Targeting the Endocannabinoidome: A Novel Approach to Managing Extraintestinal Complications in Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Extraintestinal Complications of IBD: A Role for eCBome
3. Current Therapies in IBD: Challenges and Limitations
3.1. Limited Long-Term Efficacy and Loss of Response
3.2. Adverse Effects and Safety Concerns
3.3. High Treatment Costs and Accessibility Issues
3.4. Surgical Interventions
3.5. Extraintestinal Manifestations and Unmet Needs
4. The Endocannabinoidome: Components and Functions
5. Metabolic Dysregulation in IBD
5.1. Dyslipidemia
5.2. Insulin Resistance and Diabetes
5.3. Bone Metabolism Abnormalities
5.4. Body Composition Changes
5.5. Gut Microbiota and Metabolic Alterations
6. Modulatory Role of eCBome in Metabolic Dysregulation
7. Role of GLP-1 and eCBome in Metabolic Dysregulation in IBD
8. Beyond the Gut: Future Perspectives on eCBome Modulation in IBD
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2-AG | 2-Arachidonoylglycerol |
AEA | Anandamide |
ASA | Aminosalicylates |
CB1 | Cannabinoid receptor 1 |
CB2 | Cannabinoid receptor 2 |
CBD | Cannabidiol |
DAGL | Diacylglycerol lipase |
ECS | Endocannabinoid system |
eCBome | Endocannabinoidome |
EIMs | Extraintestinal manifestations |
FAAH | Fatty acid amide hydrolase |
GLP-1 | Glucagon-Like Peptide-1 |
GLP-1R | Glucagon-Like Peptide-1 Receptor |
GPR35 | G Protein-Coupled Receptor 35 |
GPR55 | G Protein-Coupled Receptor 55 |
GPR119 | G Protein-Coupled Receptor 119 |
HDL | High-density lipoprotein |
IBD | Inflammatory bowel disease |
IL-6 | Interleukin-6 |
IL-12 | Interleukin-12 |
IL-23 | Interleukin-23 |
JAK | Janus kinase |
LDL | Low-density lipoprotein |
MAGL | Monoacylglycerol lipase |
NADA | N-arachidonoyl dopamine |
NAPE-PLD | N-Acyl-phosphatidylethanolamine phospholipase D |
OEA | Oleoylethanolamide |
PEA | Palmitoylethanolamide |
PPAR-α | Peroxisome proliferator-activated receptor alpha |
SCFAs | Short-chain fatty acids |
SEA | Stearoylethanolamide |
THC | Tetrahydrocannabinol |
TNF-α | Tumor Necrosis Factor-Alpha |
TRPV1 | Transient receptor potential vanilloid 1 |
References
- Alatab, S.; Sepanlou, S.G.; Ikuta, K.; Vahedi, H.; Bisignano, C.; Safiri, S.; Sadeghi, A.; Nixon, M.R.; Abdoli, A.; Abolhassani, H.; et al. The Global, Regional, and National Burden of Inflammatory Bowel Disease in 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 17–30. [Google Scholar] [CrossRef] [PubMed]
- De Souza, H.S.P.; Fiocchi, C.; Iliopoulos, D. The IBD Interactome: An Integrated View of Aetiology, Pathogenesis and Therapy. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Bernstein, C.N.; Iliopoulos, D.; Macpherson, A.; Neurath, M.F.; Ali, R.A.R.; Vavricka, S.R.; Fiocchi, C. Environmental Triggers in IBD: A Review of Progress and Evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-Analyses. Gastroenterology 2019, 157, 647–659.e4. [Google Scholar] [CrossRef]
- Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut Microbiota and IBD: Causation or Correlation? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573–584. [Google Scholar] [CrossRef]
- Goethel, A.; Croitoru, K.; Philpott, D.J. The Interplay between Microbes and the Immune Response in Inflammatory Bowel Disease. J. Physiol. 2018, 596, 3869–3882. [Google Scholar] [CrossRef]
- Argollo, M.; Gilardi, D.; Peyrin-Biroulet, C.; Chabot, J.-F.; Peyrin-Biroulet, L.; Danese, S. Comorbidities in Inflammatory Bowel Disease: A Call for Action. Lancet Gastroenterol. Hepatol. 2019, 4, 643–654. [Google Scholar] [CrossRef]
- Goyal, M.K.; Kalra, S.; Rao, A.; Khubber, M.; Gupta, A.; Vuthaluru, A.R. Beyond the Gut: Exploring Neurological Manifestations in Inflammatory Bowel Disease. Brain Heart 2024, 2, 3486. [Google Scholar] [CrossRef]
- Barreiro-de Acosta, M.; Molero, A.; Artime, E.; Díaz-Cerezo, S.; Lizán, L.; De Paz, H.D.; Martín-Arranz, M.D. Epidemiological, Clinical, Patient-Reported and Economic Burden of Inflammatory Bowel Disease (Ulcerative Colitis and Crohn’s Disease) in Spain: A Systematic Review. Adv. Ther. 2023, 40, 1975–2014. [Google Scholar] [CrossRef]
- Rogler, G.; Singh, A.; Kavanaugh, A.; Rubin, D.T. Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology 2021, 161, 1118–1132. [Google Scholar] [CrossRef]
- Alhouayek, M.; Muccioli, G.G. The Endocannabinoid System in Inflammatory Bowel Diseases: From Pathophysiology to Therapeutic Opportunity. Trends Mol. Med. 2012, 18, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Ambwani, S.R.; Singh, S. Endocannabinoid system: A Multi-Facet Therapeutic Target. Curr. Clin. Pharmacol. 2016, 11, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Casari, I.; Falasca, M. Modulatory Role of the Endocannabinoidome in the Pathophysiology of the Gastrointestinal Tract. Pharmacol. Res. 2022, 175, 106025. [Google Scholar] [CrossRef] [PubMed]
- Marzo, V.D.; Bifulco, M.; Petrocellis, L.D. The Endocannabinoid System and Its Therapeutic Exploitation. Nat. Rev. Drug Discov. 2004, 3, 771–784. [Google Scholar] [CrossRef]
- Silvestri, C.; Di Marzo, V. The Endocannabinoid System in Energy Homeostasis and the Etiopathology of Metabolic Disorders. Cell Metab. 2013, 17, 475–490. [Google Scholar] [CrossRef]
- Grill, M.; Högenauer, C.; Blesl, A.; Haybaeck, J.; Golob-Schwarzl, N.; Ferreirós, N.; Thomas, D.; Gurke, R.; Trötzmüller, M.; Köfeler, H.C.; et al. Members of the Endocannabinoid System Are Distinctly Regulated in Inflammatory Bowel Disease and Colorectal Cancer. Sci. Rep. 2019, 9, 2358. [Google Scholar] [CrossRef]
- Lu, H.-C.; Mackie, K. Review of the Endocannabinoid System. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 607–615. [Google Scholar] [CrossRef]
- Lu, H.C.; Mackie, K. An Introduction to the Endogenous Cannabinoid System. Biol. Psychiatry 2016, 79, 516–525. [Google Scholar] [CrossRef]
- Mackie, K. Cannabinoid Receptors as Therapeutic Targets. Annu. Rev. Pharmacol. Toxicol. 2006, 46, 101–122. [Google Scholar] [CrossRef]
- Di Marzo, V.; Petrosino, S. Endocannabinoids and the Regulation of Their Levels in Health and Disease. Curr. Opin. Lipidol. 2007, 18, 129–140. [Google Scholar] [CrossRef]
- De Filippo, C.; Costa, A.; Becagli, M.V.; Monroy, M.M.; Provensi, G.; Passani, M.B. Gut Microbiota and Oleoylethanolamide in the Regulation of Intestinal Homeostasis. Front. Endocrinol. 2023, 14, 1135157. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, F.; Romano, B.; Petrosino, S.; Pagano, E.; Capasso, R.; Coppola, D.; Battista, G.; Orlando, P.; Di Marzo, V.; Izzo, A.A. Palmitoylethanolamide, a Naturally Occurring Lipid, Is an Orally Effective Intestinal Anti-Inflammatory Agent: Palmitoylethanolamide and Colitis. Br. J. Pharmacol. 2015, 172, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Thapa, D.; Warne, L.N.; Falasca, M. Pharmacohistory of Cannabis Use-A New Possibility in Future Drug Development for Gastrointestinal Diseases. Int. J. Mol. Sci. 2023, 24, 14677. [Google Scholar] [CrossRef]
- Thapa, D.; Patil, M.; Warne, L.N.; Carlessi, R.; Falasca, M. Comprehensive Assessment of Cannabidiol and HU308 in Acute and Chronic Colitis Models: Efficacy, Safety, and Mechanistic Innovations. Cells 2024, 13, 2013. [Google Scholar] [CrossRef]
- Thapa, D.; Patil, M.; Warne, L.N.; Carlessi, R.; Falasca, M. Enhancing Tetrahydrocannabinol’s Therapeutic Efficacy in Inflammatory Bowel Disease: The Roles of Cannabidiol and the Cannabinoid 1 Receptor Allosteric Modulator ZCZ011. Pharmaceuticals 2025, 18, 148. [Google Scholar] [CrossRef]
- Cuddihey, H.; MacNaughton, W.K.; Sharkey, K.A. Role of the Endocannabinoid System in the Regulation of Intestinal Homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2022, 14, 947–963. [Google Scholar] [CrossRef]
- Veilleux, A.; Di Marzo, V.; Silvestri, C. The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Curr. Diabetes Rep. 2019, 19, 117. [Google Scholar] [CrossRef]
- Ali, T.; Lam, D.; Bronze, M.S.; Humphrey, M.B. Osteoporosis in Inflammatory Bowel Disease. Am. J. Med. 2009, 122, 599–604. [Google Scholar] [CrossRef]
- Bourikas, L.A.; Papadakis, K.A. Musculoskeletal Manifestations of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2009, 15, 1915–1924. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Bakshi, A.K.; Borum, M.L. The Frequency of Osteoporosis Screening in Men With Inflammatory Bowel Disease. Am. J. Men’s Health 2010, 4, 71–74. [Google Scholar] [CrossRef]
- Targownik, L.E.; Bernstein, C.N.; Nugent, Z.; Leslie, W.D. Inflammatory Bowel Disease Has a Small Effect on Bone Mineral Density and Risk for Osteoporosis. Clin. Gastroenterol. Hepatol. 2013, 11, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Philpott, H.T.; McDougall, J.J. Combatting Joint Pain and Inflammation by Dual Inhibition of Monoacylglycerol Lipase and Cyclooxygenase-2 in a Rat Model of Osteoarthritis. Arthritis Res. Ther. 2020, 22, 9. [Google Scholar] [CrossRef]
- O’Brien, M.; McDougall, J.J. Cannabis and Joints: Scientific Evidence for the Alleviation of Osteoarthritis Pain by Cannabinoids. Curr. Opin. Pharmacol. 2018, 40, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Frane, N.; Stapleton, E.; Iturriaga, C.; Ganz, M.; Rasquinha, V.; Duarte, R. Cannabidiol as a Treatment for Arthritis and Joint Pain: An Exploratory Cross-Sectional Study. J. Cannabis Res. 2022, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Paland, N.; Hamza, H.; Pechkovsky, A.; Aswad, M.; Shagidov, D.; Louria-Hayon, I. Cannabis and Rheumatoid Arthritis: A Scoping Review Evaluating the Benefits, Risks, and Future Research Directions. Rambam Maimonides Med. J. 2023, 14, e0022. [Google Scholar] [CrossRef]
- Hu, S.; Cheng, G.; Chen, G.; Zhou, H.; Zhang, Q.; Zhao, Q.; Lian, C.; Zhao, Z.; Zhang, Q.; Han, T.; et al. Cannabinoid Receptors Type 2: Function and Development in Agonist Discovery from Synthetic and Natural Sources with Applications for the Therapy of Osteoporosis. Arab. J. Chem. 2024, 17, 105536. [Google Scholar] [CrossRef]
- Idris, A.I.; Sophocleous, A.; Landao-Bassonga, E.; Canals, M.; Milligan, G.; Baker, D.; Van’T Hof, R.J.; Ralston, S.H. Cannabinoid Receptor Type 1 Protects against Age- Related Osteoporosis by Regulating Osteoblast and Adipocyte Differentiation in Marrow Stromal Cells. Cell Metab. 2009, 10, 139–147. [Google Scholar] [CrossRef]
- Saponaro, F.; Ferrisi, R.; Gado, F.; Polini, B.; Saba, A.; Manera, C.; Chiellini, G. The Role of Cannabinoids in Bone Metabolism: A New Perspective for Bone Disorders. Int. J. Mol. Sci. 2021, 22, 12374. [Google Scholar] [CrossRef]
- Antonelli, E.; Bassotti, G.; Tramontana, M.; Hansel, K.; Stingeni, L.; Ardizzone, S.; Genovese, G.; Marzano, A.V.; Maconi, G. Dermatological Manifestations in Inflammatory Bowel Diseases. J. Clin. Med. 2021, 10, 364. [Google Scholar] [CrossRef]
- He, R.; Zhao, S.; Cui, M.; Chen, Y.; Ma, J.; Li, J.; Wang, X. Cutaneous Manifestations of Inflammatory Bowel Disease: Basic Characteristics, Therapy, and Potential Pathophysiological Associations. Front. Immunol. 2023, 14, 1234535. [Google Scholar] [CrossRef]
- Huang, B.L.; Chandra, S.; Shih, D.Q. Skin Manifestations of Inflammatory Bowel Disease. Front. Physiol. 2012, 3, 13. [Google Scholar] [CrossRef] [PubMed]
- Kuzumi, A.; Yamashita, T.; Fukasawa, T.; Yoshizaki-Ogawa, A.; Sato, S.; Yoshizaki, A. Cannabinoids for the Treatment of Autoimmune and Inflammatory Skin Diseases: A Systematic Review. Exp. Dermatol. 2024, 33, e15064. [Google Scholar] [CrossRef] [PubMed]
- Scheau, C.; Badarau, I.A.; Mihai, L.-G.; Scheau, A.-E.; Costache, D.O.; Constantin, C.; Calina, D.; Caruntu, C.; Costache, R.S.; Caruntu, A. Cannabinoids in the Pathophysiology of Skin Inflammation. Molecules 2020, 25, 652. [Google Scholar] [CrossRef] [PubMed]
- Sivesind, T.E.; Maghfour, J.; Rietcheck, H.; Kamel, K.; Malik, A.S.; Dellavalle, R.P. Cannabinoids for the Treatment of Dermatologic Conditions. JID Innov. 2022, 2, 100095. [Google Scholar] [CrossRef]
- Yoo, E.H.; Lee, J.H. Cannabinoids and Their Receptors in Skin Diseases. Int. J. Mol. Sci. 2023, 24, 16523. [Google Scholar] [CrossRef]
- Maida, V.; Shi, R.B.; Fazzari, F.G.T.; Zomparelli, L. Topical Cannabis-based Medicines—A Novel Adjuvant Treatment for Venous Leg Ulcers: An Open-label Trial. Exp. Dermatol. 2021, 30, 1258–1267. [Google Scholar] [CrossRef]
- Shah, P.; Holmes, K.; Chibane, F.; Wang, P.; Chagas, P.; Salles, E.; Jones, M.; Palines, P.; Masoumy, M.; Baban, B.; et al. Cutaneous Wound Healing and the Effects of Cannabidiol. Int. J. Mol. Sci. 2024, 25, 7137. [Google Scholar] [CrossRef]
- Wang, L.-L.; Zhao, R.; Li, J.-Y.; Li, S.-S.; Liu, M.; Wang, M.; Zhang, M.-Z.; Dong, W.-W.; Jiang, S.-K.; Zhang, M.; et al. Pharmacological Activation of Cannabinoid 2 Receptor Attenuates Inflammation, Fibrogenesis, and Promotes Re-Epithelialization during Skin Wound Healing. Eur. J. Pharmacol. 2016, 786, 128–136. [Google Scholar] [CrossRef]
- Licona Vera, E.; Betancur Vasquez, C.; Peinado Acevedo, J.S.; Rivera Bustamante, T.; Martinez Redondo, J.M. Ocular Manifestations of Inflammatory Bowel Disease. Cureus 2023, 15, e40299. [Google Scholar] [CrossRef]
- Migliorisi, G.; Vella, G.; Dal Buono, A.; Gabbiadini, R.; Busacca, A.; Loy, L.; Bezzio, C.; Vinciguerra, P.; Armuzzi, A. Ophthalmological Manifestations in Inflammatory Bowel Diseases: Keep an Eye on It. Cells 2024, 13, 142. [Google Scholar] [CrossRef]
- Richardson, H.; Yoon, G.; Moussa, G.; Kumar, A.; Harvey, P. Ocular Manifestations of IBD: Pathophysiology, Epidemiology, and Iatrogenic Associations of Emerging Treatment Strategies. Biomedicines 2024, 12, 2856. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez Duran, M.; O’Keefe, G.A.D. Ocular Extraintestinal Manifestations and Treatments in Patients with Inflammatory Bowel Disease. Front. Ophthalmol. 2024, 3, 1257068. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Shah, A.; Hassman, L.; Gutierrez, A. Ocular Manifestations of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 1832–1838. [Google Scholar] [CrossRef] [PubMed]
- Cairns, E.A.; Toguri, J.T.; Porter, R.F.; Szczesniak, A.M.; Kelly, M.E. Seeing over the Horizon—Targeting the Endocannabinoid System for the Treatment of Ocular Disease. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 253–265. [Google Scholar] [CrossRef]
- Szczesniak, A.-M.; Porter, R.F.; Toguri, J.T.; Borowska-Fielding, J.; Gebremeskel, S.; Siwakoti, A.; Johnston, B.; Lehmann, C.; Kelly, M.E.M. Cannabinoid 2 Receptor Is a Novel Anti-Inflammatory Target in Experimental Proliferative Vitreoretinopathy. Neuropharmacology 2017, 113 Pt B, 627–638. [Google Scholar] [CrossRef]
- Thapa, D.; Cairns, E.A.; Szczesniak, A.-M.; Kulkarni, P.M.; Straiker, A.J.; Thakur, G.A.; Kelly, M.E.M. Allosteric Cannabinoid Receptor 1 (CB1) Ligands Reduce Ocular Pain and Inflammation. Molecules 2020, 25, 417. [Google Scholar] [CrossRef]
- Thapa, D.; Cairns, E.A.; Szczesniak, A.M.; Toguri, J.T.; Caldwell, M.D.; Kelly, M.E.M. The Cannabinoids Delta(8)THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation. Cannabis Cannabinoid Res. 2018, 3, 11–20. [Google Scholar] [CrossRef]
- Toguri, J.T.; Caldwell, M.; Kelly, M.E. Turning Down the Thermostat: Modulating the Endocannabinoid System in Ocular Inflammation and Pain. Front. Pharmacol. 2016, 7, 304. [Google Scholar] [CrossRef]
- Toguri, J.T.; Moxsom, R.; Szczesniak, A.M.; Zhou, J.; Kelly, M.E.; Lehmann, C. Cannabinoid 2 Receptor Activation Reduces Leukocyte Adhesion and Improves Capillary Perfusion in the Iridial Microvasculature during Systemic Inflammation. Clin. Hemorheol. Microcirc. 2015, 61, 237–249. [Google Scholar] [CrossRef]
- Toguri, J.T.; Lehmann, C.; Laprairie, R.B.; Szczesniak, A.M.; Zhou, J.; Denovan-Wright, E.M.; Kelly, M.E. Anti-Inflammatory Effects of Cannabinoid CB(2) Receptor Activation in Endotoxin-Induced Uveitis. Br. J. Pharmacol. 2014, 171, 1448–1461. [Google Scholar] [CrossRef]
- Barberio, B.; Massimi, D.; Cazzagon, N.; Zingone, F.; Ford, A.C.; Savarino, E.V. Prevalence of Primary Sclerosing Cholangitis in Patients With Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2021, 161, 1865–1877. [Google Scholar] [CrossRef] [PubMed]
- Mertz, A.; Nguyen, N.A.; Katsanos, K.H.; Kwok, R.M. Primary Sclerosing Cholangitis and Inflammatory Bowel Disease Comorbidity: An Update of the Evidence. Ann. Gastroenterol. 2019, 32, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Palmela, C.; Peerani, F.; Castaneda, D.; Torres, J.; Itzkowitz, S.H. Inflammatory Bowel Disease and Primary Sclerosing Cholangitis: A Review of the Phenotype and Associated Specific Features. Gut Liver 2018, 12, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Bazwinsky-Wutschke, I.; Zipprich, A.; Dehghani, F. Endocannabinoid System in Hepatic Glucose Metabolism, Fatty Liver Disease, and Cirrhosis. Int. J. Mol. Sci. 2019, 20, 2516. [Google Scholar] [CrossRef]
- Berk, K.; Bzdega, W.; Konstantynowicz-Nowicka, K.; Charytoniuk, T.; Zywno, H.; Chabowski, A. Phytocannabinoids—A Green Approach toward Non-Alcoholic Fatty Liver Disease Treatment. J. Clin. Med. 2021, 10, 393. [Google Scholar] [CrossRef]
- Dibba, P.; Li, A.; Cholankeril, G.; Iqbal, U.; Gadiparthi, C.; Khan, M.A.; Kim, D.; Ahmed, A. Mechanistic Potential and Therapeutic Implications of Cannabinoids in Nonalcoholic Fatty Liver Disease. Medicines 2018, 5, 47. [Google Scholar] [CrossRef]
- Louvet, A.; Teixeira-Clerc, F.; Chobert, M.-N.; Deveaux, V.; Pavoine, C.; Zimmer, A.; Pecker, F.; Mallat, A.; Lotersztajn, S. Cannabinoid CB2 Receptors Protect against Alcoholic Liver Disease by Regulating Kupffer Cell Polarization in Mice. Hepatology 2011, 54, 1217–1226. [Google Scholar] [CrossRef]
- Mallat, A.; Teixeira-Clerc, F.; Lotersztajn, S. Cannabinoid Signaling and Liver Therapeutics. J. Hepatol. 2013, 59, 891–896. [Google Scholar] [CrossRef]
- Mohamed Ali, A.; Samir El-Tawil, O.; Samir Abd El-Rahman, S. Inhibited TLR-4/NF- κB Pathway Mediated by Cannabinoid Receptor 2 Activation Curbs Ongoing Liver Fibrosis in Bile Duct Ligated Rats. Adv. Anim. Vet. Sci. 2020, 9, 253–264. [Google Scholar] [CrossRef]
- Adolph, T.E.; Meyer, M.; Jukic, A.; Tilg, H. Heavy Arch: From Inflammatory Bowel Diseases to Metabolic Disorders. Gut 2024, 73, 1376–1387. [Google Scholar] [CrossRef]
- Dragasevic, S.; Stankovic, B.; Kotur, N.; Sokic-Milutinovic, A.; Milovanovic, T.; Lukic, S.; Milosavljevic, T.; Srzentic Drazilov, S.; Klaassen, K.; Pavlovic, S.; et al. Metabolic Syndrome in Inflammatory Bowel Disease: Association with Genetic Markers of Obesity and Inflammation. Metab. Syndr. Relat. Disord. 2020, 18, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Hyun, C.-K. Molecular and Pathophysiological Links between Metabolic Disorders and Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 9139. [Google Scholar] [CrossRef] [PubMed]
- Szilagyi, A. Relationship(s) between Obesity and Inflammatory Bowel Diseases: Possible Intertwined Pathogenic Mechanisms. Clin. J. Gastroenterol. 2020, 13, 139–152. [Google Scholar] [CrossRef]
- Mouli, V.P.; Ananthakrishnan, A.N. Review Article: Vitamin D and Inflammatory Bowel Diseases. Aliment. Pharmacol. Ther. 2014, 39, 125–136. [Google Scholar] [CrossRef]
- Vernia, F.; Valvano, M.; Longo, S.; Cesaro, N.; Viscido, A.; Latella, G. Vitamin D in Inflammatory Bowel Diseases. Mechanisms of Action and Therapeutic Implications. Nutrients 2022, 14, 269. [Google Scholar] [CrossRef]
- Olczyk, M.; Czkwianianc, E.; Socha-Banasiak, A. Metabolic Bone Disorders in Children with Inflammatory Bowel Diseases. Life 2022, 12, 423. [Google Scholar] [CrossRef]
- Bielawiec, P.; Harasim-Symbor, E.; Chabowski, A. Phytocannabinoids: Useful Drugs for the Treatment of Obesity? Special Focus on Cannabidiol. Front. Endocrinol. 2020, 11, 114. [Google Scholar] [CrossRef]
- Gruden, G.; Barutta, F.; Kunos, G.; Pacher, P. Role of the Endocannabinoid System in Diabetes and Diabetic Complications: Role of Endocannabinoid System in Diabetes. Br. J. Pharmacol. 2016, 173, 1116–1127. [Google Scholar] [CrossRef]
- Patil, M.; Casari, I.; Thapa, D.; Warne, L.N.; Dallerba, E.; Massi, M.; Carlessi, R.; Falasca, M. Preclinical Pharmacokinetics, Pharmacodynamics, and Toxicity of Novel Small-Molecule GPR119 Agonists to Treat Type-2 Diabetes and Obesity. Biomed. Pharmacother. 2024, 177, 117077. [Google Scholar] [CrossRef]
- Patil, M.; Thapa, D.; Warne, L.N.; Lareu, R.R.; Dallerba, E.; Lian, J.; Massi, M.; Carlessi, R.; Falasca, M. Chronic Metabolic Effects of Novel Gut-Oriented Small-Molecule GPR119 Agonists in Diet-Induced Obese Mice. Biomed. Pharmacother. 2024, 181, 117675. [Google Scholar] [CrossRef]
- Rakotoarivelo, V.; Sihag, J.; Flamand, N. Role of the Endocannabinoid System in the Adipose Tissue with Focus on Energy Metabolism. Cells 2021, 10, 1279. [Google Scholar] [CrossRef] [PubMed]
- Ambruzs, J.M.; Larsen, C.P. Renal Manifestations of Inflammatory Bowel Disease. Rheum. Dis. Clin. N. Am. 2018, 44, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Braysh, K.; Geagea, A.G.; Matar, C.; Rizzo, M.; Eid, A.; Massaad-Massade, L.; Mallat, S.; Jurjus, A. Kidney Manifestations of Inflammatory Bowel Diseases. Open J. Gastroenterol. 2018, 08, 172–191. [Google Scholar] [CrossRef]
- Dincer, M.T.; Dincer, Z.T.; Bakkaloglu, O.K.; Yalin, S.F.; Trabulus, S.; Celik, A.F.; Seyahi, N.; Altiparmak, M.R. Renal Manifestations in Inflammatory Bowel Disease: A Cohort Study During the Biologic Era. Med. Sci. Monit. 2022, 28, e936497-1–e936497-10. [Google Scholar] [CrossRef]
- Kim, Y.N.; Jung, Y. Renal and Urinary Manifestations of Inflammatory Bowel Disease. Korean J. Gastroenterol. 2019, 73, 260. [Google Scholar] [CrossRef]
- Singh, A.; Khanna, T.; Mahendru, D.; Kahlon, J.; Kumar, V.; Sohal, A.; Yang, J. Insights into Renal and Urological Complications of Inflammatory Bowel Disease. World J. Nephrol. 2024, 13, 96574. [Google Scholar] [CrossRef]
- Fernandes, C.D.A.L.; Paulo, D.G.; Alves, L.F. Exploring the Role of the Endocannabinoid System in Chronic Kidney Disease: Implications for Therapeutic Interventions. J. Adv. Med. Med. Res. 2023, 35, 14–22. [Google Scholar] [CrossRef]
- Tam, J. The Emerging Role of the Endocannabinoid System in the Pathogenesis and Treatment of Kidney Diseases. J. Basic Clin. Physiol. Pharmacol. 2016, 27, 267–276. [Google Scholar] [CrossRef]
- Bergamaschi, G.; Di Sabatino, A.; Albertini, R.; Ardizzone, S.; Biancheri, P.; Bonetti, E.; Cassinotti, A.; Cazzola, P.; Markopoulos, K.; Massari, A.; et al. Prevalence and Pathogenesis of Anemia in Inflammatory Bowel Disease. Influence of Anti-Tumor Necrosis Factor-Alpha Treatment. Haematologica 2010, 95, 199–205. [Google Scholar] [CrossRef]
- Resál, T.; Farkas, K.; Molnár, T. Iron Deficiency Anemia in Inflammatory Bowel Disease: What Do We Know? Front. Med. 2021, 8, 686778. [Google Scholar] [CrossRef]
- Giaginis, C.; Lakiotaki, E.; Korkolopoulou, P.; Konstantopoulos, K.; Patsouris, E.; Theocharis, S. Endocannabinoid System: A Promising Therapeutic Target for the Treatment of Haematological Malignancies? Curr. Med. Chem. 2016, 23, 2350–2362. [Google Scholar] [CrossRef]
- Sharma, D.S.; Paddibhatla, I.; Raghuwanshi, S.; Malleswarapu, M.; Sangeeth, A.; Kovuru, N.; Dahariya, S.; Gautam, D.K.; Pallepati, A.; Gutti, R.K. Endocannabinoid System: Role in Blood Cell Development, Neuroimmune Interactions and Associated Disorders. J. Neuroimmunol. 2021, 353, 577501. [Google Scholar] [CrossRef] [PubMed]
- Alkhawajah, M.M.; Caminero, A.B.; Freeman, H.J.; Oger, J.J. Multiple Sclerosis and Inflammatory Bowel Diseases: What We Know and What We Would Need to Know! Mult. Scler. 2013, 19, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Nemati, R.; Mehdizadeh, S.; Salimipour, H.; Yaghoubi, E.; Alipour, Z.; Tabib, S.M.; Assadi, M. Neurological Manifestations Related to Crohn’s Disease: A Boon for the Workforce. Gastroenterol. Rep. 2019, 7, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Bagüés, A.; Martín, M.I.; Sánchez-Robles, E.M. Involvement of Central and Peripheral Cannabinoid Receptors on Antinociceptive Effect of Tetrahydrocannabinol in Muscle Pain. Eur. J. Pharmacol. 2014, 745, 69–75. [Google Scholar] [CrossRef]
- Castillo-Arellano, J.; Canseco-Alba, A.; Cutler, S.J.; León, F. The Polypharmacological Effects of Cannabidiol. Molecules 2023, 28, 3271. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.J.; Chen, W.W.; Zhang, X. Endocannabinoid System: Role in Depression, Reward and Pain Control (Review). Mol. Med. Rep. 2016, 14, 2899–2903. [Google Scholar] [CrossRef]
- Liu, C.; Walker, J.M. Effects of a Cannabinoid Agonist on Spinal Nociceptive Neurons in a Rodent Model of Neuropathic Pain. J. Neurophysiol. 2006, 96, 2984–2994. [Google Scholar] [CrossRef]
- Russo, M.; Naro, A.; Leo, A.; Sessa, E.; D’Aleo, G.; Bramanti, P.; Calabro, R.S. Evaluating Sativex(R) in Neuropathic Pain Management: A Clinical and Neurophysiological Assessment in Multiple Sclerosis. Pain Med. 2016, 17, 1145–1154. [Google Scholar] [CrossRef]
- Wu, S.; Yi, J.; Wu, B. Casual Associations of Thyroid Function with Inflammatory Bowel Disease and the Mediating Role of Cytokines. Front. Endocrinol. 2024, 15, 1376139. [Google Scholar] [CrossRef]
- Xian, W.; Wu, D.; Liu, B.; Hong, S.; Huo, Z.; Xiao, H.; Li, Y. Graves Disease and Inflammatory Bowel Disease: A Bidirectional Mendelian Randomization. J. Clin. Endocrinol. Metab. 2023, 108, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Farraj, K.L.; Pellegrini, J.R.; Munshi, R.F.; Russe-Russe, J.; Kaliounji, A.; Tiwana, M.S.; Srivastava, P.; Subramani, K. Chronic Steroid Use: An Overlooked Impact on Patients with Inflammatory Bowel Disease. JGH Open 2022, 6, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Dahlqvist, P.; Olsson, T.; Lundgren, D.; Werner, M.; Suhr, O.B.; Karling, P. The Clinical Course after Glucocorticoid Treatment in Patients with Inflammatory Bowel Disease Is Linked to Suppression of the Hypothalamic-Pituitary-Adrenal Axis: A Retrospective Observational Study. Ther. Adv. Gastroenterol. 2017, 10, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Nachawi, N.; Li, D.; Lansang, M.C. Glucocorticoid-Induced Adrenal Insufficiency and Glucocorticoid Withdrawal Syndrome: Two Sides of the Same Coin. Clevel. Clin. J. Med. 2024, 91, 245–255. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Mondal, S.; Jana, S. Cannabidiol Improves Thyroid Function via Modulating Vitamin D3 Receptor in Vitamin D3 Deficiency Diet-Induced Rat Model. J. Food Sci. Technol. 2022, 59, 3237–3244. [Google Scholar] [CrossRef]
- Borowska, M.; Czarnywojtek, A.; Sawicka-Gutaj, N.; Woliński, K.; Płazińska, M.T.; Mikołajczak, P.; Ruchała, M. The Effects of Cannabinoids on the Endocrine System. Endokrynol. Pol. 2018, 69, 705–719. [Google Scholar] [CrossRef]
- Meah, F.; Lundholm, M.; Emanuele, N.; Amjed, H.; Poku, C.; Agrawal, L.; Emanuele, M.A. The Effects of Cannabis and Cannabinoids on the Endocrine System. Rev. Endocr. Metab. Disord. 2022, 23, 401–420. [Google Scholar] [CrossRef]
- Bigeh, A.; Sanchez, A.; Maestas, C.; Gulati, M. Inflammatory Bowel Disease and the Risk for Cardiovascular Disease: Does All Inflammation Lead to Heart Disease? Trends Cardiovasc. Med. 2020, 30, 463–469. [Google Scholar] [CrossRef]
- Biondi, R.B.; Salmazo, P.S.; Bazan, S.G.Z.; Hueb, J.C.; de Paiva, S.A.R.; Sassaki, L.Y. Cardiovascular Risk in Individuals with Inflammatory Bowel Disease. Clin. Exp. Gastroenterol. 2020, 13, 107–113. [Google Scholar] [CrossRef]
- Sleutjes, J.A.M.; Van Der Woude, C.J.; Verploegh, P.J.P.; Aribas, E.; Kavousi, M.; Roeters Van Lennep, J.E.; De Vries, A.C. Cardiovascular Risk Profiles in Patients with Inflammatory Bowel Disease Differ from Matched Controls from the General Population. Eur. J. Prev. Cardiol. 2023, 30, 1615–1622. [Google Scholar] [CrossRef]
- Ho, W.S.V.; Kelly, M.E.M. Cannabinoids in the Cardiovascular System. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2017; Volume 80, pp. 329–366. ISBN 978-0-12-811232-8. [Google Scholar]
- O’Sullivan, S.E. Endocannabinoids and the Cardiovascular System in Health and Disease. In Endocannabinoids; Pertwee, R.G., Ed.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2015; Volume 231, pp. 393–422. ISBN 978-3-319-20824-4. [Google Scholar]
- Sierra, S.; Luquin, N.; Navarro-Otano, J. The Endocannabinoid System in Cardiovascular Function: Novel Insights and Clinical Implications. Clin. Auton. Res. 2018, 28, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Na, S.-Y.; Moon, W. Perspectives on Current and Novel Treatments for Inflammatory Bowel Disease. Gut Liver 2019, 13, 604–616. [Google Scholar] [CrossRef] [PubMed]
- Roda, G.; Jharap, B.; Neeraj, N.; Colombel, J.-F. Loss of Response to Anti-TNFs: Definition, Epidemiology, and Management. Clin. Transl. Gastroenterol. 2016, 7, e135. [Google Scholar] [CrossRef]
- Cohen, B.L.; Torres, J.; Colombel, J.-F. Immunosuppression in Inflammatory Bowel Disease: How Much Is Too Much? Curr. Opin. Gastroenterol. 2012, 28, 341–348. [Google Scholar] [CrossRef]
- Vukovic, J.; Jukic, I.; Tonkic, A. The Challenges in Treating Inflammatory Bowel Diseases During the COVID-19 Pandemic: An Opinion. J. Clin. Med. 2024, 13, 7128. [Google Scholar] [CrossRef]
- Yeshi, K.; Ruscher, R.; Hunter, L.; Daly, N.L.; Loukas, A.; Wangchuk, P. Revisiting Inflammatory Bowel Disease: Pathology, Treatments, Challenges and Emerging Therapeutics Including Drug Leads from Natural Products. J. Clin. Med. 2020, 9, 1273. [Google Scholar] [CrossRef]
- D’Haens, G. Risks and Benefits of Biologic Therapy for Inflammatory Bowel Diseases. Gut 2007, 56, 725–732. [Google Scholar] [CrossRef]
- Bakes, D.; Kiran, R.P. Overview of Common Complications in Inflammatory Bowel Disease Surgery. Gastrointest. Endosc. Clin. 2022, 32, 761–776. [Google Scholar] [CrossRef]
- Nickerson, T.P.; Merchea, A. Perioperative Considerations in Crohn Disease and Ulcerative Colitis. Clin. Colon. Rectal Surg. 2016, 29, 80–84. [Google Scholar] [CrossRef]
- Parray, F.Q.; Wani, M.L.; Malik, A.A.; Wani, S.N.; Bijli, A.H.; Irshad, I.; Ul-Hassan, N. Ulcerative Colitis: A Challenge to Surgeons. Int. J. Prev. Med. 2012, 3, 749–763. [Google Scholar]
- Vavricka, S.R.; Schoepfer, A.; Scharl, M.; Lakatos, P.L.; Navarini, A.; Rogler, G. Extraintestinal Manifestations of Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Busacca, A.; Ingrassia Strano, G.; Giuffrida, E.; Guida, L.; Scrivo, B.; Carrozza, L.; Calvaruso, V.; Cappello, M. P114 A Screening Tool for the Early Diagnosis of Extraintestinal Manifestations in Inflammatory Bowel Disease: The EMAIL Questionnaire. J. Crohn’s Colitis 2020, 14, S192–S193. [Google Scholar] [CrossRef]
- Gravina, A.G.; Pellegrino, R.; Zingone, F. Editorial: Challenges in Inflammatory Bowel Disease: Current, Future and Unmet Needs. Front. Med. 2022, 9, 979535. [Google Scholar] [CrossRef] [PubMed]
- Jefremow, A.; Neurath, M.F. Novel Small Molecules in IBD: Current State and Future Perspectives. Cells 2023, 12, 1730. [Google Scholar] [CrossRef] [PubMed]
- Martín-Acosta, P.; Xiao, X. PROTACs to Address the Challenges Facing Small Molecule Inhibitors. Eur. J. Med. Chem. 2021, 210, 112993. [Google Scholar] [CrossRef]
- Faye, A.S.; Allin, K.H.; Iversen, A.T.; Agrawal, M.; Faith, J.; Colombel, J.-F.; Jess, T. Antibiotic Use as a Risk Factor for Inflammatory Bowel Disease across the Ages: A Population-Based Cohort Study. Gut 2023, 72, 663–670. [Google Scholar] [CrossRef]
- Lo, B.; Biederman, L.; Rogler, G.; Dora, B.; Kreienbühl, A.; Vind, I.; Bendtsen, F.; Burisch, J. Specific Antibiotics Increase the Risk of Flare-Ups in Patients with Inflammatory Bowel Disease: Results from a Danish Nationwide Population-Based Nested Case-Control Study. J. Crohn’s Colitis 2024, 18, 1232–1240. [Google Scholar] [CrossRef]
- Culligan, E.P.; Hill, C.; Sleator, R.D. Probiotics and Gastrointestinal Disease: Successes, Problems and Future Prospects. Gut Pathog. 2009, 1, 19. [Google Scholar] [CrossRef]
- Estevinho, M.M.; Yuan, Y.; Rodríguez-Lago, I.; Sousa-Pimenta, M.; Dias, C.C.; Barreiro-de Acosta, M.; Jairath, V.; Magro, F. Efficacy and Safety of Probiotics in IBD: An Overview of Systematic Reviews and Updated Meta-analysis of Randomized Controlled Trials. UEG J. 2024, 12, 960–981. [Google Scholar] [CrossRef]
- Almeida, C.; Oliveira, R.; Baylina, P.; Fernandes, R.; Teixeira, F.G.; Barata, P. Current Trends and Challenges of Fecal Microbiota Transplantation-An Easy Method That Works for All? Biomedicines 2022, 10, 2742. [Google Scholar] [CrossRef]
- Boicean, A.; Birlutiu, V.; Ichim, C.; Anderco, P.; Birsan, S. Fecal Microbiota Transplantation in Inflammatory Bowel Disease. Biomedicines 2023, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Yadegar, A.; Bar-Yoseph, H.; Monaghan, T.M.; Pakpour, S.; Severino, A.; Kuijper, E.J.; Smits, W.K.; Terveer, E.M.; Neupane, S.; Nabavi-Rad, A.; et al. Fecal Microbiota Transplantation: Current Challenges and Future Landscapes. Clin. Microbiol. Rev. 2024, 37, e00060-22. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. 2021, 8, 765474. [Google Scholar] [CrossRef] [PubMed]
- Arturo, I.F.; Fabiana, P. Endocannabinoidome. In Encyclopedia of Life Sciences; Wiley: New York, NY, USA, 2018; pp. 1–10. ISBN 978-0-470-01617-6. [Google Scholar]
- O’Sullivan, S.E. An Update on PPAR Activation by Cannabinoids. Br. J. Pharmacol. 2016, 173, 1899–1910. [Google Scholar] [CrossRef]
- Louis-Gray, K.; Tupal, S.; Premkumar, L.S. TRPV1: A Common Denominator Mediating Antinociceptive and Antiemetic Effects of Cannabinoids. Int. J. Mol. Sci. 2022, 23, 10016. [Google Scholar] [CrossRef]
- Massa, F.; Marsicano, G.; Hermann, H.; Cannich, A.; Monory, K.; Cravatt, B.F.; Ferri, G.-L.; Sibaev, A.; Storr, M.; Lutz, B. The Endogenous Cannabinoid System Protects against Colonic Inflammation. J. Clin. Investig. 2004, 113, 1202–1209. [Google Scholar] [CrossRef]
- Wolyniak, M.; Wlodarczyk, M.; Piscitelli, F.; Verde, R.; Di Marzo, V.; Mokrowiecka, A.; Malecka-Wojciesko, E.; Fabisiak, A. Modulation of CB1 and CB2 Receptors and Endocannabinoid Activity in Inflammatory Bowel Diseases. J. Physiol. Pharmacol. 2024, 75, 547–555. [Google Scholar] [CrossRef]
- Branković, M.; Gmizić, T.; Dukić, M.; Zdravković, M.; Daskalović, B.; Mrda, D.; Nikolić, N.; Brajković, M.; Gojgić, M.; Lalatović, J.; et al. Therapeutic Potential of Palmitoylethanolamide in Gastrointestinal Disorders. Antioxidants 2024, 13, 600. [Google Scholar] [CrossRef]
- Anderson, W.B.; Gould, M.J.; Torres, R.D.; Mitchell, V.A.; Vaughan, C.W. Actions of the Dual FAAH/MAGL Inhibitor JZL195 in a Murine Inflammatory Pain Model. Neuropharmacology 2014, 81, 224–230. [Google Scholar] [CrossRef]
- Michalak, A.; Mosińska, P.; Fichna, J. Common Links between Metabolic Syndrome and Inflammatory Bowel Disease: Current Overview and Future Perspectives. Pharmacol. Rep. 2016, 68, 837–846. [Google Scholar] [CrossRef]
- Sappati Biyyani, R.S.R.; Putka, B.S.; Mullen, K.D. Dyslipidemia and Lipoprotein Profiles in Patients with Inflammatory Bowel Disease. J. Clin. Lipidol. 2010, 4, 478–482. [Google Scholar] [CrossRef] [PubMed]
- Alfaddagh, A.; Martin, S.S.; Leucker, T.M.; Michos, E.D.; Blaha, M.J.; Lowenstein, C.J.; Jones, S.R.; Toth, P.P. Inflammation and Cardiovascular Disease: From Mechanisms to Therapeutics. Am. J. Prev. Cardiol. 2020, 4, 100130. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Fan, J.; Su, Q.; Yang, Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front. Endocrinol. 2019, 10, 703. [Google Scholar] [CrossRef]
- Zhong, S.; Li, L.; Shen, X.; Li, Q.; Xu, W.; Wang, X.; Tao, Y.; Yin, H. An Update on Lipid Oxidation and Inflammation in Cardiovascular Diseases. Free Radic. Biol. Med. 2019, 144, 266–278. [Google Scholar] [CrossRef]
- Burke, S.J.; Batdorf, H.M.; Eder, A.E.; Karlstad, M.D.; Burk, D.H.; Noland, R.C.; Floyd, Z.E.; Collier, J.J. Oral Corticosterone Administration Reduces Insulitis but Promotes Insulin Resistance and Hyperglycemia in Male Nonobese Diabetic Mice. Am. J. Pathol. 2017, 187, 614–626. [Google Scholar] [CrossRef]
- Zhao, X.; An, X.; Yang, C.; Sun, W.; Ji, H.; Lian, F. The Crucial Role and Mechanism of Insulin Resistance in Metabolic Disease. Front. Endocrinol. 2023, 14, 1149239. [Google Scholar] [CrossRef]
- Andreassen, H.; Rungby, J.; Dahlerup, J.F.; Mosekilde, L. Inflammatory Bowel Disease and Osteoporosis. Scand. J. Gastroenterol. 1997, 32, 1247–1255. [Google Scholar] [CrossRef]
- Van Bodegraven, A.A.; Bravenboer, N. Perspective on Skeletal Health in Inflammatory Bowel Disease. Osteoporos. Int. 2020, 31, 637–646. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Quinlan, J.I.; Overthrow, K.; Greig, C.; Lord, J.M.; Armstrong, M.J.; Cooper, S.C. Sarcopenia in Inflammatory Bowel Disease: A Narrative Overview. Nutrients 2021, 13, 656. [Google Scholar] [CrossRef]
- Iannotti, F.A.; Di Marzo, V. The Gut Microbiome, Endocannabinoids and Metabolic Disorders. J. Endocrinol. 2021, 248, R83–R97. [Google Scholar] [CrossRef]
- Santana, P.T.; Rosas, S.L.B.; Ribeiro, B.E.; Marinho, Y.; de Souza, H.S.P. Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 3464. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lin, J.; Zhang, C.; Gao, H.; Lu, H.; Gao, X.; Zhu, R.; Li, Z.; Li, M.; Liu, Z. Microbiota Metabolite Butyrate Constrains Neutrophil Functions and Ameliorates Mucosal Inflammation in Inflammatory Bowel Disease. Gut Microbes 2021, 13, 1968257. [Google Scholar] [CrossRef] [PubMed]
- Marzo, V.D. Endocannabinoid Signaling in the Brain: Biosynthetic Mechanisms in the Limelight. Nat. Neurosci. 2011, 14, 9–15. [Google Scholar] [CrossRef] [PubMed]
- DiPatrizio, N.V. Endocannabinoids in the Gut. Cannabis Cannabinoid Res. 2016, 1, 67–77. [Google Scholar] [CrossRef]
- Alhamoruni, A.; Wright, K.; Larvin, M.; O’Sullivan, S. Cannabinoids Mediate Opposing Effects on Inflammation-induced Intestinal Permeability. Br. J. Pharmacol. 2012, 165, 2598–2610. [Google Scholar] [CrossRef]
- Chiurchiù, V.; Battistini, L.; Maccarrone, M. Endocannabinoid Signalling in Innate and Adaptive Immunity. Immunology 2015, 144, 352–364. [Google Scholar] [CrossRef]
- Turcotte, C.; Blanchet, M.-R.; Laviolette, M.; Flamand, N. The CB2 Receptor and Its Role as a Regulator of Inflammation. Cell. Mol. Life Sci. 2016, 73, 4449–4470. [Google Scholar] [CrossRef]
- O’Sullivan, S.E.; Yates, A.S.; Porter, R.K. The Peripheral Cannabinoid Receptor Type 1 (CB1) as a Molecular Target for Modulating Body Weight in Man. Molecules 2021, 26, 6178. [Google Scholar] [CrossRef]
- Ruiz de Azua, I.; Mancini, G.; Srivastava, R.K.; Rey, A.A.; Cardinal, P.; Tedesco, L.; Zingaretti, C.M.; Sassmann, A.; Quarta, C.; Schwitter, C.; et al. Adipocyte Cannabinoid Receptor CB1 Regulates Energy Homeostasis and Alternatively Activated Macrophages. J. Clin. Investig. 2017, 127, 4148–4162. [Google Scholar] [CrossRef]
- Tam, J.; Hinden, L.; Drori, A.; Udi, S.; Azar, S.; Baraghithy, S. The Therapeutic Potential of Targeting the Peripheral Endocannabinoid/CB 1 Receptor System. Eur. J. Intern. Med. 2018, 49, 23–29. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lee, T.-Y.; Kwok, C.-F.; Hsu, Y.-P.; Shih, K.-C.; Lin, Y.-J.; Ho, L.-T. Cannabinoid Receptor Type 1 Mediates High-Fat Diet-Induced Insulin Resistance by Increasing Forkhead Box O1 Activity in a Mouse Model of Obesity. Int. J. Mol. Med. 2016, 37, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Nam, D.H.; Lee, M.H.; Kim, J.E.; Song, H.K.; Kang, Y.S.; Lee, J.E.; Kim, H.W.; Cha, J.J.; Hyun, Y.Y.; Kim, S.H.; et al. Blockade of Cannabinoid Receptor 1 Improves Insulin Resistance, Lipid Metabolism, and Diabetic Nephropathy in Db/Db Mice. Endocrinology 2012, 153, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Ofek, O.; Karsak, M.; Leclerc, N.; Fogel, M.; Frenkel, B.; Wright, K.; Tam, J.; Attar-Namdar, M.; Kram, V.; Shohami, E.; et al. Peripheral Cannabinoid Receptor, CB2, Regulates Bone Mass. Proc. Natl. Acad. Sci. USA 2006, 103, 696–701. [Google Scholar] [CrossRef]
- Couch, D.G.; Tasker, C.; Theophilidou, E.; Lund, J.N.; O’Sullivan, S.E. Cannabidiol and Palmitoylethanolamide Are Anti-Inflammatory in the Acutely Inflamed Human Colon. Clin. Sci. 2017, 131, 2611–2626. [Google Scholar] [CrossRef]
- Nagappan, A.; Shin, J.; Jung, M.H. Role of Cannabinoid Receptor Type 1 in Insulin Resistance and Its Biological Implications. Int. J. Mol. Sci. 2019, 20, 2109. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, S.; Niu, J.; Li, P.; Deng, J.; Xu, S.; Wang, Z.; Wang, W.; Kong, D.; Li, C. Cannabinoid 2 Receptor Agonist Improves Systemic Sensitivity to Insulin in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. Cell. Physiol. Biochem. 2016, 40, 1175–1185. [Google Scholar] [CrossRef]
- Dörnyei, G.; Vass, Z.; Juhász, C.B.; Nádasy, G.L.; Hunyady, L.; Szekeres, M. Role of the Endocannabinoid System in Metabolic Control Processes and in the Pathogenesis of Metabolic Syndrome: An Update. Biomedicines 2023, 11, 306. [Google Scholar] [CrossRef]
- Holst, J.J. Glucagon and Other Proglucagon-Derived Peptides in the Pathogenesis of Obesity. Front. Nutr. 2022, 9, 964406. [Google Scholar] [CrossRef]
- Holst, J.J. The Physiology of Glucagon-like Peptide 1. Physiol. Rev. 2007, 87, 1409–1439. [Google Scholar] [CrossRef]
- Hunt, J.E.; Holst, J.J.; Jeppesen, P.B.; Kissow, H. GLP-1 and Intestinal Diseases. Biomedicines 2021, 9, 383. [Google Scholar] [CrossRef]
- Maccarrone, M.; Bab, I.; Biro, T.; Cabral, G.A.; Dey, S.K.; Marzo, V.D.; Konje, J.C.; Kunos, G.; Mechoulam, R.; Pacher, P.; et al. Endocannabinoid Signaling at the Periphery: 50 Years after THC. Trends Pharmacol. Sci. 2015, 36, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [PubMed]
- González-Mariscal, I.; Krzysik-Walker, S.M.; Kim, W.; Rouse, M.; Egan, J.M. Blockade of Cannabinoid 1 Receptor Improves GLP-1R Mediated Insulin Secretion in Mice. Mol. Cell. Endocrinol. 2016, 423, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zizzari, P.; He, R.; Falk, S.; Bellocchio, L.; Allard, C.; Clark, S.; Lesté-Lasserre, T.; Marsicano, G.; Clemmensen, C.; Perez-Tilve, D.; et al. CB1 and GLP-1 Receptors Cross Talk Provides New Therapies for Obesity. Diabetes 2021, 70, 415–422. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Zhang, H.; Li, L.; Fan, T.; Jin, Z. The Alleviating Effect and Mechanism of GLP-1 on Ulcerative Colitis. Aging 2023, 15, 8044–8060. [Google Scholar] [CrossRef]
- Lebrun, L.J.; Lenaerts, K.; Kiers, D.; Pais De Barros, J.-P.; Le Guern, N.; Plesnik, J.; Thomas, C.; Bourgeois, T.; Dejong, C.H.C.; Kox, M.; et al. Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion. Cell Rep. 2017, 21, 1160–1168. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Jun, H.-S. Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediat. Inflamm. 2016, 2016, 3094642. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Ho, M.-S.; Huang, W.-T.; Chou, Y.-T.; King, K. Modulation of Glucagon-like Peptide-1 (GLP-1) Potency by Endocannabinoid-like Lipids Represents a Novel Mode of Regulating GLP-1 Receptor Signaling. J. Biol. Chem. 2015, 290, 14302–14313. [Google Scholar] [CrossRef]
- Villumsen, M.; Schelde, A.B.; Jimenez-Solem, E.; Jess, T.; Allin, K.H. GLP-1 Based Therapies and Disease Course of Inflammatory Bowel Disease. eClinicalMedicine 2021, 37, 100979. [Google Scholar] [CrossRef]
- Vasincu, A.; Rusu, R.-N.; Ababei, D.-C.; Neamțu, M.; Arcan, O.D.; Macadan, I.; Beșchea Chiriac, S.; Bild, W.; Bild, V. Exploring the Therapeutic Potential of Cannabinoid Receptor Antagonists in Inflammation, Diabetes Mellitus, and Obesity. Biomedicines 2023, 11, 1667. [Google Scholar] [CrossRef]
- Matias, I.; Lehmann, E.W.; Zizzari, P.; Byberg, S.; Cota, D.; Torekov, S.S.; Quarta, C. Endocannabinoid-Related Molecules Predict the Metabolic Efficacy of GLP-1 Receptor Agonism in Humans with Obesity. J. Endocrinol. Investig. 2023, 47, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Hashiesh, H.M.; Azimullah, S.; Nagoor Meeran, M.F.; Saraswathiamma, D.; Arunachalam, S.; Jha, N.K.; Sadek, B.; Adeghate, E.; Sethi, G.; Albawardi, A.; et al. Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation. J. Pharmacol. Exp. Ther. 2024, 391, 241–257. [Google Scholar] [CrossRef] [PubMed]
- Hashiesh, H.M.; Meeran, M.F.N.; Sharma, C.; Sadek, B.; Kaabi, J.A.; Ojha, S.K. Therapeutic Potential of β-Caryophyllene: A Dietary Cannabinoid in Diabetes and Associated Complications. Nutrients 2020, 12, 2963. [Google Scholar] [CrossRef] [PubMed]
- Shafiei-Jahani, P.; Yan, S.; Kazemi, M.H.; Li, X.; Akbari, A.; Sakano, K.; Sakano, Y.; Hurrell, B.P.; Akbari, O. CB2 Stimulation of Adipose Resident ILC2s Orchestrates Immune Balance and Ameliorates Type 2 Diabetes Mellitus. Cell Rep. 2024, 43, 114434. [Google Scholar] [CrossRef] [PubMed]
- Pegah, A.; Abbasi-Oshaghi, E.; Khodadadi, I.; Mirzaei, F.; Tayebinai, H. Probiotic and Resveratrol Normalize GLP-1 Levels and Oxidative Stress in the Intestine of Diabetic Rats. Metabol. Open 2021, 10, 100093. [Google Scholar] [CrossRef]
- Wei, S.-H.; Chen, Y.-P.; Chen, M.-J. Selecting Probiotics with the Abilities of Enhancing GLP-1 to Mitigate the Progression of Type 1 Diabetes in Vitro and in Vivo. J. Funct. Foods 2015, 18, 473–486. [Google Scholar] [CrossRef]
- Chen, T.; Pan, F.; Huang, Q.; Xie, G.; Chao, X.; Wu, L.; Wang, J.; Cui, L.; Sun, T.; Li, M.; et al. Metabolic Phenotyping Reveals an Emerging Role of Ammonia Abnormality in Alzheimer’s Disease. Nat. Commun. 2024, 15, 3796. [Google Scholar] [CrossRef]
- Duan, Y.; Wu, X.; Liang, S.; Jin, F. Elevated Blood Ammonia Level Is a Potential Biological Risk Factor of Behavioral Disorders in Prisoners. Behav. Neurol. 2015, 2015, 797862. [Google Scholar] [CrossRef]
- Knight-Sepulveda, K.; Kais, S.; Santaolalla, R.; Abreu, M.T. Diet and Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2015, 11, 511–520. [Google Scholar]
- Pagano, E.; Capasso, R.; Piscitelli, F.; Romano, B.; Parisi, O.A.; Finizio, S.; Lauritano, A.; Marzo, V.D.; Izzo, A.A.; Borrelli, F. An Orally Active Cannabis Extract with High Content in Cannabidiol Attenuates Chemically-Induced Intestinal Inflammation and Hypermotility in the Mouse. Front. Pharmacol. 2016, 7, 341. [Google Scholar] [CrossRef]
- Bento, A.F.; Marcon, R.; Dutra, R.C.; Claudino, R.F.; Cola, M.; Pereira Leite, D.F.; Calixto, J.B. β-Caryophyllene Inhibits Dextran Sulfate Sodium-Induced Colitis in Mice through CB2 Receptor Activation and PPARγ Pathway. Am. J. Pathol. 2011, 178, 1153–1166. [Google Scholar] [CrossRef] [PubMed]
- Gertsch, J.; Leonti, M.; Raduner, S.; Racz, I.; Chen, J.-Z.; Xie, X.-Q.; Altmann, K.-H.; Karsak, M.; Zimmer, A. Beta-Caryophyllene Is a Dietary Cannabinoid. Proc. Natl. Acad. Sci. USA 2008, 105, 9099–9104. [Google Scholar] [CrossRef] [PubMed]
- Kruis, W. Maintaining Remission of Ulcerative Colitis with the Probiotic Escherichia Coli Nissle 1917 Is as Effective as with Standard Mesalazine. Gut 2004, 53, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Miele, E.; Pascarella, F.; Giannetti, E.; Quaglietta, L.; Baldassano, R.N.; Staiano, A. Effect of a Probiotic Preparation (VSL#3) on Induction and Maintenance of Remission in Children With Ulcerative Colitis. Am. J. Gastroenterol. 2009, 104, 437–443. [Google Scholar] [CrossRef]
- Latif, A.; Shehzad, A.; Niazi, S.; Zahid, A.; Ashraf, W.; Iqbal, M.W.; Rehman, A.; Riaz, T.; Aadil, R.M.; Khan, I.M.; et al. Probiotics: Mechanism of Action, Health Benefits and Their Application in Food Industries. Front. Microbiol. 2023, 14, 1216674. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of Action of Probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Lutz, B.; Ruiz de Azua, I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front. Cell. Neurosci. 2022, 16, 867267. [Google Scholar] [CrossRef]
- Otkur, W.; Wang, J.; Hou, T.; Liu, F.; Yang, R.; Li, Y.; Xiang, K.; Pei, S.; Qi, H.; Lin, H.; et al. Aminosalicylates Target GPR35, Partly Contributing to the Prevention of DSS-Induced Colitis. Eur. J. Pharmacol. 2023, 949, 175719. [Google Scholar] [CrossRef]
- Farooq, S.M.; Hou, Y.; Li, H.; O’Meara, M.; Wang, Y.; Li, C.; Wang, J.-M. Disruption of GPR35 Exacerbates Dextran Sulfate Sodium-Induced Colitis in Mice. Dig. Dis. Sci. 2018, 63, 2910–2922. [Google Scholar] [CrossRef]
- Gonzalez, S.; Cebeira, M.; Fernandez-Ruiz, J. Cannabinoid Tolerance and Dependence: A Review of Studies in Laboratory Animals. Pharmacol. Biochem. Behav. 2005, 81, 300–318. [Google Scholar] [CrossRef]
- Compton, D.R.; Dewey, W.L.; Martin, B.R. Cannabis Dependence and Tolerance Production. Adv. Alcohol Subst. Abus. 1990, 9, 129–147. [Google Scholar] [CrossRef] [PubMed]
- Burggren, A.C.; Shirazi, A.; Ginder, N.; London, E.D. Cannabis Effects on Brain Structure, Function, and Cognition: Considerations for Medical Uses of Cannabis and Its Derivatives. Am. J. Drug Alcohol Abus. 2019, 45, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Cabral, G.A.; Griffin-Thomas, L. Emerging Role of the Cannabinoid Receptor CB2 in Immune Regulation: Therapeutic Prospects for Neuroinflammation. Expert Rev. Mol. Med. 2009, 11, e3. [Google Scholar] [CrossRef] [PubMed]
Category | Extraintestinal Manifestations | Beneficial Role of eCBome Modulation |
---|---|---|
Musculoskeletal conditions | Peripheral and axial arthritis, osteoporosis, and osteopenia [28,29,30,31] | Cannabis and cannabinoids are shown to reduce joint pain and inflammation [32,33,34,35], osteoporosis and osteopenia [36,37,38]. |
Dermatological conditions | Erythema nodosum, pyoderma gangrenosum, psoriasis [39,40,41] | Cannabinoids have demonstrated anti-inflammatory and immunomodulatory potential in skin disorders [42,43,44,45], chronic wound healing, and skin ulcers [46,47,48]. |
Ocular disorders | Uveitis, conjunctivitis, and episcleritis [49,50,51,52,53] | Cannabinoids reduce a multiple range of ocular disorders including uveitis, proliferative vitreoretinopathy intraocular pressure, corneal pain, and inflammation [54,55,56,57,58,59,60]. |
Hepatobiliary complications | Primary sclerosing cholangitis (PSC)—inflammation and narrowing of the bile ducts, fatty liver, and cirrhosis [61,62,63] | Cannabinoids have demonstrated a beneficial role in range of liver disorders including liver fibrosis, fatty liver disease, etc. [64,65,66,67,68,69]. |
Metabolic disorders | Metabolic syndrome (dyslipidemia, diabetes, obesity, and hypertension) [7,70,71,72,73], vitamin D and calcium deficiency [74,75], metabolic bone syndrome in children [76] | Modulation of eCBome is shown to be beneficial in various forms of metabolic disorders including obesity, diabetes, and dyslipidemia via the modulation of Glucagon like peptide-1 (GLP-1) hormone [27,77,78,79,80,81]. |
Renal complications | Nephrolithiasis (kidney stones), abnormal kidney profiles and renal function [82,83,84,85,86] | Cannabinoids reduce renal hypertrophy and have beneficial role in chronic kidney diseases [24,87,88]. |
Hematological complications | Anemia (iron-deficiency and anemia of chronic disease), thrombophlebitis, leukocytosis [89,90] | eCBome modulation has a beneficial role in blood cell development, immune disorders, and hematological malignancies [91,92]. |
Neurological symptoms | Dementia, depression, anxiety, Alzheimer’s disease, peripheral neuropathy, multiple sclerosis [8,93,94] | Cannabinoids reduce various forms of neurological disorders including neuropathic pain, multiple sclerosis, depression and anxiety, etc. [95,96,97,98,99]. |
Endocrine | Thyroid disorders [100,101], adrenal insufficiency associated with long-term corticosteroid use [102,103,104] | Cannabidiol is shown to improve thyroid function via modulating vitamin D3 receptor [105]. Increasing evidence of cannabinoids in endocrine disorders [106,107]. |
Cardiovascular | Increased risk of cardiovascular disease [108,109,110] | eCBome modulation is beneficial in improving cardiovascular functions in range of pathophysiology such as hypertension, sepsis, atherosclerosis, etc. [111,112,113]. |
Therapies | Mechanism of Action | Limitation | Complications/Side Effects |
---|---|---|---|
Aminosalicylates | Inhibits cyclooxygenase and lipoxygenase pathways to reduce prostaglandins and leukotrienes, decreasing inflammation. | Limited efficacy in Crohn’s disease. | Headache, nausea, and, rarely, kidney dysfunction, adherence issues [118,125]. |
Corticosteroids | Activates glucocorticoid receptors to suppress inflammatory gene transcription, reducing cytokine production and immune cell activity. | Effective for short-term flare management but not suitable for long-term use. | Weight gain, osteoporosis, hypertension, and increased infection risk, risk of dependency and withdrawal challenges [103,104]. |
Immunomodulators | Inhibits DNA synthesis and T-cell proliferation, reducing immune system overactivity. | Delayed onset of action (may take months), regular monitoring required. | Increased susceptibility to infections, potential liver toxicity and bone marrow suppression [116,117,118]. |
Biologic therapies | Targets specific immune mediators (e.g., TNF-alpha, integrins, or interleukins) to reduce inflammation and immune cell migration. | Risk of infusion/injection site reactions, development of antibodies reducing efficacy, high cost, and limited accessibility. | Long-term safety concerns, including malignancy risk [114,119]. |
Small-molecule inhibitors | Blocks intracellular signaling pathways (e.g., Janus kinase pathways) or prevent lymphocyte migration to reduce inflammation. | Limited long-term safety/efficacy data. | Potential off-target effects, monitoring for adverse reactions necessary [114,126,127]. |
Antibiotics | Modifies gut microbiota by reducing bacterial overgrowth and addressing infections or abscesses. | Limited efficacy; primarily used for specific complications. | Risk of altering gut microbiota adversely, potential development of antibiotic resistance, risk of flare-ups [128,129]. |
Probiotics | Modulates gut microbiota to restore balance and reduce inflammation by promoting beneficial bacterial strains. | Variable efficacy, lack of standardized formulations and dosing guidelines. | Uncertainty regarding long-term benefits [130,131]. |
Fecal microbiota transplant | Restores gut microbial diversity and function, potentially reducing inflammation and promoting remission. | Emerging therapy with variable success rates and regulatory and ethical considerations. | Concerns about long-term safety and standardization [132,133,134]. |
Surgical interventions | Removes diseased portions of the intestine to reduce inflammation and improve symptoms. | Risks associated with surgery: infection, anesthesia complications. | Possibility of disease recurrence post-surgery, impact on quality of life, and potential need for ostomy [120,121,122]. |
eCBome Modulation | Mechanism of Action | Potential Benefits in IBD-Associated Metabolic Dysregulation | References |
---|---|---|---|
CB1 receptor agonist | CB1 agonist in combination with CB1 receptor allosteric modulator normalized systemic and colonic GLP-1 levels. | Restores GI homeostasis and body weight. | [24,25] |
GLP-1 receptor agonist | GLP-1 improves gut barrier integrity and reduces metabolic inflammation. | GLP-1 agonists reduce IBD-associated metabolic complications. | [173,178,182] |
CB1 antagonist | CB1 blockade reduces body weight, insulin resistance and metabolic inflammation. | The combination of peripheral CB1 antagonist and GLP-1 receptor (GLP-1R) agonist reduce body weight, fat mass and metabolic syndrome in IBD. | [177,183] |
Endocannabinoid-like molecules (OEA, PEA) | OEA and PEA regulate satiety, gut permeability, and lipid metabolism. | Enhances GLP-1 release, reduces food intake and improves gut-barrier integrity. | [22,141,184] |
CB2 receptor agonist | CB2 activation reduces metabolic inflammation, insulin resistance and enhances immune regulation. | Reduces osteoporosis risk and improves insulin sensitivity. CB2 agonists combined with GLP-1R agonists could provide dual metabolic and anti-inflammatory benefits. | [169,185,186,187] |
eCBome-GLP-1 crosstalk | Enhances GLP-1 secretion while reducing CB1-driven metabolic dysfunction. | Highlights the need for eCBome-GLP-1 targeted interventions in metabolic disorders of IBD. | [27] |
Diets and probiotics | Increases GLP-1 resulting in decreased glucose and insulin resistance | Beneficial in managing EIMs of IBD including diabetes. | [188,189] |
Risks Category | Challenges | Potential Therapeutic Strategies |
---|---|---|
Psychoactive side effects | Activation of CB1 receptors, especially by brain-penetrant cannabinoids, carries the risk of psychoactive and behavioral side effects [203,204,205]. | Selective modulators: Use of non-psychoactive cannabinoids like CBD, peripherally restricted cannabinoids, and selective modulators targeting specific eCBome pathways can bypass CB1-mediated side effects [24,161]. Allosteric modulators: Use of CB1 receptor allosteric modulators and targeted delivery systems can enhance therapeutic precision while minimizing psychoactive side effects [25]. |
Immune suppression | Prolonged CB2 receptor engagement could lead to systemic immune suppression, potentially altering immune homeostasis [160,206]. | Selective targeting: Developing tissue-specific CB2 receptor modulators can help minimize systemic immune suppression. For example, targeting CB2 in the gut to modulate localized inflammation while avoiding systemic immune effects. Short-term or intermittent dosing: Intermittent dosing schedules could help maintain immune homeostasis. Combination therapies: Combining sub-therapeutics doses of CB2 agonist and conventional treatments such as biologics, immunosuppressant, 5 aminosalicylates, or microbiome-targeted therapies may yield synergistic benefits and enhance efficacy and safety. |
Off-target effects | eCBome involves non-cannabinoid receptors, such as TRPV1 and GPR55, increasing the likelihood of off-target effects [174]. | Development of highly selective ligands: The design and use of molecules that selectively target specific cannabinoid receptors (e.g., CB2) while avoiding the activation of non-cannabinoid receptors like TRPV1 or GPR55 can overcome off-target side effects. |
Variability in responses | Genetic, metabolic, and microbiome differences among individuals lead to varied responses to cannabinoids, complicating treatment optimization. | Personalized medicine: Stratifying patients based on genetic, epigenetic, and microbiome profiles could optimize eCBome-targeted treatments. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thapa, D.; Ghimire, A.; Warne, L.N.; Carlessi, R. Targeting the Endocannabinoidome: A Novel Approach to Managing Extraintestinal Complications in Inflammatory Bowel Disease. Pharmaceuticals 2025, 18, 478. https://doi.org/10.3390/ph18040478
Thapa D, Ghimire A, Warne LN, Carlessi R. Targeting the Endocannabinoidome: A Novel Approach to Managing Extraintestinal Complications in Inflammatory Bowel Disease. Pharmaceuticals. 2025; 18(4):478. https://doi.org/10.3390/ph18040478
Chicago/Turabian StyleThapa, Dinesh, Anjali Ghimire, Leon N. Warne, and Rodrigo Carlessi. 2025. "Targeting the Endocannabinoidome: A Novel Approach to Managing Extraintestinal Complications in Inflammatory Bowel Disease" Pharmaceuticals 18, no. 4: 478. https://doi.org/10.3390/ph18040478
APA StyleThapa, D., Ghimire, A., Warne, L. N., & Carlessi, R. (2025). Targeting the Endocannabinoidome: A Novel Approach to Managing Extraintestinal Complications in Inflammatory Bowel Disease. Pharmaceuticals, 18(4), 478. https://doi.org/10.3390/ph18040478