Nitropyridines in the Synthesis of Bioactive Molecules
Abstract
:1. Introduction
2. Synthesis of Bioactive Nitropyridines
3. Nitropyridines as Ligands in Bioactive Coordination Compounds
4. Nitropyridines as Precursors and Intermediates of Bioactive Compounds
5. Nitropyridines in the Synthesis of Radiolabeled Compounds
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FDA | U.S. Food and Drug Administration |
CNS | Central nervous system |
IC50 | Half-maximal inhibitory concentration |
LD50 | Median lethal dose |
MIC | Minimum inhibitory concentration |
MCC | Minimum cytotoxic concentration |
PET | Positron emission tomography |
DNA | Deoxyribonucleic acid |
HIV | Human immunodeficiency virus |
DDQ | 2,3-Dichloro-5,6-dicyanobenzoquinone |
CDI | 1,1′-Carbonyldiimidazole |
4-NPO | 4-Nitropyridine-N-oxide |
AgNPs | Silver nanoparticles |
JAK2 | Janus kinase 2 |
GSK3 | Glycogen synthase kinase 3 |
SSAO | Semicarbazide-sensitive amine oxidase |
cGMP PDE | Cyclic guanosine monophosphate-specific phosphodiesterase type 5 |
NEU3 | Neuraminidase 3 |
MALT1 | Mucosa-associated lymphoid tissue lymphoma translocation protein 1 |
VZV | Varicella zoster virus |
DCC | N,N′-Dicyclohexylcarbodiimide |
SIK | Salt-inducible kinase |
References
- Ling, Y.; Hao, Z.-Y.; Liang, D.; Zhang, C.-L.; Liu, Y.-F.; Wang, Y. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. Drug Des. Dev. Ther. 2021, 15, 4289–4338. [Google Scholar] [CrossRef]
- Starosotnikov, A.M.; Bastrakov, M.A. Recent Developments in the Synthesis of HIV-1 Integrase Strand Transfer Inhibitors Incorporating Pyridine Moiety. Int. J. Mol. Sci. 2023, 24, 9314. [Google Scholar] [CrossRef]
- Cole, J.M.; Goeta, A.E.; Howard, J.A.K.; McIntyre, G.J. X-ray and neutron diffraction studies of the non-linear optical compounds MBANP and MBADNP at 20 K: Charge-density and hydrogen-bonding analyses. Acta Cryst. 2002, B58, 690–700. [Google Scholar] [CrossRef]
- Baca, A.G.; Lai, W.C. Solution Processable Thin-Film Transistors. U.S. Patent 9082983, 14 July 2015. [Google Scholar]
- Couroux, A.-M.; Fadli, A.; Nicou, V. Dyeing Composition Comprising a Heterocyclic Oxidation Base and a Cationic 3,5-Diaminopyridine Coupler. WO Patent 2012080286, 21 June 2012. [Google Scholar]
- Nicou, V.; Fadli, A. Dye Composition Comprising a Secondary Para-Phenylenediamine Oxidation Base and a Cationic 3,5-Diaminopyridine Coupler. WO Patent 2012080287, 21 June 2012. [Google Scholar]
- Ascione, J.-M.; Saunier, J.-B.; Couroux, A.-M.; Allard, D.; Nicou, V. Dye Composition Comprising at Least Four Dye Precursors Including at Least One Oxidation Base and at Least One Coupler. WO Patent 2012080289, 21 June 2012. [Google Scholar]
- Hartman, T.; Sturala, J.; Cibulka, R. Two-Phase Oxidations with Aqueous Hydrogen Peroxide Catalyzed by Amphiphilic Pyridinium and Diazinium Salts. Adv. Synth. Catal. 2015, 357, 3573–3586. [Google Scholar] [CrossRef]
- Sturala, J.; Bohacova, S.; Chudoba, J.; Metelkova, R.; Cibulka, R. Electron-Deficient Heteroarenium Salts: An Organocatalytic Tool for Activation of Hydrogen Peroxide in Oxidations. J. Org. Chem. 2015, 80, 2676–2699. [Google Scholar] [CrossRef]
- Stafford, W.C.; Peng, X.; Hägg Olofsson, M.; Zhang, X.; Luci, D.K.; Lu, L.; Cheng, Q.; Trésaugues, L.; Dexheimer, T.S.; Coussens, N.P.; et al. Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci. Transl. Med. 2018, 10, eaaf7444. [Google Scholar] [CrossRef]
- Laeckmann, D.; Rogister, F.; Dejardin, J.-V.; Prosperi-Meys, C.; Geczy, J.; Delarge, J.; Masereel, B. Synthesis and Biological Evaluation of Aroylguanidines Related to Amiloride as Inhibitors of the Human Platelet Na+/H+ Exchanger. Bioorg. Med. Chem. 2002, 10, 1793–1804. [Google Scholar] [CrossRef]
- Ryabova, S.Y.; Surovtcev, V.V.; Kvashnin, V.P. 2-Nitroheterylthiocyanates for Treating Fungal Infections, Pharmaceutical Composition and Use Thereof. WO Patent 2013129973, 6 September 2013. [Google Scholar]
- Plewe, M.B.; Butler, S.L.; Dress, K.R.; Hu, Q.; Johnson, T.W.; Kuehler, J.E.; Kuki, A.; Lam, H.; Liu, W.; Nowlin, D.; et al. Azaindole Hydroxamic Acids are Potent HIV-1 Integrase Inhibitors. J. Med. Chem. 2009, 52, 7211–7219. [Google Scholar] [CrossRef]
- Swati; Shukla, S.; Mishra, A.K.; Prakash, L. Synthesis of some novel 1-azaphenothiazines and their mesoionics as analogues of potent CNS-depressants. Phosphorus Sulfur Silicon Relat. Elem. 1996, 117, 111–120. [Google Scholar] [CrossRef]
- Tu, Z.; Mach, R.; Yu, L.; Kotzbauer, P. Tricyclic Heteroaromatic Compounds as Alpha-Synuclein Ligands. U.S. Patent 20130315825, 28 November 2013. [Google Scholar]
- Manici, L.M.; Sacca, M.L.; Lodesani, M. Secondary Metabolites Produced by Honey Bee-Associated Bacteria for Apiary Health: Potential Activity of Platynecine. Curr. Microbiol. 2020, 77, 3441–3449. [Google Scholar] [CrossRef]
- Yurovskaya, M.A.; Afanas’ev, A.Z. Methods for the synthesis of 3-nitropyridines (review). Chem. Heterocycl. Compd. 1991, 27, 681–707. [Google Scholar] [CrossRef]
- Starosotnikov, A.M.; Bastrakov, M.A. Dinitropyridines: Synthesis and Reactions. Asian J. Org. Chem. 2024, 13, e202400304. [Google Scholar] [CrossRef]
- Bastrakov, M.; Starosotnikov, A. Recent progress in the synthesis of Drugs and bioactive molecules incorporating nitro(het)arene core. Pharmaceuticals 2022, 15, 705. [Google Scholar] [CrossRef]
- Zhao, C.; Yang, S.H.; Khadka, D.B.; Jin, Y.; Lee, K.-T.; Cho, W.-J. Computer-aided discovery of aminopyridines as novel JAK2 inhibitors. Bioorg. Med. Chem. Lett. 2015, 23, 985–995. [Google Scholar] [CrossRef]
- Ramurthy, S.; Pfister, K.B.; Boyce, R.S.; Brown, S.P.; Costales, A.Q.; Desai, M.C.; Fang, E.; Levine, B.H.; Ng, S.C.; Nuss, J.M.; et al. Discovery and optimization of novel pyridines as highly potent and selective glycogen synthase kinase 3 inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 126930. [Google Scholar] [CrossRef]
- Wydra, V.; Gerstenecker, S.; Schollmeyer, D.; Andreev, S.; Dimitrov, T.; Massarico Serafim, R.A.; Laufer, S.; Gehringer, M. N-(6-Chloro-3-nitropyridin-2-yl)-5-(1-methyl-1H-pyrazol-4-yl)isoquinolin-3-amine. Molbank 2021, 2021, M1181. [Google Scholar] [CrossRef]
- Korolev, S.P.; Pustovarova, M.A.; Starosotnikov, A.M.; Bastrakov, M.A.; Agapkina, Y.Y.; Shevelev, S.A.; Gottikh, M.B. Nitrobenzofuroxane Derivatives as Dual Action HIV-1 Inhibitors. Biochem. Mosc. Suppl. Ser. B Biomed. Chem. 2017, 11, 286–290. [Google Scholar] [CrossRef]
- Starosotnikov, A.M.; Shkaev, D.V.; Bastrakov, M.A.; Fedyanin, I.V.; Shevelev, S.A.; Dalinger, I.L. Nucleophilic dearomatization of 4-aza-6-nitrobenzofuroxan by CH acids in the synthesis of pharmacology oriented compounds. Beilstein J. Org. Chem. 2017, 13, 2854–2861. [Google Scholar] [CrossRef]
- Akash, M.; Zaib, S.; Ahmad, M.; Sultan, S.; Al-Hussain, S.A. Synthesis and biological evaluation of pyridylpiperazine hybrid derivatives as urease inhibitors. Front. Chem. 2024, 12, 1371377. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, S.; Saeed, A.; Shehzadi, S.A.; Mehfooz, H.; Kalsoom, S.; Channar, P.A.; Ismail, H.; Rauf, A.; Naveed, S.; Taslimi, P.; et al. Synthesis, Anti-enzymatic Appraisal, In Silico and SAR analysis of 5-Aryl/Heteroaryl-2,2-dimethyl-1,3-dioxane-4,6-dione Derivatives. ChemistrySelect 2025, 10, e202404787. [Google Scholar] [CrossRef]
- Choudhari, P.B.; Bhatia, M.S.; Jadhav, S.D.; Cumbhar, S.S.; Ingale, K.B.; Gaikwad, V.L. Design and development of potent and selective factor IXa inhibitors. J. Taiwan Inst. Chem. Eng. 2016, 68, 130–135. [Google Scholar] [CrossRef]
- Velmirugan, V.; Palanisamy, P.; Subramanian, R.; Bhuvanesh, N.; Gomathi, S.; Muthiah, P.T.; Nayagam, B.R.D.; Kumaresan, S. Single crystal XRD, Bioevaluation and DFT Analysis of 4-Phenylsulfanylbutyric acid (4PSBA) and its Cocrystal with 2-Amino-5-nitropyridine (2A5NP). Am. Chem. Sci. J. 2016, 13, 1–16. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.-H.; Zi, S.-F.; Liu, F.-R.; Deng, C.; Ao, X.; Zhang, P. AgNP combined with quorum sensing inhibitor increased the antibiofilm effect on Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2019, 103, 6195–6204. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, J.-Y.; Ham, S.-Y.; Lee, J.-H.; Park, J.-H. Effect of biofilm inhibitor on biofouling resistance in RO processes. Fuel 2019, 253, 823–832. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Zhu, Q.; Liu, S.; Xia, C. The influence of bacterial quorum-sensing inhibitors against the formation of the diatombiofilm. Chem. Ecol. 2016, 32, 169–181. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, K.; Zhu, L.; Li, N.; Lin, D.; Cheng, Y.; Wang, M. Inhibition of quorum sensing serves as an effective strategy to mitigate the risks of human bacterial pathogens in soil. J. Hazard. Mater. 2024, 465, 133272. [Google Scholar] [CrossRef] [PubMed]
- Larin, A.N.; Borovleva, A.A.; Demidov, O.P.; Avakyan, E.K.; Zubenko, A.A.; Pobedinskaya, D.Y.; Ermolenko, A.P.; Kolosov, S.E.; Borovlev, I.V. Selective SNH-alkylamination of 3(5,6,7,8)-nitroquinoline and 5-nitroisoquinoline in an aqueous medium. Asian J. Org. Chem. 2024, 14, e202400490. [Google Scholar] [CrossRef]
- Klimenko, A.I.; Divaeva, L.N.; Zubenko, A.A.; Morkovnik, A.S.; Fetisov, L.N.; Bodryakov, A.N. Synthesis and Pharmacological Activity of N-Hetaryl-3(5)-Nitropyridines. Russ. J. Bioorg. Chem. 2015, 41, 402–408. [Google Scholar] [CrossRef]
- Stalinskaya, A.L.; Martynenko, N.V.; Alkhimova, L.E.; Dibaryan, D.S.; Vasilchenko, A.S.; Dengis, N.A.; Vlasenko, V.S.; Kulakov, I.V. Synthesis and bacteriostatic properties of epoxybenzooxocino [4,3-b]pyridine derivatives. J. Mol. Struct. 2023, 1275, 134689. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, S.; Dong, X.; Zhao, W.; Zhu, Q. 3,5-Dinitropyridin-2-yl as a fast thiol-responsive capping moiety in the development of fluorescent probes of biothiols. Dyes Pigment. 2019, 167, 157–163. [Google Scholar] [CrossRef]
- Wu, M.-Y.; Wang, Y.; Liu, Y.-H.; Yu, X.-Q. Dual-site lysosome-targeted fluorescent probe for separate detection of endogenous biothiols and SO2 in living cells. J. Mater. Chem. B 2018, 6, 4232–4238. [Google Scholar] [CrossRef] [PubMed]
- Baheti, A.; Vigalok, A. Short Wavelength Inner Filter Technique (SWIFT) in Designing Reactive Fluorescent Molecular Probes. J. Am. Chem. Soc. 2019, 141, 12224–12228. [Google Scholar] [CrossRef] [PubMed]
- Gunsaru, B.; Burgess, S.J.; Morrill, W.; Kelly, J.X.; Shomloo, S.; Smilkstein, M.J.; Liebman, K.; Peyton, D.H. Simplified reversed chloroquines to overcome malaria resistance to quinoline-based drugs. Antimicrob. Agents Chemother. 2017, 61, e01913-16. [Google Scholar] [CrossRef] [PubMed]
- Jame, R. Synthesis, Photophysical Properties, and Molecular Docking Studies of New Nitropyridine Linked 4-Arylidene-thiazolidin-4-ones (D-π-A Structured) as Potent Anticancer Agents. Russ. J. Org. Chem. 2024, 60, 1307–1316. [Google Scholar] [CrossRef]
- Lessene, G.L.; Garnier, J.-M.D.; Feutrill, J.T.; Cuzzupe, A.N.; Czabotar, P.E. Inhibitors of Necroptosis. WO Patent 2021168521, 2 September 2021. [Google Scholar]
- Xu, Z.; Zhang, T.; Wang, S.; Li, J. Synthesis and Herbicidal Activities of Novel Ethyl 2-(4-(Pyridin-2-yl-oxy)phenyl-amino)propanoates/acetates. Chin. J. Org. Chem. 2017, 37, 526–532. [Google Scholar] [CrossRef]
- Zhao, L.-X.; Peng, J.-F.; Liu, F.-Y.; Zou, Y.-L.; Gao, S.; Fu, Y.; Ye, F. Design, Synthesis, and Herbicidal Activity of Diphenyl Ether Derivatives Containing a Five-Membered Heterocycle. J. Agric. Food Chem. 2022, 70, 1003–1018. [Google Scholar] [CrossRef]
- Liu, A.; Liu, M.; Yu, H.; Ou, X.; Liu, X.; Ren, Y.; Long, C.; Huang, L.; Yu, W.; Shi, G.; et al. Discovery of nitropyridyl-based dichloropropene ethers as insecticides. Bioorg. Med. Chem. Lett. 2019, 29, 1430–1433. [Google Scholar] [CrossRef]
- Sneha Jose, E.; Philip, J.E.; Shanty, A.A.; Kurup, M.R.P.; Mohanan, P.V. Novel class of mononuclear 2-methoxy-4-chromanones ligated Cu (II), Zn (II), Ni (II) complexes: Synthesis, characterisation and biological studies. Inorg. Chim. Acta 2018, 478, 155–165. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, W.; Hou, Y.; Li, C.; Jiang, G.; Zhang, B.; Zhou, Q.; Wang, X. Fine control on the photochemical and photobiological properties of Ru(II) arene complexes. Dalton Trans. 2015, 44, 73477354. [Google Scholar] [CrossRef]
- Deepika, P.; Vinusha, H.M.; Begum, M.; Ramu, R.; Shirahatti, P.S.; Nagendra Prasad, M.N. 2-Methoxy-4-(((5-nitropyridin-2-yl)imino)methyl)phenol Schiff base ligand and its Cu(II) and Zn(II) complexes: Synthesis, characterization and biological investigations. Heliyon 2022, 8, e09648. [Google Scholar] [CrossRef]
- Jadhav, G.R.; Sinha, S.; Chhabra, M.; Paira, P. Synthesis of novel anticancer ruthenium–arene pyridinylmethylene scaffolds via three-component reaction. Bioorg. Med. Chem. Lett. 2016, 26, 2695–2700. [Google Scholar] [CrossRef] [PubMed]
- Kutlu, E.; Mehmet Emen, F.; Kismali, G.; Kaya Kinayturk, N.; Ihsan Karacolak, A.; Kilic, D.; Asim Ali, M.; Mehtap Kutlu, H.; Ersa Demirdogen, R. Synthesis and investigation of in vitro cytotoxic activities and thermal stability of novel pyridine derivative platinum (II) complexes vis a vis DFT studies. Polyhedron 2021, 210, 115492. [Google Scholar] [CrossRef]
- Shi, H.; Clarkson, G.J.; Sadler, P.J. Tuning the phototherapeutic activity of Pt(IV) complexes for bladder cancer via modification of trans N-heterocyclic ligands. Inorg. Chem. Front. 2024, 11, 7898–7909. [Google Scholar] [CrossRef]
- Tat’yanenko, L.V.; Pokidova, O.V.; Goryachev, N.S.; Sanina, N.A.; Kozub, G.I.; Kondrat’eva, T.A.; Dobrokhotova, O.V.; Pikhteleva, I.Y.; Kotelnikov, A.I. Effect of nitrosyl iron complexes and their thio ligands on the activity of phosphodiesterase and sarcoplasmic reticulum Ca2+-ATPase. Russ. Chem. Bull. Int. Ed. 2023, 72, 1673–1679. [Google Scholar] [CrossRef]
- Neshev, N.I.; Sokolova, E.M.; Kozub, G.I.; Kondrat’eva, T.A.; Sanina, N.A. NO-donating and hemolytic activity of tetranitrosyl iron complexes with ligands of the 2-mercaptopyridine series. Russ. Chem. Bull. Int. Ed. 2017, 66, 1510–1514. [Google Scholar] [CrossRef]
- Kocoglu, S.; Hayvali, Z.; Ogutsu, H.; Atakol, O. Synthesis, antimicrobial and thermal studies of nitropyridine-substituted double armed benzo-15-crown-5 ligands; alkali (Na+ and K+) and transition metal (Ag+) complexes; reduction of nitro compounds. J. Incl. Phenom. Macrocycl. Chem. 2022, 102, 763–780. [Google Scholar] [CrossRef]
- Cai, T.; Yang, X.; Wang, X.; Qin, H.; Kang, B.; Li, B.; Xing, K.; Huang, M.; Zhao, L. An improved synthetic strategy for the multigram-scale synthesis of DNA–PK inhibitor AZD7648. Chem. Pap. 2024, 78, 3213–3222. [Google Scholar] [CrossRef]
- Rucilova, V.; Swierczek, A.; Vanda, D.; Funk, P.; Lemrova, B.; Gawalska, A.; Bucki, A.; Nowak, B.; Zadrozina, M.; Pociecha, K.; et al. New imidazopyridines with phosphodiesterase 4 and 7 inhibitory activity and their efficacy in animal models of inflammatory and autoimmune diseases. Eur. J. Med. Chem. 2021, 209, 112854. [Google Scholar] [CrossRef]
- Grisez, T.; Ravi, N.P.; Froeyen, M.; Schols, D.; Van Meervelt, L.; De Jonghe, S.; Dehaen, W. Synthesis of a 3,7-Disubstituted Isothiazolo [4,3-b]pyridine as a Potential Inhibitor of Cyclin G-Associated Kinase. Molecules 2024, 29, 954. [Google Scholar] [CrossRef]
- Evans, D.; Carley, A.; Stewart, A.; Higginbottom, M.; Savory, E.; Simpson, I.; Nilsson, M.; Haraldson, M.; Nordling, E.; Koolmeister, T. New Enzyme Inhibitor Compounds. U.S. Patent 2014/0357623, 4 December 2014. [Google Scholar]
- Gomer, R.H.; Meek, T.; Karhadkar, T.; Pilling, D. Anti-Fibrotic NEU3 Inhibitor Compounds and Methods of Use. WO Patent 2020/167663, 20 August 2020. [Google Scholar]
- Kukreja, G.; Irlapati, N. Substituted Thiazolo-Pyridine Compounds as MALT1 Inhibitors. WO Patent 2018020474, 1 February 2018. [Google Scholar]
- Morak-Mlodawska, B.; Pluta, K.; Latocha, M.; Suwinska, K.; Jelen, M.; Kusmierz, D. 3,6-Diazaphenothiazines as potential lead molecules—Synthesis, characterization and anticancer activity. J. Enzym. Inhib. Med. Chem. 2016, 31, 1512–1519. [Google Scholar] [CrossRef]
- Demirci, S.; Demirbas, N. Anticancer activities of novel Mannich bases against prostate cancer cells. Med. Chem. Res. 2019, 28, 1945–1958. [Google Scholar] [CrossRef]
- Demirci, S.; Bartu Hayal, T.; Kiratli, B.; Bursu Sisli, H.; Demirci, S.; Sahin, F.; Dogan, A. Design and synthesis of phenylpiperazine derivatives as potent anticancer agents for prostate cancer. Chem. Biol. Drug Des. 2019, 94, 1584–1595. [Google Scholar] [CrossRef]
- Tarasiuk, J.; Kostrzewa-Nowak, D.; Zwierello, W. Antitumour Effects of Selected Pyridinium Salts on Sensitive Leukaemia HL60 Cells and Their Multidrug Resistant Topoisomerase II-Defective HL60/MX2 Counterparts. Molecules 2022, 27, 5138. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Prasad, A.V.G.S. Novel one pot synthesis of pyridine heterocyclic derivatives and biological studies. Int. J. Basic Appl. Chem. Res. 2015, 5, 12–17. [Google Scholar]
- Lima, W.G.; dos Santos, F.J.; Cristina Soares, A.; Macías, F.A.; Molinillo, J.M.G.; Siqueira Ferreira, J.M.; Máximo de Siqueira, J. Synthesis and antimicrobial activity of some benzoxazinoids derivatives of 2-nitrophenol and 3-hydroxy-2-nitropyridine. Synth. Commun. 2019, 49, 286–296. [Google Scholar]
- Cebeci, Y.U.; Batur, O.O.; Boulebd, H. New piperazine-hydrazone derivatives as potential antimicrobial agents: Synthesis, characterization, biological evaluation, and in silico investigations. J. Mol. Struct. 2023, 1289, 135791. [Google Scholar] [CrossRef]
- Hartwich, A.; Zdzienicka, N.; Schols, D.; Andrei, G.; Snoeck, R.; Glowacka, I.E. Design, synthesis and antiviral evaluation of novel acyclic phosphonate nucleotide analogs with triazolo [4,5-b]pyridine, imidazo [4,5-b]pyridine and imidazo [4,5-b]pyridin-2(3H)-one systems. Nucleosides Nucleotides Nucleic Acids 2020, 39, 542–591. [Google Scholar] [CrossRef]
- Decoret, G.; Groebke Zbinden, K.; Haap, W.; Kreis, L.; Lucas Cabre, X.; Wach, J.-Y.; Wermuth, R. Imidazo [4,5-b]Pyridine and Pyrazolo [1,5-a]Pyrimidine Derivatives as SIK Modulators for the Treatment of Rheumatoid Arthritis. WO Patent 2024003208, 4 January 2024. [Google Scholar]
- Marathe, P.H.; Shyu, W.C.; Humphreys, W.G. The Use of Radiolabeled Compounds for ADME Studies in Discovery and Exploratory Development. Curr. Pharm. Des. 2004, 10, 2991–3008. [Google Scholar] [CrossRef]
- Crisan, G.; Moldovean-Cioroianu, N.S.; Timaru, D.-G.; Andries, G.; Cainap, C.; Chis, V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int. J. Mol. Sci. 2022, 23, 5023. [Google Scholar] [CrossRef]
- Wang, M.; Gao, M.; Xu, Z.; Zheng, Q.-H. Synthesis of a PET tau tracer [11C]PBB3 for imaging of Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2015, 25, 4587–4592. [Google Scholar] [CrossRef]
- Sun, Y.; Ramos-Torres, K.M.; Takahashi, K.; Tiss, A.; Zhang, L.L.; Brugarolas, P. Synthesis of K+ channel radioligand [18F] 5-methyl-3-fluoro-4-aminopyridine and PET imaging in mice. Bioorg. Med. Chem. Lett. 2024, 114, 129991. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lv, S.; Mou, Z.; Zhang, Z.; Dong, T.; Li, Z. Isotope-exchange-based 18F-labeling methods. Bioconjug. Chem. 2023, 34, 140–161. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cui, Y.; Hou, L.; Jiang, Y.; Shang, J.; Wang, L.; Xu, H.; Ye, W.; Qiu, Y.; Guo, B. Optimized automated radiosynthesis of 18F-JNJ64413739 for purinergic ion channel receptor 7 (P2X7R) imaging in osteoporotic model rats. Front. Pharmacol. 2024, 15, 1517127. [Google Scholar] [CrossRef] [PubMed]
- Abreu Diaz, A.M.; Rodriguez Riera, Z.; Lee, Y.; Esteves, L.M.; Normandeau, C.O.; Fezas, B.; Hernandez Saiz, A.; Tournoux, F.; Juneau, D.; Da Silva, J.N. [18F]Fluoropyridine-losartan: A new approach toward human Positron Emission Tomography imaging of Angiotensin II Type 1 receptors. J. Label. Comp. Radiopharm. 2023, 66, 73–85. [Google Scholar] [CrossRef]
- Malik, N.; Bendre, S.; Schirrmacher, R.; Schaffer, P. Lewis Acid-Facilitated Radiofluorination of MN3PU: A LRRK2 Radiotracer. Molecules 2020, 25, 4710. [Google Scholar] [CrossRef]
- Gao, M.; Wang, M.; Zheng, Q.-H. Fully automated synthesis of [18F]T807, a PET tau tracer for Alzheimer’s disease. Bioorg. Med. Chem. Lett. 2015, 25, 2953–2957. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starosotnikov, A.; Bastrakov, M. Nitropyridines in the Synthesis of Bioactive Molecules. Pharmaceuticals 2025, 18, 692. https://doi.org/10.3390/ph18050692
Starosotnikov A, Bastrakov M. Nitropyridines in the Synthesis of Bioactive Molecules. Pharmaceuticals. 2025; 18(5):692. https://doi.org/10.3390/ph18050692
Chicago/Turabian StyleStarosotnikov, Alexey, and Maxim Bastrakov. 2025. "Nitropyridines in the Synthesis of Bioactive Molecules" Pharmaceuticals 18, no. 5: 692. https://doi.org/10.3390/ph18050692
APA StyleStarosotnikov, A., & Bastrakov, M. (2025). Nitropyridines in the Synthesis of Bioactive Molecules. Pharmaceuticals, 18(5), 692. https://doi.org/10.3390/ph18050692