinogen Concentration | Cortizolm | Cortizole | Cortizolm-e | ADP |
---|---|---|---|---|---|---|
PLT | 0.307, 0.008 | 0.180, 0.042 | 0.313, 0.003 | |||
NT-proBNP | 0.203, 0.005 | 0.306, 0.0001 | 0.238, 0.015 | |||
Neutrophil% | 0.264, 0.007 | −0.244, 0.013 | ||||
Neutrophil count × 109 | 0.378, 0.0001 | 0.308, 0.0001 | 0.256, 0.009 | |||
Lymphocyte% | −0.220, 0.028 | −0.174, 0.03 | −0.246, 0.012 | 0.256, 0.009 | ||
Cortisole | 0.329, 0.001 | 0.295, 0.003 | ||||
Monocyte count × 109 | 0.371, 0.0001 | 0.315, 0.0001 | 0.279, 0.004 | |||
MPV | 0.244, 0.004 |
Readings | PLT | MPV | Neutro-Phyle% | Neutro-Phyle Count |
---|---|---|---|---|
Diuretics (r, p) | −1.69, 0.041 | −1.66, 0.034 | −0.187, 0.017 | |
Nitrates (r, p) | 0.172, 0.029 | 0.196, 0.013 | ||
Statines (r, p) | 0.211, 0.011 | −0.166, 0.034 | ||
Calcium channel blockers (r, p) | 0.269, 0.0001 | |||
Digoxin (r, p) | 0.175, 0.025 | |||
Heparine (r, p) | 0.216, 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mongirdienė, A.; Laukaitienė, J.; Skipskis, V.; Kuršvietienė, L.; Liobikas, J. Platelet Activity and Its Correlation with Inflammation and Cell Count Readings in Chronic Heart Failure Patients with Reduced Ejection Fraction. Medicina 2021, 57, 176. https://doi.org/10.3390/medicina57020176
Mongirdienė A, Laukaitienė J, Skipskis V, Kuršvietienė L, Liobikas J. Platelet Activity and Its Correlation with Inflammation and Cell Count Readings in Chronic Heart Failure Patients with Reduced Ejection Fraction. Medicina. 2021; 57(2):176. https://doi.org/10.3390/medicina57020176
Chicago/Turabian StyleMongirdienė, Aušra, Jolanta Laukaitienė, Vilius Skipskis, Lolita Kuršvietienė, and Julius Liobikas. 2021. "Platelet Activity and Its Correlation with Inflammation and Cell Count Readings in Chronic Heart Failure Patients with Reduced Ejection Fraction" Medicina 57, no. 2: 176. https://doi.org/10.3390/medicina57020176