Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer
Abstract
:1. Introduction
2. Pathological Characteristics of Lung Cancer
3. Chemotherapy for Lung Cancer Treatment
3.1. Current Chemotherapeutic Drugs Used in Lung Cancer Treatment
3.2. Limitations of Chemotherapy in Lung Cancer Treatment
4. Medicinal Plants and Phytocompounds with Anticancer or Chemopreventive Activity in Lung Cancer
4.1. Dryopteris erythrosora
4.2. Brassinosteroids
4.3. Haemanthus humilis
4.4. Taxus sp.
4.5. Catharanthus roseus
4.6. Podophyllum peltatum
4.7. Camptotheca acuminata
4.8. Panax ginseng
4.9. Daphne genkwa
4.10. Aromatic Plants
4.11. Tripterygium wilfordii
4.12. Lycoris radiata
4.13. Ginkgo biloba
4.14. Rosmarinus officinalis
4.15. Ophiopogon japonicus
4.16. Sphagneticola calendulacea
4.17. Dendrobium sp.
4.18. Citrus aurantium and Matricaria recutita
5. Synergistic Effects between Natural Compounds and Chemotherapy in Lung Cancer
5.1. General Aspects of Synergism and Combination Therapy
5.2. Synergistic Effects of Combination Therapy (Natural Compounds and Chemotherapy) in Lung Cancer
5.2.1. Scutellaria baicalensis and Cisplatin
5.2.2. Marsdenia tenacissima and Gefitinib
5.2.3. Zhen-Qi Sijunzi Decoction and Cisplatin
5.2.4. Panax ginseng and Cisplatin
5.2.5. Vitis vinifera and Paclitaxel
5.2.6. Apigenin and Cisplatin
5.2.7. Citrus aurantium and Paclitaxel
5.2.8. Fisetin and Paclitaxel
5.2.9. Hedera helix and Cisplatin
5.2.10. Brucea javanica and Cisplatin
5.2.11. Cucumis melo and Cisplatin/Paclitaxel
5.2.12. Curcuma longa and Cisplatin
6. Outline Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. N. Am. 2019, 103, 463–473. [Google Scholar] [CrossRef]
- Huang, T.H.; Wu, T.H.; Guo, Y.H.; Li, T.L.; Chan, Y.L.; Wu, C.J. The Concurrent Treatment of Scutellaria baicalensis Georgi Enhances the Therapeutic Efficacy of Cisplatin but Also Attenuates Chemotherapy-Induced Cachexia and Acute Kidney Injury. J. Ethnopharmacol. 2019, 243, 112075. [Google Scholar] [CrossRef]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Gahtori, R.; Tripathi, A.H.; Kumari, A.; Negi, N.; Paliwal, A.; Tripathi, P.; Joshi, P.; Rai, R.C.; Upadhyay, S.K. Anticancer Plant-Derivatives: Deciphering Their Oncopreventive and Therapeutic Potential in Molecular Terms. Future J. Pharm. Sci. 2023, 9, 14. [Google Scholar] [CrossRef]
- Kris, M.G.; Hellmann, M.D.; Chaft, J.E. Chemotherapy for Lung Cancers: Here to Stay. Am. Soc. Clin. Oncol. Educ. Book 2014, 34, e375–e380. [Google Scholar] [CrossRef]
- Monneret, C. Impact Actuel Des Produits Naturels Sur La Découverte de Nouveaux Médicaments Anticancéreux. Ann. Pharm. Fr. 2010, 68, 218–232. [Google Scholar] [CrossRef]
- Alfonzetti, T.; Yasmin-Karim, S.; Ngwa, W.; Avery, S. Phytoradiotherapy: An Integrative Approach to Cancer Treatment by Combining Radiotherapy With Phytomedicines. Front. Oncol. 2021, 10, 624663. [Google Scholar] [CrossRef] [PubMed]
- Mesas, C.; Segura, B.; Perazzoli, G.; Chico, M.A.; Moreno, J.; Doello, K.; Prados, J.; Melguizo, C. Plant-Derived Bioactive Compounds for Rhabdomyosarcoma Therapy In Vitro: A Systematic Review. Appl. Sci. 2023, 13, 12964. [Google Scholar] [CrossRef]
- Alfonzetti, T.; Moreau, M.; Yasmin-Karim, S.; Ngwa, W.; Avery, S.; Goia, D. Phytoradiotherapy to Enhance Cancer Treatment Outcomes with Cannabidiol, Bitter Melon Juice, and Plant Hemoglobin. Front. Oncol. 2023, 12, 1085686. [Google Scholar] [CrossRef]
- Danciu, C.; Muntean, D.; Alexa, E.; Farcas, C.; Oprean, C.; Zupko, I.; Bor, A.; Minda, D.; Proks, M.; Buda, V.; et al. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative, and Pro-Apoptotic Potential of Ephedra Alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules 2019, 24, 13. [Google Scholar] [CrossRef]
- Cheon, S.H.; Kim, K.S.; Kim, S.; Jung, H.S.; Choi, W.C.; Eo, W.K. Efficacy and Safety of Rhus Verniciflua Stokes Extracts in Patients with Previously Treated Advanced Non-Small Cell Lung Cancer. Forsch. Komplementarmed 2011, 18, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.M.; Liu, Y.F.; Cheng, Y.F.; Hu, L.K.; Hou, M. Effects of Rhubarb Extract on Radiation Induced Lung Toxicity via Decreasing Transforming Growth Factor-Beta-1 and Interleukin-6 in Lung Cancer Patients Treated with Radiotherapy. Lung Cancer 2008, 59, 219–226. [Google Scholar] [CrossRef]
- Batbold, U.; Liu, J.J. Artemisia santolinifolia-Mediated Chemosensitization via Activation of Distinct Cell Death Modes and Suppression of Stat3/Survivin-Signaling Pathways in Nsclc. Molecules 2021, 26, 7200. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; He, Q.; Yang, X. Exploration of the Use of Natural Compounds in Combination with Chemotherapy Drugs for Tumor Treatment. Molecules 2023, 28, 1022. [Google Scholar] [CrossRef]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef] [PubMed]
- Park, C.R.; Lee, J.S.; Son, C.G.; Lee, N.H. A Survey of Herbal Medicines as Tumor Microenvironment-Modulating Agents. Phytother. Res. 2021, 35, 78–94. [Google Scholar] [CrossRef]
- Cheon, C. Synergistic Effects of Herbal Medicines and Anticancer Drugs A Protocol for Systematic Review and Meta-Analysis. Medicine 2021, 100, e27918. [Google Scholar] [CrossRef]
- Lin, S.-R.; Chang, C.-H.; Hsu, C.-F.; Tsai, M.-J.; Cheng, H.; Leong, M.K.; Sung, P.-J.; Chen, J.-C.; Weng, C.-F. Natural Compounds as Potential Adjuvants to Cancer Therapy: Preclinical Evidence. Br. J. Pharmacol. 2019, 177, 1409–1423. [Google Scholar] [CrossRef]
- Ganesan, K.; Jayachandran, M.; Xu, B. Diet-Derived Phytochemicals Targeting Colon Cancer Stem Cells and Microbiota in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 3976. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Hannan, M.A.; Dash, R.; Rahman, M.H.; Islam, R.; Uddin, M.J.; Sohag, A.A.M.; Rahman, M.H.; Rhim, H. Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway. Front. Pharmacol. 2021, 12, 639628. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.B.; Islam, S.U.; Alghamdi, A.A.A.; Kamran, M.; Ahsan, H.; Lee, Y.S. Phytochemicals as Chemo-Preventive Agents and Signaling Molecule Modulators: Current Role in Cancer Therapeutics and Inflammation. Int. J. Mol. Sci. 2022, 23, 15765. [Google Scholar] [CrossRef] [PubMed]
- Al-Yozbaki, M.; Wilkin, P.J.; Gupta, G.K.; Wilson, C.M. Therapeutic Potential of Natural Compounds in Lung Cancer. Curr. Med. Chem. 2021, 28, 7988–8002. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.N.; Qu, Z.; Kortschak, R.D.; Adelson, D.L. Understanding the Effectiveness of Natural Compound Mixtures in Cancer through Their Molecular Mode of Action. Int. J. Mol. Sci. 2017, 18, 656. [Google Scholar] [CrossRef] [PubMed]
- Wattanathamsan, O.; Hayakawa, Y.; Pongrakhananon, V. Molecular Mechanisms of Natural Compounds in Cell Death Induction and Sensitization to Chemotherapeutic Drugs in Lung Cancer. Phytother. Res. 2019, 33, 2531–2547. [Google Scholar] [CrossRef]
- Huang, C.Y.; Ju, D.T.; Chang, C.F.; Muralidhar Reddy, P.; Velmurugan, B.K. A Review on the Effects of Current Chemotherapy Drugs and Natural Agents in Treating Non-Small Cell Lung Cancer. BioMedicine 2017, 7, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Pozo, C.; Avery, V.M. Glycolytic Effect of Meat Metabolites: Role of Dietary Compounds and Their Microbiota-Derived Metabolites in the Prevention of Lung Cancer Development. ACS Food Sci. Technol. 2023, 3, 1496–1513. [Google Scholar] [CrossRef]
- Duan, J.; Zhan, J.C.; Wang, G.Z.; Zhao, X.C.; Huang, W.D.; Zhou, G.B. The Red Wine Component Ellagic Acid Induces Autophagy and Exhibits Anti-Lung Cancer Activity In Vitro and In Vivo. J. Cell. Mol. Med. 2019, 23, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xu, L.; Shi, Y.; Gu, S.; Wu, N.; Liu, F.; Huang, Y.; Qian, Z.; Xue, W.; Wang, X.; et al. A Novel Myricetin Derivative with Anti-Cancer Properties Induces Cell Cycle Arrest and Apoptosis in A549 Cells. Biol. Pharm. Bull. 2023, 46, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhuang, Z.; Meng, Q.; Jiao, Y.; Xu, J.; Fan, S. Polydatin Inhibits Growth of Lung Cancer Cells by Inducing Apoptosis and Causing Cell Cycle Arrest. Oncol. Lett. 2014, 7, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wu, J.; Zhang, Q.; Li, X.; Zhu, X.; Wang, Q.; Cao, S.; Du, L. Mitochondria-Mediated Apoptosis Was Induced by Oleuropein in H1299 Cells Involving Activation of P38 MAP Kinase. J. Cell. Biochem. 2019, 120, 5480–5494. [Google Scholar] [CrossRef]
- Ma, L.; Wen, Z.S.; Liu, Z.; Hu, Z.; Ma, J.; Chen, X.Q.; Liu, Y.Q.; Pu, J.X.; Xiao, W.L.; Sun, H.D.; et al. Overexpression and Small Molecule-Triggered Downregulation of CIP2A in Lung Cancer. PLoS ONE 2011, 6, e20159. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L.; Xia, Y.; Guo, C.; Kong, L. Icariin Enhances Cytotoxicity of Doxorubicin in Human Multidrug-Resistant Osteosarcoma Cells by Inhibition of ABCB1 and Down-Regulation of the PI3K/Akt Pathway. Biol. Pharm. Bull. 2015, 38, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, L.; Wen, Z.S.; Cheng, Y.X.; Zhou, G.B. Ethoxysanguinarine Induces Inhibitory Effects and Downregulates CIP2A in Lung Cancer Cells. ACS Med. Chem. Lett. 2014, 5, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Thai, A.A.; Solomon, B.J.; Sequist, L.V.; Gainor, J.F.; Heist, R.S. Lung Cancer. Lancet 2021, 398, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Klebe, S.; Leigh, J.; Henderson, D.W.; Nurminen, M. Asbestos, Smoking and Lung Cancer: An Update. Int. J. Environ. Res. Public Health 2020, 17, 258. [Google Scholar] [CrossRef] [PubMed]
- Alberg, A.J.; Brock, M.V.; Ford, J.G.; Samet, J.M.; Spivack, S.D. Epidemiology of Lung Cancer. Chest 2013, 143, e1S–e29S. [Google Scholar] [CrossRef]
- Croce, C.M. Causes and Consequences of MicroRNA Dysregulation in Cancer. Nat. Rev. Genet. 2009, 10, 704–714. [Google Scholar] [CrossRef]
- Mogi, A.; Kuwano, H. TP53 Mutations in Nonsmall Cell Lung Cancer. J. Biomed. Biotechnol. 2011, 2011, 583929. [Google Scholar] [CrossRef] [PubMed]
- Penning, T.M. Human Aldo-Keto Reductases and the Metabolic Activation of Polycyclic Aromatic Hydrocarbons. Chem. Res. Toxicol. 2014, 27, 1901–1917. [Google Scholar] [CrossRef]
- Miao, S.; Qiu, H. The Microbiome in the Pathogenesis of Lung Cancer. APMIS 2024, 132, 68–80. [Google Scholar] [CrossRef]
- Wen, J.; Fu, J.H.; Zhang, W.; Guo, M. Lung Carcinoma Signaling Pathways Activated by Smoking. Chin. J. Cancer 2011, 30, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wei, X.; Xu, L. MiR-150 Promotes the Proliferation of Lung Cancer Cells by Targeting P53. FEBS Lett. 2013, 587, 2346–2351. [Google Scholar] [CrossRef] [PubMed]
- Mithoowani, H.; Febbraro, M. Non-Small-Cell Lung Cancer in 2022: A Review for General Practitioners in Oncology. Curr. Oncol. 2022, 29, 1828–1839. [Google Scholar] [CrossRef] [PubMed]
- Inamura, K. Lung Cancer: Understanding Its Molecular Pathology and the 2015 WHO Classification. Front. Oncol. 2017, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-Derived Anticancer Agents: A Green Anticancer Approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Kuhn, E.; Morbini, P.; Cancellieri, A.; Damiani, S.; Cavazza, A. Comin CE Adenocarcinoma Classification: Patterns and Prognosis. Pathologica 2018, 110, 5–11. [Google Scholar] [PubMed]
- Borczuk, A.C. Updates in Grading and Invasion Assessment in Lung Adenocarcinoma. Mod. Pathol. 2022, 35, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ding, Z.; Zhu, L.; Lu, S.; Yu, Y. Correlation of Clinicopathologic Features and Lung Squamous Cell Carcinoma Subtypes According to the 2015 WHO Classification. Eur. J. Surg. Oncol. 2017, 43, 2308–2314. [Google Scholar] [CrossRef]
- Chan, A.W.; Chau, S.L.; Tong, J.H.; Chow, C.; Kwan, J.S.H.; Chung, L.Y.; Lung, R.W.; Tong, C.Y.; Tin, E.K.; Law, P.P.; et al. The Landscape of Actionable Molecular Alterations in Immunomarker-Defined Large-Cell Carcinoma of the Lung. J. Thorac. Oncol. 2019, 14, 1213–1222. [Google Scholar] [CrossRef]
- Saltos, A.; Shafique, M.; Chiappori, A. Update on the Biology, Management, and Treatment of Small Cell Lung Cancer (SCLC). Front. Oncol. 2020, 10, 1074. [Google Scholar] [CrossRef]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-Cell Lung Cancer. Nat. Rev. Dis. Primers 2021, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New Approaches and Procedures for Cancer Treatment: Current Perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef] [PubMed]
- Schabath, M.B.; Cress, W.D.; Muñoz-Antonia, T. Racial and Ethnic Differences in the Epidemiology and Genomics of Lung Cancer. Cancer Control 2016, 23, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Gadgeel, S.M.; Kalemkerian, G.P. Racial Differences in Lung Cancer. Cancer Metastasis Rev. 2003, 22, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Lv, J.; Huang, Y.; Ma, H.; Li, N.; Wei, X.; Ji, M.; Ma, Z.; Song, C.; Wang, C.; et al. Ethnic Differences of Genetic Risk and Smoking in Lung Cancer: Two Prospective Cohort Studies. Int. J. Epidemiol. 2023, 52, 1815–1825. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Tan, J.; Liu, Z.; Li, L.; Zhang, H.; Zhao, D.; Li, B.; Gao, X.; Che, N.; Zhang, T. Comprehensive Comparative Molecular Characterization of Young and Old Lung Cancer Patients. Front. Oncol. 2022, 11, 806845. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Lee, C.G.; Kim, L.K. COPD as a Disease of Immunosenescence. Yonsei Med. J. 2019, 60, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Paudel, K.R.; Dharwal, V.; Patel, V.K.; Galvao, I.; Wadhwa, R.; Malyla, V.; Shen, S.S.; Budden, K.F.; Hansbro, N.G.; Vaughan, A.; et al. Role of Lung Microbiome in Innate Immune Response Associated With Chronic Lung Diseases. Front. Med. 2020, 7, 554. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, X.; Suo, P.; Gong, Y.; Qu, B.; Peng, X.; Xiao, W.; Li, Y.; Chen, Y.; Zeng, Z.; et al. The Contribution of Hereditary Cancer-Related Germline Mutations to Lung Cancer Susceptibility. Transl. Lung Cancer Res. 2020, 9, 646–658. [Google Scholar] [CrossRef]
- Birru, R.L.; Peter Di, Y. Pathogenic Mechanism of Second Hand Smoke Induced Inflammation and COPD. Front. Physiol. 2012, 3, 348. [Google Scholar] [CrossRef]
- Borie, R.; Funalot, B.; Epaud, R.; Delestrain, C.; Cazes, A.; Gounant, V.; Frija, J.; Debray, M.P.; Zalcman, G.; Crestani, B. NKX2.1 (TTF1) Germline Mutation Associated with Pulmonary Fibrosis and Lung Cancer. ERJ Open Res. 2021, 7, 00356-2021. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H. Chemotherapy for Lung Cancer in the Era of Personalized Medicine. Tuberc. Respir. Dis. 2019, 82, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Pirker, R. Chemotherapy Remains a Cornerstone in the Treatment of Nonsmall Cell Lung Cancer. Curr. Opin. Oncol. 2020, 32, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, M.; Gadgeel, S.M. Role of Chemotherapy and Targeted Therapy in Early-Stage Non-Small Cell Lung Cancer. Expert Rev. Anticancer. Ther. 2018, 18, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Kuribayashi, K.; Funaguchi, N.; Nakano, T. Chemotherapy for Advanced Non-Small Cell Lung Cancer with a Focus on Squamous Cell Carcinoma. J. Cancer Res. Ther. 2016, 12, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Pento, J.T. Monoclonal Antibodies for the Treatment of Cancer. Anticancer. Res. 2017, 37, 5935–5939. [Google Scholar] [PubMed]
- Weiner, L.M.; Surana, R.; Wang, S. Monoclonal Antibodies: Versatile Platforms for Cancer Immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Metro, G.; Baglivo, S.; Moretti, R.; Bellezza, G.; Sidoni, A.; Roila, F. Is There a Role for Multiple Lines of Anti-HER2 Therapies Administered Beyond Progression in HER2-Mutated Non-Small Cell Lung Cancer? A Case Report and Literature Review. Oncol. Ther. 2020, 8, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Tsiouprou, I.; Zaharias, A.; Spyratos, D. The Role of Immunotherapy in Extensive Stage Small-Cell Lung Cancer: A Review of the Literature. Can. Respir. J. 2019, 2019, 6860432. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, S.H.; Hwang, I.; Lee, J.H.; Kim, J.H.; Kim, H.W.; Kim, H.J. Robust Response of Pulmonary Pleomorphic Carcinoma to Pembrolizumab and Sequential Radiotherapy: A Case Report. Respirol. Case Rep. 2021, 9, e0875. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Z.; Wang, Q. Emerging Therapies for Small Cell Lung Cancer. J. Hematol. Oncol. 2019, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Bansal, P.; Osman, D.; Gan, G.N.; Simon, G.R.; Boumber, Y. Recent Advances in Targetable Therapeutics in Metastatic Non-Squamous NSCLC. Front. Oncol. 2016, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.E.; Cenciarelli, C.; Hasan, A. Potential of Antibody–Drug Conjugates (ADCs) for Cancer Therapy. Cancer Cell Int. 2022, 22, 255. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S. Chemotherapy Resistance in Lung Cancer. Adv. Exp. Med. Biol. 2016, 893, 189–209. [Google Scholar] [CrossRef] [PubMed]
- Suda, K.; Mitsudomi, T. Successes and Limitations of Targeted Cancer Therapy in Lung Cancer. Prog. Tumor Res. 2014, 41, 62–77. [Google Scholar] [PubMed]
- Zimmermann, S.; Dziadziuszko, R.; Peters, S. Indications and Limitations of Chemotherapy and Targeted Agents in Non-Small Cell Lung Cancer Brain Metastases. Cancer Treat. Rev. 2014, 40, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Nau, S.; Hochwald, S.N.; Xie, H.; Zhang, J. Anticancer Properties and Mechanisms of Botanical Derivatives. Phytomedicine Plus 2023, 3, 100396. [Google Scholar] [CrossRef]
- Ali Abdalla, Y.O.; Subramaniam, B.; Nyamathulla, S.; Shamsuddin, N.; Arshad, N.M.; Mun, K.S.; Awang, K.; Nagoor, N.H. Natural Products for Cancer Therapy: A Review of Their Mechanism of Actions and Toxicity in the Past Decade. J. Trop. Med. 2022, 2022, 5794350. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.W.; Farooq, M.; Haseeb, M.; Choi, S. Role of Plant-Derived Active Constituents in Cancer Treatment and Their Mechanisms of Action. Cells 2022, 11, 1326. [Google Scholar] [CrossRef]
- Jongrungraungchok, S.; Madaka, F.; Wunnakup, T.; Sudsai, T.; Pongphaew, C.; Songsak, T.; Pradubyat, N. In Vitro Antioxidant, Anti-Inflammatory, and Anticancer Activities of Mixture Thai Medicinal Plants. BMC Complement. Med. Ther. 2023, 23, 43. [Google Scholar] [CrossRef] [PubMed]
- Hoseinkhani, Z.; Norooznezhad, F.; Rastegari-Pouyani, M.; Mansouri, K. Medicinal Plants Extracts with Antiangiogenic Activity: Where Is the Link? Adv. Pharm. Bull. 2020, 10, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.F.; Abuduhier, F.M.; Bhat, S.H.; Ahmad, A.; Ajmal, M.R.; Mustafa, S.K. Cytotoxic and Anti-Metastatic Action Mediates the Anti-Proliferative Activity of Rhazya Stricta Decne Inducing Apoptotic Cell Death in Human Cancer Cells: Implication in Chemopreventive Mechanism. Emir. J. Food Agric. 2023, 35, 683–692. [Google Scholar] [CrossRef]
- Memarzia, A.; Saadat, S.; Asgharzadeh, F.; Behrouz, S.; Folkerts, G.; Boskabady, M.H. Therapeutic Effects of Medicinal Plants and Their Constituents on Lung Cancer, In Vitro, In Vivo and Clinical Evidence. J. Cell. Mol. Med. 2023, 27, 2841–2863. [Google Scholar] [CrossRef] [PubMed]
- Zagni, C.; Floresta, G.; Monciino, G.; Rescifina, A. The Search for Potent, Small-Molecule HDACIs in Cancer Treatment: A Decade After Vorinostat. Med. Res. Rev. 2017, 37, 1373–1428. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an Anticancer Agent. Phytother. Res. 2020, 34, 1812–1828. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Wu, T.H.Y.; Leung, S.S.Y.; To, K.K.W. Flavonoids Potentiated Anticancer Activity of Cisplatin in Non-Small Cell Lung Cancer Cells In Vitro by Inhibiting Histone Deacetylases. Life Sci. 2020, 258, 118211. [Google Scholar] [CrossRef]
- Sak, K. Chemotherapy and Dietary Phytochemical Agents. Chemother. Res. Pract. 2012, 2012, 282570. [Google Scholar] [CrossRef]
- Hill, R.A.; Connolly, J.D. Triterpenoids. Nat. Prod. Rep. 2013, 30, 1028–1065. [Google Scholar] [CrossRef]
- Connolly, J.D.; Hill, R.A. Triterpenoids. Nat. Prod. Rep. 2010, 27, 79–132. [Google Scholar] [CrossRef]
- Fang, K.; Zhang, X.H.; Han, Y.T.; Wu, G.R.; Cai, D.S.; Xue, N.N.; Guo, W.B.; Yang, Y.Q.; Chen, M.; Zhang, X.Y.; et al. Design, Synthesis, and Cytotoxic Analysis of Novel Hederagenin–Pyrazine Derivatives Based on Partial Least Squares Discriminant Analysis. Int. J. Mol. Sci. 2018, 19, 2994. [Google Scholar] [CrossRef] [PubMed]
- Manghwar, H.; Hussain, A.; Ali, Q.; Liu, F. Brassinosteroids (BRs) Role in Plant Development and Coping with Different Stresses. Int. J. Mol. Sci. 2022, 23, 1012. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Van Slambrouck, S.; Gunawardana, S.; van Rensburg, M.J.; James, P.C.; Mochel, J.G.; Heliso, P.S.; Albalawi, A.S.; Cimmino, A.; van Otterlo, W.A.L.; et al. Alkaloids Isolated from Haemanthus Humilis Jacq., an Indigenous South African Amaryllidaceae: Anticancer Activity of Coccinine and Montanine. S. Afr. J. Bot. 2019, 126, 277–281. [Google Scholar] [CrossRef]
- Sinha, D. A Review on Taxanes: An Important Group of Anticancer Compound Obtained from Taxus sp. Int. J. Pharm. Sci. Res. 2020, 11, 1969–1985. [Google Scholar] [CrossRef]
- Alsaif, G.; Tasleem, M.; Rezgui, R.; Alshaghdali, K.; Saeed, A.; Saeed, M. Network Pharmacology and Molecular Docking Analysis of Catharanthus Roseus Compounds: Implications for Non-Small Cell Lung Cancer Treatment. J. King Saud Univ. Sci. 2024, 36, 103134. [Google Scholar] [CrossRef]
- Singh, N.; Agrawal, P. A Comprehensive Review on the Pharmacognostic and Toxicological Profile of Podophyllum peltatum (Bajiaolian). Pharmacol. Res.-Mod. Chin. Med. 2024, 10, 100353. [Google Scholar] [CrossRef]
- Fan, X.; Lin, X.; Ruan, Q.; Wang, J.; Yang, Y.; Sheng, M.; Zhou, W.; Kai, G.; Hao, X. Research Progress on the Biosynthesis and Metabolic Engineering of the Anti-Cancer Drug Camptothecin in Camptotheca Acuminate. Ind. Crops Prod. 2022, 186, 115270. [Google Scholar] [CrossRef]
- Okem, A.; Henstra, C.; Lambert, M.; Hayeshi, R. A Review of the Pharmacodynamic Effect of Chemo-Herbal Drug Combinations Therapy for Cancer Treatment. Med. Drug Discov. 2023, 17, 100147. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, W.; Sun, Q.; Tuohayi, J. Ginsenoside Rg3 Promotes the Antitumor Activity of Gefitinib in Lung Cancer Cell Lines. Exp. Ther. Med. 2018, 17, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Tan, Q.; Lin, S.; Zeng, Y.; Yao, M.; Liu, K.; Yuan, H.; Liu, C.; Jiang, G. Ginsenoside Rg3 Attenuates the Osimertinib Resistance by Reducing the Stemness of Non-Small Cell Lung Cancer Cells. Environ. Toxicol. 2020, 35, 643–651. [Google Scholar] [CrossRef]
- Sun, M.; Ye, Y.; Xiao, L.; Duan, X.; Zhang, Y.; Zhang, H. Anticancer Effects of Ginsenoside Rg3 (Review). Int. J. Mol. Med. 2017, 39, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.I.; Hong, J.Y.; Lee, H.J.; Bae, S.Y.; Jung, C.; Park, H.J.; Lee, S.K. Anti-Tumor Activity of Yuanhuacine by Regulating AMPK/MTOR Signaling Pathway and Actin Cytoskeleton Organization in Non-Small Cell Lung Cancer Cells. PLoS ONE 2015, 10, e0144368. [Google Scholar] [CrossRef]
- Jung, C.Y.; Kim, S.Y.; Lee, C. Carvacrol Targets AXL to Inhibit Cell Proliferation and Migration in Non-Small Cell Lung Cancer Cells. Anticancer. Res. 2018, 38, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.F.; Zhang, H.H.; Lv, Q.; Liu, Y.M.; Li, Y.J.; Li, B.S.; Wang, P.Y.; Shang, W.J.; Yue, Z.; Xie, S.Y. Celastrol Suppresses the Proliferation of Lung Adenocarcinoma Cells by Regulating MicroRNA-24 and MicroRNA-181b. Oncol. Lett. 2018, 15, 2515–2521. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, P.; Sun, Y.; Sharopov, F.S.; Yang, Q.; Chen, F.; Wang, P.; Liang, Z. Lycorine Possesses Notable Anticancer Potentials in On-Small Cell Lung Carcinoma Cells via Blocking Wnt/β-Catenin Signaling and Epithelial-Mesenchymal Transition (EMT). Biochem. Biophys. Res. Commun. 2018, 495, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Ko, J.H.; Lee, J.H.; Kim, C.; Lee, H.; Nam, D.; Lee, J.; Lee, S.G.; Yang, W.M.; Um, J.Y.; et al. Ginkgolic Acid Inhibits Invasion and Migration and TGF-β-Induced EMT of Lung Cancer Cells Through PI3K/Akt/MTOR Inactivation. J. Cell. Physiol. 2017, 232, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Yesil-Celiktas, O.; Sevimli, C.; Bedir, E.; Vardar-Sukan, F. Inhibitory Effects of Rosemary Extracts, Carnosic Acid, and Rosmarinic Acid on the Growth of Various Human Cancer Cell Lines. Plant Foods Hum. Nutr. 2010, 65, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, C.; Lee, S.G.; Yang, W.M.; Um, J.Y.; Sethi, G.; Ahn, K.S. Ophiopogonin D Modulates Multiple Oncogenic Signaling Pathways, Leading to Suppression of Proliferation and Chemosensitization of Human Lung Cancer Cells. Phytomedicine 2018, 40, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Manjamalai, A.; Berlin Grace, V.M. Antioxidant Activity of Essential Oils from Wedelia Chinensis (Osbeck) In Vitro and In Vivo Lung Cancer Bearing C57BL/6 Mice. Asian Pac. J. Cancer Prev. 2012, 13, 3065–3071. [Google Scholar] [CrossRef] [PubMed]
- Petpiroon, N.; Bhummaphan, N.; Tungsukruthai, S.; Pinkhien, T.; Maiuthed, A.; Sritularak, B.; Chanvorachote, P. Chrysotobibenzyl Inhibition of Lung Cancer Cell Migration through Caveolin-1-Dependent Mediation of the Integrin Switch and the Sensitization of Lung Cancer Cells to Cisplatin-Mediated Apoptosis. Phytomedicine 2019, 58, 152888. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, T.; Shi, Z.; Hu, C.; Li, Q.; Sun, C. Synergism Antiproliferative Effects of Apigenin and Naringenin in NSCLC Cells. Molecules 2023, 28, 4947. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Xia, X.; Chen, X.; Xiao, J.; Wang, Q. Characterization of Flavonoids from Dryopteris Erythrosora and Evaluation of Their Antioxidant, Anticancer and Acetylcholinesterase Inhibition Activities. Food Chem. Toxicol. 2013, 51, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.P.; Gurung, R.B.; Sohng, J.K. Dietary Sources, Bioavailability and Biological Activities of Naringenin and Its Derivatives. In Apigenin and Naringenin: Natural Sources, Pharmacology and Role in Cancer Prevention; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 151–172. [Google Scholar]
- Greco, W.R.; Faessel, H.; Levasseur, L. EDITORIALS The Search for Cytotoxic Synergy Between Anticancer Agents: A Case of Dorothy and the Ruby Slippers? J. Natl. Cancer Inst. 1996, 88, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Roell, K.R.; Reif, D.M.; Motsinger-Reif, A.A. An Introduction to Terminology and Methodology of Chemical Synergy-Perspectives from across Disciplines. Front. Pharmacol. 2017, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Pezzani, R.; Salehi, B.; Vitalini, S.; Iriti, M.; Zuñiga, F.A.; Sharifi-Rad, J.; Martorell, M.; Martins, N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina 2019, 55, 110. [Google Scholar] [CrossRef]
- Foucquier, J.; Guedj, M. Analysis of Drug Combinations: Current Methodological Landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, V. Combination Therapy. Neurol. Sci. 2006, 27, s350–s354. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Qin, Y.; Chen, S.; Sun, T. Antitumor Effect of Natural Product Molecules against Lung Cancer. In A Global Scientific Vision-Prevention, Diagnosis, and Treatment of Lung Cancer; InTech: Rijeka, Croatia, 2017. [Google Scholar]
- Ying, H.Z.; Yu, C.H.; Chen, H.K.; Zhang, H.H.; Fang, J.; Wu, F.; Yu, W.Y. Quinonoids: Therapeutic Potential for Lung Cancer Treatment. BioMed Res. Int. 2020, 2020, 2460565. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Kang, H.S.; Kim, I.K.; Lee, H.Y.; Ha, J.H.; Yeo, C.D.; Kang, H.H.; Moon, H.S.; Lee, S.H. Curcumin Sensitizes Human Lung Cancer Cells to Apoptosis and Metastasis Synergistically Combined with Carboplatin. Exp. Biol. Med. 2015, 240, 1416–1425. [Google Scholar] [CrossRef]
- Xu, X.M.; Zhang, Y.; Qu, D.; Liu, H.B.; Gu, X.; Jiao, G.Y.; Zhao, L. Combined Anticancer Activity of Osthole and Cisplatin in NCI-H460 Lung Cancer Cells In Vitro. Exp. Ther. Med. 2013, 5, 707–710. [Google Scholar] [CrossRef]
- Gavrilas, L.I.; Cruceriu, D.; Mocan, A.; Loghin, F.; Miere, D.; Balacescu, O. Plant-Derived Bioactive Compounds in Colorectal Cancer: Insights from Combined Regimens with Conventional Chemotherapy to Overcome Drug-Resistance. Biomedicines 2022, 10, 1948. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Y.; Zhao, M.B.; Zhuang, G.B.; Li, P.P. Marsdenia Tenacissima Extract Restored Gefitinib Sensitivity in Resistant Non-Small Cell Lung Cancer Cells. Lung Cancer 2012, 75, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, Y.; Chen, X.; Zeng, S.; Qian, L.; Ren, X.; Wei, J.; Yang, X.; Zhou, Y.; Gong, Z.; et al. The Antitumor Activities of Marsdenia Tenacissima. Front. Oncol. 2018, 8, 473. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.M.; Yang, T.T.; Cheng, T.S.; Hsiao, T.F.; Chang, P.M.H.; Leu, J.Y.; Wang, F.S.; Hsu, S.L.; Huang, C.Y.F.; Lai, J.M. Modified Sijunzi Decoction Can Alleviate Cisplatin-Induced Toxicity and Prolong the Survival Time of Cachectic Mice by Recovering Muscle Atrophy. J. Ethnopharmacol. 2019, 233, 47–55. [Google Scholar] [CrossRef]
- Jiang, R.-Y.; Fang, Z.-R.; Zhang, H.-P.; Xu, J.-Y.; Zhu, J.-Y.; Chen, K.-Y.; Wang, W.; Jiang, X.; Wang, X.-J. Ginsenosides: Changing the Basic Hallmarks of Cancer Cells to Achieve the Purpose of Treating Breast Cancer. Chin. Med. 2023, 18, 125. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Zhang, R.; Zhao, X.; Zheng, G.; Wang, Z.; Wang, P. Resveratrol Raises In Vitro Anticancer Effects of Paclitaxel in NSCLC Cell Line A549 through COX-2 Expression. Korean J. Physiol. Pharmacol. 2017, 21, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X.; He, W.; Xia, S.; Jiang, X.; Li, X.; Bai, J.; Li, N.; Chen, L.; Yang, B. Apigenin Enhanced Antitumor Effect of Cisplatin in Lung Cancer via Inhibition of Cancer Stem Cells. Nutr. Cancer 2021, 73, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.K.; Wang, H.C.; Ho, C.T.; Chen, H.Y.; Li, S.; Chan, H.L.; Chung, T.W.; Tan, K.T.; Li, Y.R.; Lin, C.C. 5-Demethylnobiletin Promotes the Formation of Polymerized Tubulin, Leads to G2/M Phase Arrest and Induces Autophagy via JNK Activation in Human Lung Cancer Cells. J. Nutr. Biochem. 2015, 26, 484–504. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, Y.; Wu, Z.; Zhang, L.; He, D.; Li, X.; Wang, Z. Synergistic Combination Therapy of Lung Cancer: Cetuximab Functionalized Nanostructured Lipid Carriers for the Co-Delivery of Paclitaxel and 5-Demethylnobiletin. Biomed. Pharmacother. 2019, 118, 109225. [Google Scholar] [CrossRef]
- Klimaszewska-Wisniewska, A.; Halas-Wisniewska, M.; Tadrowski, T.; Gagat, M.; Grzanka, D.; Grzanka, A. Paclitaxel and the Dietary Flavonoid Fisetin: A Synergistic Combination That Induces Mitotic Catastrophe and Autophagic Cell Death in A549 Non-Small Cell Lung Cancer Cells. Cancer Cell Int. 2016, 16, 10. [Google Scholar] [CrossRef]
- Wang, K.; Liu, X.; Liu, Q.; Ho, I.H.; Wei, X.; Yin, T.; Zhan, Y.; Zhang, W.; Zhang, W.; Chen, B.; et al. Hederagenin Potentiated Cisplatin- and Paclitaxel-Mediated Cytotoxicity by Impairing Autophagy in Lung Cancer Cells. Cell Death Dis. 2020, 11, 611. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wen, Q.; Yang, G.; Huang, Z.; Shen, T.; Li, H.; Ren, D. Apoptosis Induction of Dehydrobruceine B on Two Kinds of Human Lung Cancer Cell Lines through Mitochondrial-Dependent Pathway. Phytomedicine 2016, 23, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Yang, G.; Shen, T.; Wang, X.; Li, H.; Ren, D. Dehydrobruceine B Enhances the Cisplatin-Induced Cytotoxicity through Regulation of the Mitochondrial Apoptotic Pathway in Lung Cancer A549 Cells. Biomed. Pharmacother. 2017, 89, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Marostica, L.L.; de Barros, A.L.B.; Oliveira, J.; Salgado, B.S.; Cassali, G.D.; Leite, E.A.; Cardoso, V.N.; Lang, K.L.; Caro, M.S.B.; Durán, F.J.; et al. Antitumor Effectiveness of a Combined Therapy with a New Cucurbitacin B Derivative and Paclitaxel on a Human Lung Cancer Xenograft Model. Toxicol. Appl. Pharmacol. 2017, 329, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Satar, N.A.; Ismail, M.N.; Yahaya, B.H. Synergistic Roles of Curcumin in Sensitising the Cisplatin Effect on a Cancer Stem Cell-like Population Derived from Non-Small Cell Lung Cancer Cell Lines. Molecules 2021, 26, 1056. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yang, Y.; Yang, Y.; Zhang, Y.; Yue, Z.; Pan, Z.; Ren, X. Ginsenoside Rg3 Attenuates Cisplatin Resistance in Lung Cancer by Downregulating PD-L1 and Resuming Immune. Biomed. Pharmacother. 2017, 96, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.T.; Li, S.; Li, Y.R.; Cheng, S.L.; Lin, S.H.; Tung, Y.T. Synergistic Anticancer Effect of a Combination of Paclitaxel and 5-Demethylnobiletin Against Lung Cancer Cell Line In Vitro and In Vivo. Appl. Biochem. Biotechnol. 2019, 187, 1328–1343. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Tao, S.; Guo, F.; Wang, B.; Yang, L.; Ma, L.; Fu, P. Natural Flavonol Fisetin Attenuated Hyperuricemic Nephropathy via Inhibiting IL-6/JAK2/STAT3 and TGF-β/SMAD3 Signaling. Phytomedicine 2021, 87, 153552. [Google Scholar] [CrossRef] [PubMed]
- Takagi, K.; Park, E.; Kato, H. Anti-Inflammatory Activities of Hederagenin and Crude Saponin Isolated from Sapindus Mukorossi GAERTN. Chem. Pharm. Bull. 1980, 28, 1183–1188. [Google Scholar] [CrossRef]
- Gauthier, C.; Legault, J.; Girard-Lalancette, K.; Mshvildadze, V.; Pichette, A. Haemolytic Activity, Cytotoxicity and Membrane Cell Permeabilization of Semi-Synthetic and Natural Lupane- and Oleanane-Type Saponins. Bioorg Med. Chem. 2009, 17, 2002–2008. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, D.; Demuner, A.J.; Barbosa, L.C.A.; Csuk, R.; Heller, L. Hederagenin as a Triterpene Template for the Development of New Antitumor Compounds. Eur. J. Med. Chem. 2015, 105, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, Y.; Shi, J. Reactive Oxygen Species (ROS)-Based Nanomedicine. Chem. Rev. 2019, 119, 4881–4985. [Google Scholar] [CrossRef] [PubMed]
- Sakamuru, S.; Attene-Ramos, M.S.; Xia, M. Mitochondrial Membrane Potential Assay. In High-Throughput Screening Assays in Toxicology; Methods in Molecular Biology; Humana: New York, NY, USA, 2016; Volume 1473, pp. 17–22. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Yao, Y.; Li, H.; Gao, C.; Sun, C.; Zhuang, J. Potential of Cucurbitacin as an Anticancer Drug. Biomed. Pharmacother. 2023, 168, 115707. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.L.; Jian, Y.J.; Chen, J.C.; Wang, T.J.; Chen, W.C.; Zheng, H.Y.; Chang, P.Y.; Liao, K.S.; Lin, Y.W. Curcumin Downregulates P38 MAPK-Dependent X-Ray Repair Cross-Complement Group 1 (XRCC1) Expression to Enhance Cisplatin-Induced Cytotoxicity in Human Lung Cancer Cells. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389, 657–666. [Google Scholar] [CrossRef] [PubMed]
Plant, Used Parts, Family | Extract Type | Phytocompounds | Study Type: In Vitro/In Vivo; Lung Cancer Cell Line | Dosage | Refs. |
---|---|---|---|---|---|
Dryopteris erythrosora (leaves and rhizomes), Dryopteridaceae | Ethanolic extract | Flavonoids | A549 lung cancer cell line (in vitro culture) | — | [4] |
Brassica napus (pollen), Brassicaceae | — | Brassinosteroids (steroidal phytohormones) | A549 lung cancer cell line (in vitro culture) | — | [4,92] |
Haemanthus humilis (bulbs), Amaryllidaceae | Aqueous acidic extracts | Coccinine and montanine (alkaloids) | A549 lung cancer cell line (in vitro culture) | 1 to 50 μM | [93] |
Taxus sp. (bark, leaves, seeds, roots), Taxaceae | — | Diterpene alkaloids, collectively called taxanes: paclitaxel, docetaxel, and cabazitaxel | — | — | [94] |
Catharanthus roseus (herba–aerial parts), Apocynaceae | — | Vincristine and vinblastine (alkaloids) | — | — | [95] |
Podophyllum peltatum (rhizome), Berberidaceae | — | Podophyllin (lignan) | — | — | [96] |
Camptotheca acuminata (bark and stems), Nyssaceae | — | Topotecan (camptothecin derivative) | — | — | [97] |
Panax ginseng (roots), Araliaceae | — | Ginsenoside Rg3 (steroidal saponin) | H1975 cell line (in vitro) and xenograft nude mouse model (in vivo) | — | [98,99,100,101] |
Daphne genkwa (flower buds), Thymelaeaceae | Mixt extract (acetone:methanol:chloroform = 1:1:1) | Yuanhuacine (daphnane diterpenoid class) | human H1993 lung cancer cells (in vitro culture); H1993-implanted xenograft nude mouse model (in vivo) | 0.5–1 mg/kg, once daily, for 21 days (in vivo) | [102] |
Aromatic plants (volatile oil), mainly Lamiaceae | — | Carvacrol (monoterpenoid class) | human A549 and H460 lung cancer cells (in vitro culture) | — | [103] |
Tripterygium wilfordii (roots), Celastraceae | — | Celastrol (pentacyclic quinine triterpenoid) | human A549 lung cancer cell line (in vitro culture) | 3 and 4.5 μM | [104] |
Lycoris radiata (bulbs), Amaryllidaceae | — | Lycorine (isoquinolinic compound) | human A549 and H460 lung cancer cell lines (in vitro culture); A549/Luc-implanted xenograft nude mouse model (in vivo) | 10, 20 and 30 μM | [105] |
Ginkgo biloba (leaves, pseudo-drupes, seeds), Ginkgoaceae | — | Ginkgolic acid C15:1 type (phenolic acids class) | human A549 and H1299 lung cancer cell lines (in vitro culture) | 30 to 150 μM | [106] |
Rosmarinus officinalis (leaves), Lamiaceae | Methanolic extract | Carnosic acid (phenolic diterpene) and rosmarinic acid (phenolic compound) | NCI-H82 human small cell lung carcinoma cell line (in vitro culture) | 6.25 to 100 μg/mL | [107] |
Ophiopogon japonicus (roots), Asparagaceae | — | Ophiopogonin D (steroidal glycoside) | H1299 and A549 lung cancer cell lines (in vitro culture) | 1 to 10 μM | [108] |
Sphagneticola calendulacea (leaves), Asteraceae | — | Carvacrol (monoterpenoidic compound) and trans-caryophyllene (bicyclic sesquiterpene) | C57BL/6 mouse animal model with B16F10 metastatic melanoma tumor xenograft (in vivo) | 5, 10, 25, 50, and 100 μg/mL | [109] |
Dendrobium pulchellum (stem), Orchidaceae | Ethanolic extract | Chrysotobibenzyl (bibenzylic compound) | lung cancer cell lines H460, H292, A549, and H23 (in vitro culture) | 50 to 100 µM | [110] |
Various plants, such as Citrus aurantium (Rutaceae) or Matricaria recutita (Asteraceae) | — | Apigenin and naringenin (flavonoids) | A549 and H1299 non-small cell lung cancer (NSCLC) cell lines (in vitro culture) | 28.7 and 32.5 µM | [111] |
Botanical Name of the Plant | Name of the Phytocompounds | Chemical Structures of the Phytocompounds |
---|---|---|
Dryopteris erythrosora | Flavonoids | |
Brassica napus | Brassinosteroids | |
Haemanthus humilis | Coccinine | |
Montanine | ||
Taxus sp. | Paclitaxel | |
Catharanthus roseus | Vincristine | |
Vinblastine | ||
Podophyllum peltatum | Podophyllin | |
Camptotheca acuminata | Topotecan | |
Panax ginseng | Ginsenoside Rg3 | |
Daphne genkwa | Yuanhuacine | |
Aromatic plants | Carvacrol | |
Tripterygium wilfordii | Celastrol | |
Lycoris radiata | Lycorine | |
Ginkgo biloba | Ginkgolic acid C15:1 type | |
Rosmarinus officinalis | Carnosic acid | |
Rosmarinic acid | ||
Ophiopogon japonicus | Ophiopogonin D | |
Sphagneticola calendulacea | Trans-caryophyllene | |
Dendrobium pulchellum | Chrysotobibenzyl | |
Various plants, such as Citrus aurantium or Matricaria recutita | Apigenin | |
Naringenin |
Medicinal Plant, Family | Phytocompound(s) | Chemotherapeutic Drug | Experimental Model | Concentration | Effects | Refs. |
---|---|---|---|---|---|---|
Scutellaria baicalensis (Lamiaceae) | Baicalin (the major compound), baicalein, wogonin, wogonoside, oroxylin A | Cisplatin | C57BL/6J tumor-inoculated mouse model (in vivo) and Lewis lung carcinoma cells–LLC (in vitro) | Scutellaria baicalensis extract–orally, 300 mg/kg/day. Cisplatin–intraperitoneally, 3 mg/kg/day. | The plant extract effectively reduced cisplatin-induced adverse effects by inhibiting cancer cell growth, causing mitochondrial damage, apoptosis, and cell cycle arrest through various molecular pathways. | [2] |
Marsdenia tenacissima (Apocynaceae) | C21 steroidal glycosides and their derivatives: tenacissoside A–P, marsdenoside A–M, tenacigenoside A–L, tenacigenin A–D | Gefitinib | human NSCLC cell lines: H460, H1975, and H292 (in vitro) | Gefitinib–1 µM. Marsdenia tenacissima–20–100 g crude drug (=20–100 mL). | Inhibition of chemotherapy resistance by restoring sensitivity to gefitinib in NSCLC. Reduced EGFR downstream signaling pathways, reducing phosphorylation of key signaling molecules involved in cancer cell survival and proliferation: PI3K/Akt/mTOR, c-Met, and ERK1/2. | [124,125] |
Zhen-Qi Sijunzi decoction: Panax ginseng, Atractylodes macrocephala, Poria cocos, Glycyrrhiza uralensis, Hedysarum polybotrys, and Ligustrum lucidum | Glycyrrhizic acid (2.422 mg/g), Liquiritin (1.202 mg/g), Ginsenoside Rb1 (0.390 mg/g), Ginsenoside Rg1 (0.333 mg/g), Ginsenoside Re (0.251 mg/g), Salidroside (0.042 mg/g), Formononetin (0.015 mg/g), Atractylenolide III (0.002 mg/g). | Cisplatin | female C57BL/6 mouse model, injected intraperitoneally with Lewis lung carcinoma cancer cells (in vivo) | Cisplatin–5 mg/kg, intraperitoneal, 3 days/week. ZQ-SJZ–700 mg/kg, oral, 5 days/week. | Attenuation of cisplatin-induced toxicity and a prolonged survival rate in cachectic mice through the recovery of muscle atrophy. Combating muscle atrophy in lung cancer patients by modulating myogenic protein levels, preventing muscle wasting, and improving mitochondrial function. | [126] |
Panax ginseng (Araliaceae) | Ginsenoside Rg3 (steroidal saponin) | Cisplatin | human lung cancer cell lines A549 and A549/DDP (cisplatin-resistant) (in vitro) | Ginsenoside Rg3–5, 10, 20, 40, 80, 160 μg/mL | Inhibition of cancer cell chemoresistance in NSCLC by blocking PD-L1 and Akt/NF-κB signaling pathways; potentiation of the cytotoxicity effect of T-CD8+ cells. | [127] |
Vitis vinifera (Vitaceae) | Resveratrol (polyphenolic compound) | Paclitaxel | NSCLC cell line A549 (in vitro) | Resveratrol (5 µg/mL) + Paclitaxel (5 µg/mL); Resveratrol (5 µg/mL) + Paclitaxel (10 µg/mL). | Increased the sensitivity of lung cancer cells to paclitaxel treatment by inhibiting the mTOR pathway and the downregulation of anti-apoptotic proteins, such as Bcl-2 and survivin. | [128] |
Citrus sp. (Rutaceae), Matricaria recutita (Asteraceae), Allium cepa (Amaryllidaceae) | Apigenin (flavonoid) | Cisplatin | NSCLC A549, H1299 cell lines (in vitro); a xenograft mouse model (in vivo) | Apigenin–25 µM; cisplatin–2.5 µM (in vitro). Apigenin–50 mg/kg; cisplatin–3 mg/kg (in vivo). | Apigenin improved the efficacy of cisplatin by boosting its ability to induce apoptosis in cancer cells while reducing cisplatin’s toxicity to normal cells. The combination therapy decreased the incidence of drug resistance and improved the overall survival rate of lung cancer patients. | [86,129] |
Citrus aurantium (Rutaceae) | 5-demethylnobiletin (flavonoid) | Paclitaxel | CL1–5 lung cancer cells (in vitro); nude mouse xenograft model (in vivo) | Paclitaxel–3.1, 6.3, 12.5, 25.0 nM + 5-DMN 10 μM; 5-DMN–1.56, 3.1, 6.3 12.5 μM + Paclitaxel 10 nM (in vitro). Paclitaxel–10 mg/kg; 5-DMN–3 mg/kg; 5- DMN + Paclitaxel–3 mg/kg + 10 mg/kg (in vivo). | The low concentrations of the combination treatment led to a reduction in cell viability and a concomitant increase in apoptosis by modulating the caspase pathway (caspase-3, caspase-8, and caspase-9 activities). | [130,131] |
Various fruits, vegetables | Fisetin (flavonoid) | Paclitaxel | NSCLC A549 cell line (in vitro) | Fisetin–10, 20, 30, 40, 50 μM. Paclitaxel–0.1, 0.2, 0.3, 0.4, 0.5 μM. | The combination therapy upregulated the expression of proteins involved in apoptosis and autophagy, inducing mitotic catastrophe and autophagic cell death. It also increased the production of ROS and caused DNA damage, leading to cell death. | [132] |
Hedera helix (Araliaceae) | Hederagenin (pentacyclic triterpene) | Cisplatin, Paclitaxel | NCI-H1299 and NCI-H1975 cell lines (in vitro) | Hederagenin–6 μM. Cisplatin, Paclitaxel– 2 μM. | Hederagenin enhances the anticancer properties of cisplatin and paclitaxel, leading to cell viability reduction and apoptosis in lung cancer cells. It suppresses autophagy and inhibits the mTOR signaling pathway, indicating its potential for cancer treatment. | [133] |
Brucea javanica (Simaroubaceae) | Dehydrobruceine B (triterpenic lactone) | Cisplatin | A549 and NCI-H292 lung cancer cells (in vitro) | Dehydrobruceine B–1 μM. Cisplatin–9, 18 μM. | The combination therapy instigates the depolarization of the mitochondrial membrane potential, increasing the production of ROS and leading to oxidative stress and ultimately, cell death. Dehydrobruceine B can regulate the expression of proteins involved in the mitochondrial apoptotic pathway, leading to increased apoptosis in lung cancer cells treated with cisplatin. | [134,135] |
Semisynthetic derivative of cucurbitacin B, isolated from Cucumis melo (Cucurbitaceae) | 2-deoxy-2-amine-cucurbitacin E = DACE (tetracyclic triterpenoids) | Cisplatin, Paclitaxel | A459 lung cancer cell line (in vitro); xenograft female BALB/c nude mice (in vivo) | DACE 1 mg/kg + PTX 10 mg/kg | The combined treatment reduced tumor growth and proliferation, reducing residual viable tumor mass and inhibiting cell proliferation, making it less susceptible to drug resistance compared to individual treatments. | [136] |
Curcuma longa (Zingiberaceae) | Curcumin (biphenolic compound) | Cisplatin | human lung cancer adenocarcinoma cells A549 and H2170 (in vitro) | 41 μM curcumin + 30 μM cisplatin for A549 cells; 33 μM curcumin + 7 μM cisplatin for H2170 cells | The combination therapy significantly enhanced cisplatin’s anti-tumor effects, sensitizing NSCLC cells and reducing its toxicity on normal lung cells. | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boța, M.; Vlaia, L.; Jîjie, A.-R.; Marcovici, I.; Crişan, F.; Oancea, C.; Dehelean, C.A.; Mateescu, T.; Moacă, E.-A. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals 2024, 17, 598. https://doi.org/10.3390/ph17050598
Boța M, Vlaia L, Jîjie A-R, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă E-A. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals. 2024; 17(5):598. https://doi.org/10.3390/ph17050598
Chicago/Turabian StyleBoța, Mihaela, Lavinia Vlaia, Alex-Robert Jîjie, Iasmina Marcovici, Flavia Crişan, Cristian Oancea, Cristina Adriana Dehelean, Tudor Mateescu, and Elena-Alina Moacă. 2024. "Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer" Pharmaceuticals 17, no. 5: 598. https://doi.org/10.3390/ph17050598
APA StyleBoța, M., Vlaia, L., Jîjie, A. -R., Marcovici, I., Crişan, F., Oancea, C., Dehelean, C. A., Mateescu, T., & Moacă, E. -A. (2024). Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals, 17(5), 598. https://doi.org/10.3390/ph17050598