Impact of Changes in Serum Calcium Levels on In-Hospital Mortality
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Clinical Outcomes
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Serum Calcium Change and In-Hospital Mortality
3.3. Direction of Serum Calcium Change and In-Hospital Mortality
4. Discussion
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Beto, J.A. The Role of Calcium in Human Aging. Clin. Nutr. Res. 2015, 4, 1–8. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Chewcharat, A.; Mao, M.A.; Thirunavukkarasu, S.; Kashani, K. Hospital mortality and long-term mortality among hospitalized patients with various admission serum ionized calcium levels. Postgrad. Med. 2020, 1–6. [Google Scholar] [CrossRef]
- Eisner, D.A.; Caldwell, J.; Kistamás, K.; Trafford, A.W. Calcium and Excitation-Contraction Coupling in the Heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [CrossRef] [PubMed]
- McClellan, G.; Kulikovskaya, I.; Winegrad, S. Changes in cardiac contractility related to calcium-mediated changes in phosphorylation of myosin-binding protein C. Biophys. J. 2001, 81, 1083–1092. [Google Scholar] [CrossRef]
- Collage, R.D.; Howell, G.M.; Zhang, X.; Stripay, J.L.; Lee, J.S.; Angus, D.C.; Rosengart, M.R. Calcium Supplementation During Sepsis Exacerbates Organ Failure and Mortality via Calcium/Calmodulin-Dependent Protein Kinase Kinase Signaling. Crit. Care Med. 2013, 41, e352–e360. [Google Scholar] [CrossRef] [PubMed]
- Lü, X.; Wang, Y.; Meng, H.; Chen, P.; Huang, Y.; Wang, Z.; Zhou, N.; Li, C.; Wang, L.; Jia, E.; et al. Association of Admission Serum Calcium Levels and In-Hospital Mortality in Patients with Acute ST-Elevated Myocardial Infarction: An Eight-Year, Single-Center Study in China. PLoS ONE 2014, 9, e99895. [Google Scholar]
- Bushinsky, D.A.; Monk, R.D. Electrolyte quintet: Calcium. Lancet 1998, 352, 306–311. [Google Scholar] [CrossRef]
- Michaelsson, K.; Melhus, H.; Lemming, E.W.; Wolk, A.; Byberg, L. Long term calcium intake and rates of all cause and cardiovascular mortality: Community based prospective longitudinal cohort study. BMJ 2013, 346, f228. [Google Scholar] [CrossRef]
- Yan, S.-D.; Liu, X.; Peng, Y.; Xia, T.-L.; Liu, W.; Tsauo, J.-Y.; Xu, Y.; Chai, H.; Huang, F.-Y.; Chen, M.; et al. Admission Serum Calcium Levels Improve the GRACE Risk Score Prediction of Hospital Mortality in Patients With Acute Coronary Syndrome. Clin. Cardiol. 2016, 39, 516–523. [Google Scholar] [CrossRef]
- Miura, S.; Yoshihisa, A.; Takiguchi, M.; Shimizu, T.; Nakamura, Y.; Yamauchi, H.; Iwaya, S.; Owada, T.; Miyata, M.; Abe, S.; et al. Association of Hypocalcemia With Mortality in Hospitalized Patients With Heart Failure and Chronic Kidney Disease. J. Card. Fail. 2015, 21, 621–627. [Google Scholar] [CrossRef]
- Zivin, J.R.; Gooley, T.; Zager, R.A.; Ryan, M.J. Hypocalcemia: A pervasive metabolic abnormality in the critically ill. Am. J. Kidney Dis. 2001, 37, 689–698. [Google Scholar] [CrossRef]
- Israel, R. Prevalence and clinical implications of hypocalcemia in acutely ill patients in a medical intensive care setting. J. Emerg. Med. 1988, 6, 558. [Google Scholar] [CrossRef]
- Müller, B.; Becker, K.L.; Kränzlin, M.; Schächinger, H.; Huber, P.R.; Nylen, E.S.; Snider, R.H.; White, J.C.; Schmidt-Gayk, H.; Zimmerli, W.; et al. Disordered calcium homeostasis of sepsis: Association with calcitonin precursors. Eur. J. Clin. Investig. 2000, 30, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xu, X.; Ni, H.; Deng, H. Predictive Value of Ionized Calcium in Critically Ill Patients: An Analysis of a Large Clinical Database MIMIC II. PLoS ONE 2014, 9, e95204. [Google Scholar] [CrossRef] [PubMed]
- Akirov, A.; Gorshtein, A.; Shraga-Slutzky, I.; Shimon, I. Calcium levels on admission and before discharge are associated with mortality risk in hospitalized patients. Endocrine 2017, 57, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, T.P.; Bilezikian, J.P. Clinical review: Rare causes of hypercalcemia. J. Clin. Endocrinol. Metab. 2005, 90, 6316–6322. [Google Scholar] [CrossRef]
- Jeong, J.H.; Bae, E.H. Hypercalcemia Associated with Acute Kidney Injury and Metabolic Alkalosis. Electrolytes Blood Press. 2010, 8, 92–94. [Google Scholar] [CrossRef]
- Kohut, B.; Rossat, J.; Raffoul, W.; Lamy, O.; Berger, M.M. Hypercalcaemia and acute renal failure after major burns: An under-diagnosed condition. Burns 2010, 36, 360–366. [Google Scholar] [CrossRef]
- Cheungpasitporn, W.; Thongprayoon, C.; Mao, M.A.; Kittanamongkolchai, W.; Sakhuja, A.; Erickson, S.B. Impact of admission serum calcium levels on mortality in hospitalized patients. Endocr. Res. 2018, 43, 116–123. [Google Scholar] [CrossRef]
- Miller, J.E.; Kovesdy, C.P.; Norris, K.C.; Mehrotra, R.; Nissenson, A.R.; Kopple, J.D.; Kalantar-Zadeh, K. Association of cumulatively low or high serum calcium levels with mortality in long-term hemodialysis patients. Am. J. Nephrol. 2010, 32, 403–413. [Google Scholar] [CrossRef]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; . Kusek, J.W.; Eggers, P.; Lente, F.V.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron 2012, 120, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Ishani, A.; Liu, J.; Wetmore, J.B.; Lowe, K.A.; Do, T.; Bradbury, B.D.; Block, G.A.; Collins, A.J. Clinical Outcomes after Parathyroidectomy in a Nationwide Cohort of Patients on Hemodialysis. Clin. J. Am. Soc. Nephrol. 2014, 10, 90–97. [Google Scholar] [CrossRef]
- Sihler, K.C.; Napolitano, L.M. Complications of massive transfusion. Chest 2010, 137, 209–220. [Google Scholar] [CrossRef]
- Zhao, Y.; Linden, J.; Welch, L.; Pierre, P.S.; Graves, M.; Garrity, D.; Ducharme, P.; Bailey, J.A.; Greene, M.; Vauthrin, M.; et al. Prophylactic infusion of calcium gluconate to prevent a symptomatic fall in plasma ionized calcium during therapeutic plasma exchange: A comparison of two methods. J. Clin. Apher. 2018, 33, 600–603. [Google Scholar] [CrossRef]
- Tse, G.; Chan, Y.W.F.; Keung, W.; Yan, B.P. Electrophysiological mechanisms of long and short QT syndromes. IJC Hear. Vasc. 2017, 14, 8–13. [Google Scholar] [CrossRef]
- Hurley, K.; Baggs, D. Hypocalcemic cardiac failure in the Emergency Department. J. Emerg. Med. 2005, 28, 155–159. [Google Scholar] [CrossRef]
- Suzuki, T.; Ikeda, U.; Fujikawa, H.; Shimada, K.; Saito, K. Hypocalcemic heart failure: A reversible form of heart muscle disease. Clin. Cardiol. 2009, 21, 227–228. [Google Scholar] [CrossRef]
- Kazmi, A.S.; Wall, B.M. Reversible Congestive Heart Failure Related to Profound Hypocalcemia Secondary to Hypoparathyroidism. Am. J. Med. Sci. 2007, 333, 226–229. [Google Scholar] [CrossRef]
- Catalano, A.; Basile, G.; Lasco, A. Hypocalcemia: A sometimes overlooked cause of heart failure in the elderly. Aging Clin. Exp. Res. 2012, 24, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Wysolmerski, J.J.; Broadus, A.E. HYPERCALCEMIA OF MALIGNANCY: The Central Role of Parathyroid Hormone-Related Protein. Annu. Rev. Med. 1994, 45, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Alonso, A.; Michos, E.D.; Loehr, L.R.; Astor, B.C.; Coresh, J.; Folsom, A.R. Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 2014, 100, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.-W.; Ryu, W.-S.; Kim, B.J.; Yoon, B.-W. Elevated Calcium after Acute Ischemic Stroke: Association with a Poor Short-Term Outcome and Long-Term Mortality. J. Stroke 2015, 17, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Kruger, J.M.; Osborne, C.A.; Nachreiner, R.F.; Refsal, K.R. Hypercalcemia and renal failure. Etiology, pathophysiology, diagnosis, and treatment. Vet. Clin. N. Am.-Small Anim. Pract. 1996, 26, 1417–1445. [Google Scholar] [CrossRef]
- Baylis, P.H.; Milles, J.J.; Wilkinson, R.; Heath, D.A. Vasopressin Function In Hypercalcaemia. Clin. Endocrinol. 1981, 15, 343–351. [Google Scholar] [CrossRef]
- Garofeanu, C.G.; Weir, M.; Rosas-Arellano, M.P.; Henson, G.; Garg, A.X.; Clark, W.F. Causes of reversible nephrogenic diabetes insipidus: A systematic review. Am. J. Kidney Dis. 2005, 45, 626–637. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Mao, M.A.; Sakhuja, A.; Erickson, S.B. Admission calcium levels and risk of acute kidney injury in hospitalised patients. Int. J. Clin. Pract. 2018, 72, e13057. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Mao, M.A.; Harrison, A.; Erickson, S.B. Elevated admission serum calcium phosphate product as an independent risk factor for acute kidney injury in hospitalized patients. Hosp. Pract. 2019, 47, 73–79. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; A Mao, M.; Erickson, S.B. Calcium-phosphate product and its impact on mortality in hospitalized patients. Nephrology 2020, 25, 22–28. [Google Scholar] [CrossRef]
- Cheungpasitporn, W.; Thongprayoon, C.; Bathini, T.; Hansrivijit, P.; Vaitla, P.; Medaura, J.; Vallabhajosyula, S.; Chewcharat, A.; Mao, M.A.; Erickson, S.B. Impact of admission serum magnesium levels on long-term mortality in hospitalized patients. Hosp. Pract. 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Chewcharat, A.; A Mao, M.; Vallabhajosyula, S.; Bathini, T.; Thirunavukkarasu, S.; Kashani, K.B. Risk of respiratory failure among hospitalized patients with various admission serum potassium levels. Hosp. Pract. 2020, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Hansrivijit, P.; Thirunavukkarasu, S.; Chewcharat, A.; Medaura, J.; A Mao, M.; Kashani, K.B. Association of serum magnesium level change with in-hospital mortality. BMJ Evid.-Based Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Thongprayoon, C.; Cheungpasitporn, W.; Hansrivijit, P.; Thirunavukkarasu, S.; Chewcharat, A.; Medaura, J.; A Mao, M.; Kashani, K. Association of serum chloride level alterations with in-hospital mortality. Postgrad. Med. J. 2020. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Hansrivijit, P.; Mao, M.A.; Medaura, J.; Bathini, T.; Chewcharat, A.; Erickson, S. Admission Serum Potassium Levels in Hospitalized Patients and One-Year Mortality. Medicines 2019, 7, 2. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Chewcharat, A.; Mao, M.A.; Thirunavukkarasu, S.; Kashani, K.B. Admission serum phosphate levels and the risk of respiratory failure. Int. J. Clin. Pract. 2020, 74, e13461. [Google Scholar] [CrossRef]
Variables | All | Change in Serum Calcium Level during Hospitalization (mg/dL) | |||||
---|---|---|---|---|---|---|---|
0–0.4 | 0.5–0.9 | 1.0–1.4 | 1.5–1.9 | ≥2.0 | p Value | ||
N | 9868 | 3200 | 3030 | 1575 | 817 | 1246 | |
Age (year) | 61 ± 17 | 63 ± 17 | 61 ± 17 | 60 ± 16 | 58 ± 16 | 60 ± 16 | <0.001 |
Male sex | 5398 (55) | 1808 (57) | 1664 (55) | 881 (56) | 429 (53) | 616 (49) | <0.001 |
Caucasian | 8841 (90) | 2892 (90) | 2731 (90) | 1405 (89) | 720 (88) | 1093 (88) | 0.04 |
Principal diagnosis | <0.001 | ||||||
- Cardiovascular | 1685 (17) | 648 (20) | 510 (17) | 220 (14) | 103 (13) | 204 (16) | |
- Hematology/oncology | 1681 (17) | 516 (16) | 489 (16) | 265 (17) | 155 (19) | 256 (21) | |
- Infectious disease | 675 (7) | 205 (6) | 183 (6) | 121 (8) | 43 (5) | 123 (10) | |
- Endocrine/metabolic | 582 (6) | 160 (5) | 151 (5) | 91 (6) | 46 (6) | 134 (11) | |
- Respiratory | 463 (5) | 174 (5) | 161 (5) | 67 (4) | 28 (3) | 33 (3) | |
- Gastrointestinal | 1301 (13) | 445 (14) | 438 (14) | 198 (13) | 105 (13) | 115 (9) | |
- Genitourinary | 797 (8) | 206 (6) | 200 (7) | 131 (8) | 106 (13) | 154 (12) | |
- Injury and poisoning | 1750 (18) | 496 (16) | 593 (20) | 341 (22) | 163 (20) | 157 (13) | |
- Other | 934 (9) | 350 (11) | 305 (10) | 141 (9) | 68 (8) | 70 (6) | |
Charlson comorbidity score | 2.5 ± 2.7 | 2.6 ± 2.8 | 2.5 ± 2.7 | 2.6 ± 2.7 | 2.4 ± 2.6 | 2.4 ± 2.5 | 0.22 |
Comorbidity | |||||||
- Coronary artery disease | 2147 (22) | 788 (25) | 680 (22) | 308 (20) | 142 (17) | 229 (18) | <0.001 |
- Congestive heart failure | 955 (10) | 363 (11) | 281 (9) | 142 (9) | 61 (7) | 108 (9) | 0.002 |
- Peripheral artery disease | 410 (4) | 165 (5) | 123 (4) | 52 (3) | 30 (4) | 40 (3) | 0.007 |
- Stroke | 796 (8) | 279 (9) | 277 (9) | 102 (6) | 51 (6) | 87 (7) | 0.002 |
- Diabetes mellitus | 2542 (26) | 858 (27) | 793 (26) | 380 (24) | 183 (22) | 328 (26) | 0.05 |
- Chronic obstructive pulmonary disease | 972 (10) | 352 (11) | 308 (10) | 142 (9) | 57 (7) | 113 (9) | 0.005 |
- Cirrhosis | 677 (7) | 200 (6) | 211 (7) | 122 (8) | 53 (6) | 91 (7) | 0.35 |
eGFR (mL/min/1.73 m2) | 61 ± 37 | 65 ± 36 | 65 ± 37 | 63 ± 38 | 57 ± 39 | 46 ± 34 | <0.001 |
Acute kidney injury | 5283 (54) | 1529 (48) | 1476 (49) | 870 (55) | 470 (58) | 938 (75) | <0.001 |
ICU admission during hospitalization | 4013 (41) | 1192 (37) | 1100 (36) | 652 (41) | 356 (44) | 713 (57) | <0.001 |
Number of serum calcium measurements during hospitalization | 3 (2–5) | 2 (2–3) | 3 (2–4) | 4 (3–7) | 5 (3–9) | 8 (5–14) | <.001 |
Length of hospital stay (day) | 7 (4–14) | 6 (3–11) | 7 (4–12) | 8 (4–16) | 9 (4–21) | 12 (5–27) | <0.001 |
The lowest calcium | 8.3 ± 0.9 | 8.5 ± 0.7 | 8.3 ± 0.7 | 8.1 ± 0.8 | 7.9 ± 1.0 | 7.8 ± 1.3 | <0.001 |
The highest calcium | 9.3 ± 1.3 | 8.8 ± 0.7 | 9.0 ± 0.7 | 9.3 ± 0.8 | 9.6 ± 1.1 | 11.2 ± 2.1 | <0.001 |
The admission calcium | 9.0 ± 1.3 | 8.7 ± 0.7 | 8.8 ± 0.8 | 8.9 ± 0.9 | 9.1 ± 1.2 | 9.9±2.5 | <0.001 |
Outcome | Change in Serum Calcium Level during Hospitalization (mg/dL) | ||||
---|---|---|---|---|---|
0–0.4 | 0.5–0.9 | 1.0–1.4 | 1.5–1.9 | ≥2.0 | |
N | 3200 | 3030 | 1575 | 817 | 1246 |
Hospital mortality | 111 (3.4) | 104 (3.4) | 91 (5.8) | 54 (6.6) | 180 (14.5) |
Mortality, OR (95% CI) | |||||
Model 1: unadjusted | 1 (ref) | 0.99 (0.75–1.30) | 1.71 (1.28–2.27) | 1.97 (1.41–2.75) | 4.70 (3.67–6.01) |
Model 2 # | 1 (ref) | 1.04 (0.78–1.38) | 1.55 (1.45–2.10) | 1.90 (1.32–2.74) | 3.23 (2.39–4.38) |
Model 3: model 2 and lowest calcium | 1 (ref) | 1.07 (0.81–1.43) | 1.65 (1.22–2.24) | 2.04 (1.42–2.94) | 3.52 (2.60–4.78) |
Model 4: model 2 and highest calcium | 1 (ref) | 0.99 (0.74–1.31) | 1.39 (1.02–1.89) | 1.58 (1.09–2.29) | 1.93 (1.34–2.79) |
Model 5: model 2 and admission calcium * | 1 (ref) | 1.02 (0.71–1.47) | 1.32 (0.90–1.94) | 1.76 (1.11–2.79) | 2.50 (1.67–3.74) |
Calcium Change (mg/dL) | N | In-Hospital Mortality | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 * |
---|---|---|---|---|---|---|---|
≤−2.0 | 768 | 66 (8.6) | 2.72 (1.90–3.88) | 2.27 (1.53–3.39) | 2.35 (1.58–3.49) | 1.32 (0.83–2.10) | 1.91 (1.10–3.31) |
−1.9 to −1.5 | 513 | 21 (4.1) | 1.23 (0.75–2.04) | 1.31 (0.77–2.20) | 1.37 (0.81–2.32) | 1.09 (0.64–1.86) | 1.51 (0.83–2.74) |
−1.4 to −1.0 | 961 | 52 (5.4) | 1.65 (1.13–2.41) | 1.58 (1.07–2.34) | 1.65 (1.12–2.45) | 1.42 (0.96–2.10) | 1.42 (0.88–2.29) |
−0.9 to −0.5 | 1764 | 55 (3.1) | 0.93 (0.64–1.34) | 0.96 (0.66–1.40) | 0.98 (0.68–1.43) | 0.91 (0.62–1.32) | 1.06 (0.68–1.66) |
−0.4 to 0.0 | 1885 | 63 (3.3) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) | 1 (ref) |
0.1 to 0.4 | 1316 | 48 (3.7) | 1.09 (0.75–1.60) | 1.05 (0.71–1.55) | 1.07 (0.72–1.58) | 1.06 (0.72–1.57) | 0.95 (0.57–1.60) |
0.5 to 0.9 | 1266 | 49 (3.9) | 1.16 (0.80–1.70) | 1.14 (0.77–1.68) | 1.19 (0.81–1.77) | 1.11 (0.75–1.65) | 0.93 (0.55–1.60) |
1.0 to 1.4 | 614 | 39 (6.4) | 1.96 (1.30–2.96) | 1.93 (1.26–2.96) | 2.10 (1.36–3.23) | 1.82 (1.19–2.80) | 1.79 (1.03–3.11) |
1.5 to 1.9 | 304 | 33 (10.9) | 3.52 (2.27–5.47) | 3.72 (2.33–5.95) | 4.05 (2.52–6.49) | 3.23 (2.01–5.20) | 3.27 (1.74–6.16) |
≥2.0 | 477 | 114 (23.9) | 9.08 (6.54–12.60) | 7.40 (5.08–10.78) | 8.44 (5.74–12.41) | 5.07 (3.36–7.64) | 6.28 (3.82–10.32) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongprayoon, C.; Cheungpasitporn, W.; Hansrivijit, P.; Medaura, J.; Chewcharat, A.; Mao, M.A.; Bathini, T.; Vallabhajosyula, S.; Thirunavukkarasu, S.; Erickson, S.B. Impact of Changes in Serum Calcium Levels on In-Hospital Mortality. Medicina 2020, 56, 106. https://doi.org/10.3390/medicina56030106
Thongprayoon C, Cheungpasitporn W, Hansrivijit P, Medaura J, Chewcharat A, Mao MA, Bathini T, Vallabhajosyula S, Thirunavukkarasu S, Erickson SB. Impact of Changes in Serum Calcium Levels on In-Hospital Mortality. Medicina. 2020; 56(3):106. https://doi.org/10.3390/medicina56030106
Chicago/Turabian StyleThongprayoon, Charat, Wisit Cheungpasitporn, Panupong Hansrivijit, Juan Medaura, Api Chewcharat, Michael A Mao, Tarun Bathini, Saraschandra Vallabhajosyula, Sorkko Thirunavukkarasu, and Stephen B. Erickson. 2020. "Impact of Changes in Serum Calcium Levels on In-Hospital Mortality" Medicina 56, no. 3: 106. https://doi.org/10.3390/medicina56030106
APA StyleThongprayoon, C., Cheungpasitporn, W., Hansrivijit, P., Medaura, J., Chewcharat, A., Mao, M. A., Bathini, T., Vallabhajosyula, S., Thirunavukkarasu, S., & Erickson, S. B. (2020). Impact of Changes in Serum Calcium Levels on In-Hospital Mortality. Medicina, 56(3), 106. https://doi.org/10.3390/medicina56030106