Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System
Abstract
:1. Introduction
2. Innate Immune Mechanisms
|
2.1. Mucociliary escalator
2.2. Pattern recognition receptors
3. Antibiotics and Inflammatory Responses
3.1. Pro-inflammatory and anti-inflammatory interactions of antibiotics with bacteria
4. Cytoprotection Due to Interaction of Antibiotics with Bacteria
5. Anti-Inflammatory Interactions of Antibiotics with Innate Host Defences
5.1. Anti-inflammatory activities of macrolides
Target cell | Effect(s) |
---|---|
Neutrophils |
|
Monocytes/macrophages |
|
Structural cells (airway epithelium, fibroblasts) |
|
5.2. Anti-inflammatory activities of azole anti-mycotics
5.3. Anti-inflammatory properties of fluoroquinolones
5.4. Anti-inflammatory properties of tetracyclines
6. Key Future Issues
- Are antibiotics utilized optimally with respect to both selection of appropriate combinations of antimicrobial agents and timing of administration? For example, in severely ill patients, should an inhibitor of bacterial protein synthesis be used routinely in combination with a beta-lactam or other bacterial agent? If so, and circumstances permitting, should the protein synthesis inhibitor be given in advance of the bactericidal agent?
- Because of their impressive secondary anti-inflammatory properties, are macrolides the preferred class of protein synthesis inhibitors in this setting?
- When anti-fungal prophylaxis/therapy is necessary, should an imidazole anti-mycotic with a good safety profile be selected and used in combination with a macrolide/bactericidal agent to confer optimum antimicrobial/anti-inflammatory chemotherapy?
- While the use of corticosteroids as adjuncts to beta-lactams may be useful in the treatment of severe pneumococcal meningitis, could addition of a macrolide to this therapeutic regimen provide additional benefit, given the insensitivity of neutrophils to the anti-inflammatory actions of steroids [81].
- Can the measurement of circulating, host-derived markers of inflammation and infection such as IL-4, IL-6, IL-10, TGF-β, TNF/TNFR, CRP, SAA, procalcitonin (PCT), and sTREM, as well as HLA-DR expression on circulating monocytes, be used, in association with clinical scoring systems, to provide potentially valuable information regarding the pro-inflammatory status of the patient at the time of admission and during the course of antimicrobial therapy?
- A greater awareness of the therapeutic potential of antimicrobial peptides, such as cathelicidins and defensins, which possess significant immunomodulatory properties in addition to their antimicrobial activities. These peptides increase the production of chemokines and cytokines, and also activate tissue repair processes [82].
7. Conclusions
References
- Miller, T.E.; North, D.K. Clinical infections, antibiotics and immunosuppression: A puzzling relationship. Am. J. Med. 1981, 71, 334–336. [Google Scholar]
- Zeiher, B.G.; Hornick, D.B. Pathogenesis of respiratory infections and host defenses. Curr. Opin. Pulm. Med. 1996, 2, 166–173. [Google Scholar]
- Evans, S.E.; Xu, Y.; Tuvim, M.J.; Dickey, B.F. Inducible innate resistance of lung epithelium to infection. Annu. Rev. Physiol. 2010, 72, 413–435. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R. Secondary ciliary dysfunction. Clin. Sci. 1988, 75, 113–120. [Google Scholar]
- Steinfort, C.; Wilson, R.; Mitchell, T.; Feldman, C.; Rutman, A.; Todd, H.; Sykes, D.; Walker, J.; Saunders, K.; Andrew, P.W.; Boulnois, G.J.; Cole, P.J. Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro. Infect. Immun. 1989, 57, 2006–2013. [Google Scholar] [PubMed]
- Feldman, C.; Anderson, R.; Rutman, A.; Cole, P.; Wilson, R. Human ciliated epithelium in vitro—Mechanisms of injury and protection. In Cilia, Mucus and Mucociliary Interactions; Baum, G., Priel, A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 461–467. [Google Scholar]
- Read, R.C.; Wilson, R.; Rutman, A.; Lund, V.; Todd, H.C.; Brain, A.P.; Jeffery, P.K.; Cole, P.J. Interaction of nontypable Haemophilus influenzae with human respiratory mucosa in vitro. J. Infect. Dis. 1991, 163, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Feldman, C.; Read, R.; Rutman, A.; Jeffery, P.K.; Brain, A.; Lund, V.; Mitchell, T.J.; Andrew, P.W.; Boulnois, G.J.; Todd, H.C. The interaction of Streptococcus pneumoniae with intact human respiratory mucosa in vitro. Eur. Respir. J. 1992, 5, 576–583. [Google Scholar] [PubMed]
- Wilson, R.; Read, R.; Cole, P. Interaction of Haemophilus influenzae with mucus, cilia, and respiratory epithelium. J. Infect. Dis. 1992, 165, S100–S102. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, H.Y. Modulating airway defenses against microbes. Curr. Opin. Pulm. Med. 2002, 8, 154–165. [Google Scholar]
- Middleton, A.M.; Dowling, R.B.; Mitchell, J.L.; Watanabe, S.; Rutman, A.; Pritchard, K.; Tillotson, G.; Hill, S.L.; Wilson, R. Haemophilus parainfluenzae infection of respiratory mucosa. Respir. Med. 2003, 97, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.W.T.; Rutman, A.; Tanaka, E.; Lund, V.; Dewar, A.; Cole, P.J.; Wilson, R. Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro. Eur. Respir. J. 1994, 7, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- Rayner, C.F.J.; Jackson, A.D.; Rutman, A.; Dewar, A.; Mitchell, T.J.; Andrew, P.W.; Cole, P.J.; Wilson, R. Interaction of pneumolysin-sufficient and -deficient isogenic variants of Streptococcus pneumoniae with human respiratory mucosa. Infect. Immun. 1995, 63, 442–447. [Google Scholar] [PubMed]
- Feldman, C.; Anderson, R. The cytoprotective interactions of antibiotics with human ciliated airway epithelium. In Antibiotics as Anti-Inflammatory and Immunomodulatory Agents; Rubin, B., Tamaoki, J., Eds.; Birkhauser Verlag: Basel, Switzerland, 2005; pp. 49–63. [Google Scholar]
- Bauer, S.; Müller, T.; Hamm, S. Pattern recognition by Toll-like receptors. Adv. Exp. Biol. Med. 2009, 653, 15–34. [Google Scholar]
- Franchi, L.; Warner, N.; Viani, K.; Nunez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 2009, 227, 106–128. [Google Scholar]
- Tsujimoto, H.; Ono, S.; Efron, P.A.; Scumpia, P.O.; Moldawer, L.L.; Mochizuki, H. Role of Toll-like receptors in the development of sepsis. Shock 2008, 29, 315–321. [Google Scholar]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar]
- Marriott, H.M.; Mitchell, T.J.; Dockrell, D.H. Pneumolysin: A double-edged sword during the host-pathogen interaction. Curr. Mol. Med. 2008, 8, 497–509. [Google Scholar]
- Hirst, R.A.; Mohammed, B.J.; Mitchell, T.J.; Andrew, P.W.; O’Callaghan, C. Streptococcus pneumoniae-induced inhibition of rat ependymal cilia is attenuated by antipneumolysin antibody. Infect. Immun. 2004, 72, 6694–6698. [Google Scholar] [CrossRef]
- Anderson, R.; Steel, H.C.; Cockeran, R.; Smith, A.M.; von Gottberg, A.; de Gouveia, L.; Brink, A.; Klugman, K.P.; Mitchell, T.J.; Feldman, C. Clarithromycin alone and in combination with ceftriaxone inhibits the production of pneumolysin by both macrolide-susceptible and macrolide-resistant strains of Streptococcus pneumoniae. J. Antimicrob. Chemother. 2007, 59, 224–229. [Google Scholar] [PubMed]
- Anderson, R.; Steel, H.C.; Cockeran, R.; von Gottberg, A.; de Gouveia, L.; Klugman, K.P.; Mitchell, T.J.; Feldman, C. Comparison of the effects of macrolides, amoxicillin, ceftriaxone, doxycycline, tobramycin and fluoroquinolones on the production of pneumolysin by Streptococcus pneumoniae in vitro. J. Antimicrob. Chemother. 2007, 60, 1155–1158. [Google Scholar] [CrossRef] [PubMed]
- Spreer, A.; Kerstan, H.; Böttcher, T.; Gerber, J.; Siemer, A.; Zysk, G.; Mitchell, T.J.; Eiffert, H.; Nau, R. Reduced release of pneumolysin by Streptococcus pneumoniaein vitro and in vivo after treatment with nonbacteriolytic antibiotics in comparison to ceftriaxone. Antimicrob. Agents Chemother. 2003, 47, 2649–2654. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, T.; Ren, H.; Goiny, M.; Gerber, J.; Lykkesfeldt, J.; Lotz, M.; Bunkowski, S.; Werner, C.; Schau, I.; Spreer, A.; Christen, S.; Nau, R. Clindamycin is neuroprotective in experimental Streptococcus pneumoniae meningitis compared with ceftriaxone. J. Neurochem. 2004, 91, 1450–1460. [Google Scholar] [CrossRef] [PubMed]
- Spreer, A.; Lugert, R.; Stoltefaut, V.; Hoecht, A.; Eiffert, H.; Nau, R. Short-term rifampicin pretreatment reduces inflammation and neuronal cell death in a rabbit model of bacterial meningitis. Crit. Care Med. 2009, 37, 2253–2258. [Google Scholar]
- Karlström, A.; Boyd, K.L.; English, B.K.; McCullers, J.A. Treatment with protein synthesis inhibitors improves outcomes of secondary bacterial pneumonia after influenza. J. Infect. Dis. 2009, 199, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, O.; Badiou, C.; Bes, M.; Reverdy, M.E.; Vandenesch, F.; Etienne, J.; Lina, G. Effect of antibiotics, alone and in combination, on Panton-Valentine leukocidin production by a Staphylococcus aureus reference strain. Clin. Microbiol. Infect. 2008, 14, 384–388. [Google Scholar] [PubMed]
- Stevens, D.L.; Ma, Y.; Salmi, D.B.; McIndoo, E.; Wallace, R.J.; Bryant, A.E. Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 2007, 195, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Kimmitt, P.T.; Harwood, C.R.; Barer, M.R. Induction of type 2 shiga toxin synthesis in Escherichia coli 0157 by 4 quinolones. Lancet 1999, 353, 1588–1589. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.S.; Jelacic, S.; Habeeb, R.L.; Watkins, S.L.; Tarr, P.I. The risk of hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli 0157:H7 infections. N. Engl. J. Med. 2000, 342, 1930–1936. [Google Scholar] [PubMed]
- Serna, A., IV; Boedeker, E.C. Pathogenesis and treatment of shiga toxin-producing Escherichia coli infections. Curr. Opin. Gastroenterol. 2008, 24, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Murakami, J.; Kishi, K.; Hirai, K.; Hiramatsu, K.; Yamasaki, T.; Nasu, M. Macrolides and clindamycin suppress the release of Shiga-like toxins from Escherichia coli 0157:H4 in vitro. Internat. J. Antimicrob. Agents. 2000, 15, 103–109. [Google Scholar] [CrossRef]
- Giamarellos-Bourboulis, E.J.; Pechère, J.C.; Routsi, C.; Plachouras, D.; Kollias, S.; Raftogiannis, M.; Zervakis, D.; Baziaka, F.; Koronaios, A.; Antonopolou, A.; et al. Effect of clarithromycin in patients with sepsis and ventilator-associated pneumonia. Clin. Infec. Dis. 2008, 46, 1157–1164. [Google Scholar]
- de Gans, J.; van de Beek, D. Dexamethasone in adults with bacterial meningitis. N. Engl. J. Med. 2002, 347, 1549–1556. [Google Scholar]
- Brandl, K.; Plitas, G.; Mihu, C.; Ubeda, C.; Jia, T.; Fleischer, M.; Schnabl, B.; DeMatteo, R.P.; Pamer, E.G. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune defects. Nature 2008, 455, 804–807. [Google Scholar]
- Lai, Y.; Di Nardo, A.; Nakatsuji, T.; Leichtle, A.; Yang, Y.; Cogen, A.L.; Wu, Z.R.; Hooper, L.V.; Schmidt, R.R.; von Aulock, S.; et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat. Med. 2009, 15, 1377–1382. [Google Scholar] [PubMed]
- Vanaudenaerde, B.M.; Wuyts, W.A.; Geudens, N.; Du Pont, L.J.; Schoofs, K.; Smeets, S.; Van Raemdonck, D.E.; Verleden, G.M. Macrolides inhibit IL17-induced IL8 and 8-isoprostane release from airway smooth muscle cells. Am. J. Transplant. 2007, 7, 76–82. [Google Scholar]
- Cigana, C.; Assael, B.M.; Melotti, P. Azithromycin selectively reduces tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob. Agents Chemother. 2007, 51, 975–981. [Google Scholar]
- Kikuchi, T.; Hagiwara, K.; Honda, Y.; Gomi, K.; Kobyashi, T.; Takahashi, H.; Tokue, Y.; Watanabe, A.; Nukiwa, T. Clarithromycin suppresses lipopolysaccharide-induced interleukin-8 production by human monocytes through AP-1 and NF-kappa B transcription factors. J. Antimicrob. Chemother. 2002, 49, 745–755. [Google Scholar]
- Desaki, M.; Okazaki, H.; Sunazuka, T.; Omura, S.; Yamamoto, K.; Takizawa, H. Molecular mechanisms of anti-inflammatory action of erythromycin in human bronchial epithelial cells: Possible role in the signaling pathway that regulates nuclear factor-kappa B activation. Antimicrob. Agents Chemother. 2004, 48, 1581–1585. [Google Scholar]
- Shinkai, M.; Foster, G.H.; Rubin, B.K. Macrolide antibiotics modulate ERK phosphorylation and IL-8 and GM-CSF production by human bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, L75–L85. [Google Scholar]
- Healy, D.P. Macrolide immunomodulation of chronic respiratory diseases. Curr. Infect. Dis. Rep. 2007, 9, 7–13. [Google Scholar]
- Smyth, A. Update on treatment of pulmonary exacerbations in cystic fibrosis. Curr. Opin. Pulm. Med. 2006, 12, 440–444. [Google Scholar]
- Keicho, N.; Kudoh, S. Diffuse panbronchiolitis: Role of macrolides in therapy. Am. J. Resp. Med. 2003, 97, 844–850. [Google Scholar]
- Simpson, J.L.; Powell, H.; Boyle, M.J.; Scott, R.J.; Gibson, P.G. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am. J. Resp. Crit. Care Med. 2008, 177, 148–155. [Google Scholar]
- Verleden, G.M.; Vanaudenaerde, B.M.; Du Pont, L.J.; Van Raemdonck, D.E. Azithromycin reduces airway neutrophilia and interleukin-8 in patients with bronchiolitis obliterans syndrome. Am. J. Respir. Crit. Care Med. 2006, 174, 566–570. [Google Scholar]
- Tintinger, G.; Steel, H.C.; Anderson, R. Taming the neutrophil: Calcium clearance and influx mechanisms as novel targets for pharmacological control. Clin. Exp. Immunol. 2005, 141, 191–200. [Google Scholar]
- Tintinger, G.R.; Steel, H.C.; Theron, A.J.; Anderson, R. Pharmacologic control of neutrophil-mediated inflammation: Strategies targeting calcium handling by activated polymorphonuclear leukocytes. Drug Des. Devel. Ther. 2008, 2, 1–10. [Google Scholar]
- Peters-Golden, M.; Henderson, W.R., Jr. Mechanism of disease: leukotrienes. N. Engl. J. Med. 2007, 357, 1841–1854. [Google Scholar]
- Steel, H.C.; Tintinger, G.R.; Theron, A.J.; Anderson, R. Itraconazole-mediated inhibition of calcium entry into platelet-activating factor-stimulated human neutrophils is due to interference with production of leukotriene B4. Clin. Exp. Immunol. 2007, 150, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Steel, H.C.; Theron, A.J.; Tintinger, G.R.; Anderson, R. Posaconazole attenuates the production of leukotriene B4 and uptake of calcium by chemoattractant-activated human neutrophils. J. Antimicrob. Chemother. 2009, 64, 1008–1012. [Google Scholar]
- Steel, H.C.; Anderson, R. Itraconazole antagonizes store-operated influx of calcium into chemoattractant-activated human neutrophils. Clin. Exp. Immunol. 2004, 136, 255–261. [Google Scholar]
- Blackburn, W.D., Jr.; Heck, L.W.; Loose, L.D.; Eskra, J.D.; Carty, T.J. Inhibition of 5-lipoxygenase product formation and polymorphonuclear cell degranulation by tenidap sodium in patients with rheumatoid arthritis. Arthritis Rheum. 1991, 34, 204–210. [Google Scholar]
- Ernens, I.; Rouy, D.; Velot, E.; Devaux, Y.; Wagner, D.R. Adenosine inhibits matrix metalloproteinase-9 secretion by neutrophils. Implication of A2a receptor and cAMP/PKA/Ca2+ pathway. Circ. Res. 2006, 99, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Steel, H.C.; Tintinger, G.R.; Anderson, R. Comparison of the anti-inflammatory activities of imidazole antimycotics in relation to molecular structure. Chem. Biol. Drug Des. 2008, 72, 225–228. [Google Scholar]
- Monneret, G.; Venet, F.; Pachot, A.; Lepape, A. Monitoring immune dysfunctions in the septic patient: A new skin for the old ceremony. Mol. Med. 2008, 14, 64–78. [Google Scholar]
- Dalhoff, A.; Shalit, I. Immunomodulatory effects of quinolones. Lancet Infect. Dis. 2003, 3, 359–371. [Google Scholar]
- Dalhoff, A. Immunomodulatory activities of fluoroquinolones. Infection 2005, 33 Suppl.2, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Slifer, T.R.; Remington, J.S. Effects of trovoflavoxacin on production of cytokines by human monocytes. Antimicrob. Agents Chemother. 1998, 42, 1713–1717. [Google Scholar]
- Araujo, F.G.; Slifer, T.R.; Remington, J.S. Effect of moxifloxacin on secretion of cytokines by human monocytes stimulated with lipopolysaccharide. Clin. Microbiol. Infect. 2002, 8, 26–30. [Google Scholar]
- Choi, J.; Song, M.; Lee, D.; Yoo, J.; Shin, W. Effect of moxifloxacin on production of proinflammatory cytokines from human peripheral blood mononuclear cells. Antimicrob. Agents Chemother. 2003, 47, 3704–3707. [Google Scholar]
- Hall, I.H.; Schwab, U.E.; Ward, E.S.; Ives, T.J. Effect of moxifloxacin in zymogen A or S. aureus stimulated human THP-1 monocytes on the inflammatory process and the spread of infection. Life Sci. 2003, 73, 2675–2685. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.; Shalit, I.; Blau, H.; Werber, S.; Halperin, D.; Levitov, A.; Fabian, I. Anti-inflammatory effects of moxafloxacin on activated human monocytes: Inhibition of NFκB and mitogen-activated protein kinase activation and of synthesis of proinflammatory cytokines. Antimicrob. Agents Chemother. 2004, 48, 1974–1982. [Google Scholar]
- Ogino, H.; Fujii, M.; Maezawa, K.; Hori, S.; Kiju, J. In vivo and in vitro effects of fluoroquinolones on lipopolysaccharide-induced pro-inflammatory cytokine production. J. Infect. Chemother. 2009, 15, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Shalit, I.; Horev-Azaria, L.; Fabian, I.; Blau, H.; Karív, N.; Shechtman, I.; Alteraz, H.; Kletter, Y. Immunomodulatory and protective effects of moxifloxacin against Candida albicans-induced bronchopneumonia in mice injected with cyclophosphamide. Antimicrob. Agents Chemother. 2002, 46, 2442–2449. [Google Scholar] [PubMed]
- Calbo, E.; Alsina, M.; Rodríguez-Carballeira, M.; Lite, J.; Garau, J. Systemic expression of cytokine production in patients with severe pneumococcal pneumonia: Effects of treatment with a β-lactam versus fluoroquinolone. Antimicrob. Agents Chemother. 2008, 52, 2395–2402. [Google Scholar]
- Takahashi, H.K.; Iwagaki, H.; Xue, D.; Katsuno, G.; Sugita, S.; Mizuno, K.; Mori, S.; Saiko, S.; Yoshino, T.; Tanaka, N.; Nishibori, M. Effect of ciprofloxacin-induced prostaglandin E2 on interleukin-18-treated monocytes. Antimicrob. Agents Chemother. 2005, 47, 3228–3233. [Google Scholar]
- Blau, H.; Klein, K.; Shalit, I.; Halperin, D.; Fabian, I. Moxifloxacin but not ciprofloxacin or azithromycin selectively inhibits IL-8, IL-6, ERK1/2, JNK, and NFκB activation in a cystic fibrosis epithelial cell line. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 292, L343–L352. [Google Scholar] [PubMed]
- Shaw, P.J.; Ganey, P.E.; Roth, R.A. Trovafloxacin enhances the inflammatory response to a Gram-negative or a Gram-positive bacterial stimulus, resulting in neutrophil-dependent liver injury in mice. J. Pharmacol. Exp. Ther. 2009, 330, 72–78. [Google Scholar]
- Koshio, O.; Ono, Y. Effects of grepafloxacin on the function of human polymorphonuclear leukocytes and the phosphorylation of p38 mitogen-activated protein kinase. Chemotherapy 2009, 55, 363–371. [Google Scholar] [CrossRef]
- Potjo, M. Investigation of the effects of moxifloxacin on human neutrophils and mononuclear leucocytes in vitro.
- Fischer, S.; Adam, D. Effects of moxifloxacin on neutrophil phagocytosis, burst production, and killing as determined by a whole-blood cytofluorimetric method. Antimicrob. Agents Chemother. 2001, 45, 2668–2669. [Google Scholar] [CrossRef] [PubMed]
- Sadowski, T.; Steinmeyer, J. Effects of tetracyclines on the production of matrix metalloproteinases and plasminogen activators as well as of their natural inhibitors, tissue inhibitor of metalloproteinases-1 and plasminogen activator inhibitor-1. Inflamm. Res. 2001, 50, 175–182. [Google Scholar]
- Kim, J.H.; Suk, M.H.; Yoon, D.W.; Lee, S.H.; Hur, G.Y.; Jung, K.H.; Jeong, H.C.; Lee, S.Y.; Lee, S.Y.; Suh, I.B.; et al. Inhibition of matrix metalloproteinase-9 prevents neutrophilic inflammation in ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 291, L580–L587. [Google Scholar]
- Fiotti, N.; Altamura, N.; Moretti, M.; Wassermann, S.; Zacchigna, S.; Farra, R.; Dapas, B.; Consoloni, L.; Gracca, M.; Grassi, G.; et al. Short-term effects of doxycycline on matrix metalloproteinases 2 and 9. Cardiovasc. Drugs Ther. 2009, 23, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Hussien, H.; Hanemaaijer, R.; Verheijen, J.H.; van Bockel, J.H.; Geelkerken, R.H.; Lindeman, J.H. Doxycycline therapy for abdominal aneurysm: Improved proteolytic balance through reduced neutrophil content. J. Vasc. Surg. 2009, 49, 741–749. [Google Scholar]
- Lindeman, J.H.; Abdul-Hussien, H.; van Bockel, J.H.; Wolterbeek, R.; Kleemann, R. Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: Doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation 2009, 119, 2209–2216. [Google Scholar] [CrossRef] [PubMed]
- Sochor, M.; Richter, S.; Schmidt, A.; Hempel, S.; Hopt, U.K.; Keck, T. Inhibition of matrix metalloproteinase-9 with doxycycline reduces pancreatitis-associated lung injury. Digestion 2009, 80, 65–73. [Google Scholar]
- Leppert, D.; Leib, S.L.; Grycar, C.; Miller, K.M.; Schaad, U.B.; Holländer, G.A. Matrix metalloproteinase (MMP)-8 and MMP-9 in cerebrospinal fluid during bacterial meningitis: Association with blood-brain barrier damage and neurological sequelae. Clin. Infect. Dis. 2000, 31, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Hartog, C.M.; Wermelt, J.A.; Sommerfeld, C.O.; Eichler, W.; Dalhoff, K.; Braun, J. Pulmonary matrix metalloproteinase excess in hospital-acquired pneumonia. Am. J. Respir. Crit. Care Med. 2003, 167, 593–598. [Google Scholar]
- Barnes, P.J. New molecular targets for the treatment of neutrophilic diseases. J. Allergy Clin. Immunol. 2007, 119, 1055–1062. [Google Scholar]
- Guani-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.; Terán, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol. 2010, 135, 1–11. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Anderson, R.; Tintinger, G.; Cockeran, R.; Potjo, M.; Feldman, C. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System. Pharmaceuticals 2010, 3, 1694-1710. https://doi.org/10.3390/ph3051694
Anderson R, Tintinger G, Cockeran R, Potjo M, Feldman C. Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System. Pharmaceuticals. 2010; 3(5):1694-1710. https://doi.org/10.3390/ph3051694
Chicago/Turabian StyleAnderson, Ronald, Gregory Tintinger, Riana Cockeran, Moliehi Potjo, and Charles Feldman. 2010. "Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System" Pharmaceuticals 3, no. 5: 1694-1710. https://doi.org/10.3390/ph3051694
APA StyleAnderson, R., Tintinger, G., Cockeran, R., Potjo, M., & Feldman, C. (2010). Beneficial and Harmful Interactions of Antibiotics with Microbial Pathogens and the Host Innate Immune System. Pharmaceuticals, 3(5), 1694-1710. https://doi.org/10.3390/ph3051694