Cardiovascular and Renal Outcomes Following Repeated Naringenin Exposure in Normotensive and Hypertensive Rats
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Blood Pressure Values in NTR and SHR Groups Treated or Not with Naringenin
2.2. Evaluation of Urine Volume and pH
2.3. Evaluation of Urinary Parameters
2.4. Evaluation of CaOx Crystal Formation in the Urine of NTR and SHR Groups
2.5. Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Drugs
4.2. Animals
4.3. Treatments
4.4. Blood Pressure Measurement via Tail-Cuff Plethysmography
4.5. Determination of Diuretic Activity and Urine Analysis
4.6. Induction of Calcium Oxalate (CaOx) Precipitation and Crystallization
4.7. Molecular Docking
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zack, R.; Okunade, O.; Olson, E.; Salt, M.; Amodeo, C.; Anchala, R.; Berwanger, O.; Campbell, N.; Chia, Y.-K.; Damasceno, A.; et al. Improving Hypertension Outcome Measurement in Low- and Middle-Income Countries. Hypertension 2019, 73, 990–997. [Google Scholar] [CrossRef]
- Chobanian, A.V. The Hypertension Paradox—More Uncontrolled Disease despite Improved Therapy. N. Engl. J. Med. 2009, 361, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Précoma, D.B.; de Oliveira, G.M.M.; Simão, A.F.; Dutra, O.P.; Coelho-Filho, O.R.; de Oliveira Izar, M.C.; Dos Santos Póvoa, R.M.; de Carlos Back Giuliano, I.; de Alencar Filho, A.; Machadoet, C.A.; et al. Updated Cardiovascular Prevention Guideline of the Brazilian Society of Cardiology—2019. Arq. Bras. Cardiol. 2019, 113, 787–891. [Google Scholar] [CrossRef] [PubMed]
- Đambić, V.; Pojatić, Đ.; Stažić, A.; Kibel, A. Significance of the Renin-Angiotensin System in Clinical Conditions. In Selected Chapters from the Renin-Angiotensin System; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Seriki, A.S. Role of the Kidneys in the Regulation of Intra-and Extra-Renal Blood Pressure. Ann. Clin. Hypertens. 2018, 1, 048–058. [Google Scholar] [CrossRef]
- Hall, J.E.; Granger, J.P.; do Carmo, J.M.; da Silva, A.A.; Dubinion, J.; George, E.; Hamza, S.; Joshua Speed, J.; Hall, M.E. Hypertension: Physiology and Pathophysiology. Compr. Physiol. 2012, 4, 2393–2442. [Google Scholar] [CrossRef]
- Goldfarb, D.S. Empiric therapy for kidney stones. Urolithiasis 2019, 47, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Ziemba, J.B.; Matlaga, B.R. Epidemiology and economics of nephrolithiasis. Investig. Clin. Urol. 2017, 58, 299. [Google Scholar] [CrossRef]
- Daudon, M.; Doré, J.-C.; Jungers, P.; Lacour, B. Changes in stone composition according to age and gender of patients: A multivariate epidemiological approach. Urol. Res. 2004, 32, 241–247. [Google Scholar] [CrossRef]
- Boeing, T.; Tafarelo Moreno, K.G.; Gasparotto Junior, A.; Mota da Silva, L.; de Souza, P. Phytochemistry and Pharmacology of the Genus Equisetum (Equisetaceae): A Narrative Review of the Species with Therapeutic Potential for Kidney Diseases. Evid. Based Complement. Alternat. Med. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Mariano, L.N.B.; Boeing, T.; da Silva, R.d.C.M.V.d.A.F.; Cechinel-Filho, V.; Niero, R.; da Silva, L.M.; de Souza, P.; de Andrade, S.F. Preclinical evaluation of the diuretic and saluretic effects of (-)-epicatechin and the result of its combination with standard diuretics. Biomed. Pharmacother. 2018, 107, 520–525. [Google Scholar] [CrossRef]
- Schlickmann, F.; de Souza, P.; Boeing, T.; Mariano, L.N.B.; Steimbach, V.M.B.; Krueger, C.M.A.; da Silva, L.M.; de Andrade, S.F.; Cechinel-Filho, V. Chemical composition and diuretic, natriuretic and kaliuretic effects of extracts of Mimosa bimucronata (DC.) Kuntze leaves and its majority constituent methyl gallate in rats. J. Pharm. Pharmacol. 2017, 69, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Subhan, N.; Rahman, M.M.; Uddin, S.J.; Reza, H.M.; Sarker, S.D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014, 5, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Bharti, S.; Krishnamurthy, B.; Bhatia, J.; Sharma, C.; Kamal, M.A.; Shreesh Ojha, S.; Arya, D.S. Pharmacological Properties and Therapeutic Potential of Naringenin: A Citrus Flavonoid of Pharmaceutical Promise. Curr. Pharm. Des. 2016, 22, 4341–4359. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, H.; Che, J.; Yao, W. Naringenin Protects against Hypertension by Regulating Lipid Disorder and Oxidative Stress in a Rat Model. Kidney Blood Press. Res. 2022, 47, 423–432. [Google Scholar] [CrossRef]
- Vilhena da Silva, R.C.; Dada, A.; Lucietti Dick, S.; Odebrecht Cavichiolo, M.; Zanovello, M.; Cechinel Filho, V.; de Souza, P. Naringen’s Effects on Diuresis and Prevention of Urolithiasis in Hypertensive Rats. Chem. Biodivers. 2024, 21, e202400175. [Google Scholar] [CrossRef]
- Dada, A.; da Silva, R.d.C.V.; Zanovello, M.; Moser, J.C.; Orengo, S.L.D.; Cavichiolo, M.O.; Bidinha, E.R.; Boeing, T.; Cechinel-Filho, V.; de Souza, P. Comparative Analysis of the Protective Effect of Naringenin on Cardiovascular Parameters of Normotensive and Hypertensive Rats Subjected to the Myocardial Infarction Model. Pharmaceuticals 2024, 17, 1324. [Google Scholar] [CrossRef]
- Haque, Z.; Taleuzzaman, M.; Jamal, R.; Al-Qahtani, N.H.; Haque, A. Targeting protein receptors and enzymes for precision management of urolithiasis: A comprehensive review. Eur. J. Pharmacol. 2024, 981, 176904. [Google Scholar] [CrossRef] [PubMed]
- Rouanet-Mehouas, C.; Czarny, B.; Beau, F.; Cassar-Lajeunesse, E.; Stura, E.A.; Dive, V.; Devel, L. Zinc–Metalloproteinase Inhibitors: Evaluation of the Complex Role Played by the Zinc-Binding Group on Potency and Selectivity. J. Med. Chem. 2017, 60, 403–414. [Google Scholar] [CrossRef]
- Niu, Y.; Liu, R.; Guan, C.; Zhang, Y.; Chen, Z.; Hoerer, S.; Herbert Nar, H.; Lei Chen, L. Structural basis of inhibition of the human SGLT2–MAP17 glucose transporter. Nature 2022, 601, 280–284. [Google Scholar] [CrossRef]
- Azizogli, A.; Vitti, M.R.; Mishra, R.; Osorno, L.; Heffernan, C.; Kumar, V.A. Comparison of SGLT1, SGLT2, and Dual Inhibitor Biological Activity in Treating Type 2 Diabetes Mellitus. Adv. Ther. 2023, 6, 2300143. [Google Scholar] [CrossRef]
- Hiraizumi, M.; Akashi, T.; Murasaki, K.; Kishida, H.; Kumanomidou, T.; Torimoto, N.; Nureki, O.; Miyaguchi, I. Structural insights into the mechanism of the human SGLT2–MAP17 glucose transporter. bioRxiv 2023. for preprint. [Google Scholar] [CrossRef]
- Chan, H.C.S.; Filipek, S.; Yuan, S. The Principles of Ligand Specificity on beta-2-adrenergic receptor. Sci. Rep. 2016, 6, 34736. [Google Scholar] [CrossRef] [PubMed]
- Isin, B.; Estiu, G.; Wiest, O.; Oltvai, Z.N. Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes. PLoS ONE 2012, 7, e50186. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- Navar, L.G. Physiology: Hemodynamics, endothelial function, renin–angiotensin–aldosterone system, sympathetic nervous system. J. Am. Soc. Hypertens. 2014, 8, 519–524. [Google Scholar] [CrossRef]
- Wile, D. Diuretics: A review. Ann. Clin. Biochem. 2012, 49, 419–431. [Google Scholar] [CrossRef]
- Blowey, D.L. Diuretics in the treatment of hypertension. Pediatr. Nephrol. 2016, 31, 2223–2233. [Google Scholar] [CrossRef]
- Sarafidis, P.A.; Georgianos, P.I.; Lasaridis, A.N. Diuretics in clinical practice. Part II: Electrolyte and acid-base disorders complicating diuretic therapy. Expert Opin. Drug Saf. 2010, 9, 259–273. [Google Scholar] [CrossRef]
- Dornas, W.C.; Silva, M.E. Animal models for the study of arterial hypertension. J. Biosci. 2011, 36, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Dickhout, J.G.; Lee, R.M.K.W. Blood pressure and heart rate development in young spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 1998, 274, H794–H800. [Google Scholar] [CrossRef]
- Mariano, L.N.B.; Vequi, G.; da Silva, R.d.C.V.; Macarini, A.F.; Dada, A.; Costa, T.M.; Omena, M.M.; Pereira, C.R.P.; Cechinel-Filho, V.; Niero, R.; et al. In Vitro and In Vivo Antiurolithic Effect of Betulinic Acid Obtained from Citharexylum mirianthum. Plants 2024, 13, 2141. [Google Scholar] [CrossRef]
- Mariano, L.N.B.; Boeing, T.; Filho, V.C.; Niero, R.; da Silva, L.M.; de Souza, P. 3-Demethyl-2-geranyl-4-prenylbellidifoline, a natural xanthone with diuretic and kidney protective properties. J. Pharm. Pharmacol. 2024, 76, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Mariano, L.N.B.; Boeing, T.; Cechinel Filho, V.; Niero, R.; Mota da Silva, L.; de Souza, P. 1,3,5,6-tetrahydroxyxanthone promotes diuresis, renal protection and antiurolithic properties in normotensive and hypertensive rats. J. Pharm. Pharmacol. 2021, 73, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Liang, M. Renal metabolism and hypertension. Nat. Commun. 2021, 12, 963. [Google Scholar] [CrossRef]
- Guyton, A.C. Blood Pressure Control—Special Role of the Kidneys and Body Fluids. Science 1991, 252, 1813–1816. [Google Scholar] [CrossRef]
- Bokrantz, T.; Schiöler, L.; Boström, K.B.; Kahan, T.; Mellström, D.; Ljungman, C.; Hjerpe, P.; Hasselström, J.; Manhem, K. Antihypertensive drug classes and the risk of hip fracture. J. Hypertens. 2020, 38, 167–175. [Google Scholar] [CrossRef]
- Lærum, E.; Larsen, S. Thiazide Prophylaxis of Urolithiasis. Acta Med. Scand. 1984, 215, 383–389. [Google Scholar] [CrossRef]
- Moe, O.W.; Pearle, M.S.; Sakhaee, K. Pharmacotherapy of urolithiasis: Evidence from clinical trials. Kidney Int. 2011, 79, 385–392. [Google Scholar] [CrossRef]
- Sakhaee, K.; Maalouf, N.M.; Kumar, R.; Pasch, A.; Moe, O.W. Nephrolithiasis-associated bone disease: Pathogenesis and treatment options. Kidney Int. 2011, 79, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Sakhaee, K.; Maalouf, N.M.; Sinnott, B. Kidney Stones 2012: Pathogenesis, Diagnosis, and Management. J. Clin. Endocrinol. Metab. 2012, 97, 1847–1860. [Google Scholar] [CrossRef]
- Tan, R.J.; Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Renal Physiol. 2012, 302, F1351–F1361. [Google Scholar] [CrossRef]
- Upadhyay, A. SGLT2 Inhibitors and Kidney Protection: Mechanisms Beyond Tubuloglomerular Feedback. Kidney360 2024, 5, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Gronda, E.G.; Vanoli, E.; Iacoviello, M.; Urbinati, S.; Caldarola, P.; Colivicchi, F.; Gabrielli, D. Renal effects of SGLT2 inhibitors in cardiovascular patients with and without chronic kidney disease: Focus on heart failure and renal outcomes. Heart Fail. Rev. 2022, 28, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.S.; Kim, G.H.; Chung, S. Intrarenal Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors on Tubuloglomerular Feedback and Natriuresis. Endocrinol. Metab. 2023, 38, 359–372. [Google Scholar] [CrossRef]
- Alarcón de la Lastra, C.; Martín, M.J.; Motilva, V. Effects of naringenin and silymarin on urinary excretion of water and electrolytes in rats. Phytother. Res. 1991, 5, 191–193. [Google Scholar] [CrossRef]
- Kamiar, A.; Yousefi, K.; Dunkley, J.C.; Webster, K.A.; Shehadeh, L.A. β2-Adrenergic receptor agonism as a therapeutic strategy for kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R575–R587. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, F.; Roghani, M.; Moghadami, S. Citrus flavonoid naringenin improves aortic reactivity in streptozotocin-diabetic rats. Indian J. Pharmacol. 2012, 44, 382. [Google Scholar] [CrossRef]
- Liu, L.; Xu, D.; Cheng, Y. Distinct Effects of Naringenin and Hesperetin on Nitric Oxide Production from Endothelial Cells. J. Agric. Food Chem. 2008, 56, 824–829. [Google Scholar] [CrossRef]
- Shirfule, A.L.; Sangamwar, A.T.; Khobragade, C.N. Exploring glycolate oxidase (GOX) as an antiurolithic drug target: Molecular modeling and in vitro inhibitor study. Int. J. Biol. Macromol. 2011, 49, 62–70. [Google Scholar] [CrossRef]
- Cabrera, N.; Cuesta, S.A.; Mora, J.R.; Paz, J.L.; Márquez, E.A.; Espinoza-Montero, P.J.; Marrero-Ponce, Y.; Pérez, N.; Contreras-Torres, E. Searching glycolate oxidase inhibitors based on QSAR, molecular docking, and molecular dynamic simulation approaches. Sci. Rep. 2022, 12, 19969. [Google Scholar] [CrossRef]
- Alsalemi, N.; Sadowski, C.A.; Elftouh, N.; Louis, M.; Kilpatrick, K.; Houle, S.K.D.; Lafrance, J.-P. The effect of renin–angiotensin–aldosterone system inhibitors on continuous and binary kidney outcomes in subgroups of patients with diabetes: A meta-analysis of randomized clinical trials. BMC Nephrol. 2022, 23, 161. [Google Scholar] [CrossRef]
- Siamopoulos, K.C.; Kalaitzidis, R.G. Inhibition of the renin–angiotensin system and chronic kidney disease. Int. Urol. Nephrol. 2008, 40, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Yousefi Ghale-Salimi, M.; Eidi, M.; Ghaemi, N.; Khavari-Nejad, R.A. Inhibitory effects of taraxasterol and aqueous extract of Taraxacum officinale on calcium oxalate crystallization: In vitro study. Ren. Fail. 2018, 40, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Enzyme | PDB ID | Naringenin |
---|---|---|
Angiotensin Type 2 | 5UNF | −8.4 |
Calcium-sensing receptor EX | 5FBK | −8.1 |
Calcium-sensing receptor 7TMD | 7DD7 | −8.5 |
Glycolate Oxidase | 2RDT | −8.3 |
MMP-1 | 3SHI | −7.5 |
MMP-2 | 1CK7 | −7.6 |
MMP-9 | 4XCT | −10.4 |
Sodium–Glucose Cotransporter 1 | 7WMV | −9.4 |
Sodium–Glucose Cotransporter 2 | 7VSI | −9.6 |
Vasopressin | 7DW9 | −7.9 |
Vasopressin V2 | 7BB7 | −6.6 |
Phosphoethanolamine Cytidylyltransferase | 3ELB | −8.2 |
ACE | 1O86 | −7.9 |
Renin | 2V0Z | −7.9 |
Beta 2 adrenergic receptor | 3NYA | −9.2 |
ENaC | 6BQN | −7.8 |
NKCC1 | 7SFL | −6.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dada, A.; Vilhena da Silva, R.d.C.; Zanovello, M.; Macarini, A.F.; Boeing, T.; Cechinel Filho, V.; de Souza, P. Cardiovascular and Renal Outcomes Following Repeated Naringenin Exposure in Normotensive and Hypertensive Rats. Pharmaceuticals 2025, 18, 873. https://doi.org/10.3390/ph18060873
Dada A, Vilhena da Silva RdC, Zanovello M, Macarini AF, Boeing T, Cechinel Filho V, de Souza P. Cardiovascular and Renal Outcomes Following Repeated Naringenin Exposure in Normotensive and Hypertensive Rats. Pharmaceuticals. 2025; 18(6):873. https://doi.org/10.3390/ph18060873
Chicago/Turabian StyleDada, Anelize, Rita de Cássia Vilhena da Silva, Mariana Zanovello, Anelise Felício Macarini, Thaise Boeing, Valdir Cechinel Filho, and Priscila de Souza. 2025. "Cardiovascular and Renal Outcomes Following Repeated Naringenin Exposure in Normotensive and Hypertensive Rats" Pharmaceuticals 18, no. 6: 873. https://doi.org/10.3390/ph18060873
APA StyleDada, A., Vilhena da Silva, R. d. C., Zanovello, M., Macarini, A. F., Boeing, T., Cechinel Filho, V., & de Souza, P. (2025). Cardiovascular and Renal Outcomes Following Repeated Naringenin Exposure in Normotensive and Hypertensive Rats. Pharmaceuticals, 18(6), 873. https://doi.org/10.3390/ph18060873