Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical Analysis Using HPLC-DAD
2.2. TPC, TFC, and TCT Contents
2.3. Physiochemical and Pharmacokinetic Properties (ADME) of CSEE
2.4. PASS Prediction
2.5. In Silico Toxicity Prediction (Using Pro-Tox II)
2.6. Experimental Validation of the Tested Biological Activities
- Antioxidant activity
- b.
- Antibacterial and Antifungal Properties of CSEE
- c.
- Cytotoxicity of CSEE Against Breast Cancer Cell Lines (MCF-7, MDA-MB-231, and MDA-MB-436)
- d.
- Genotoxicity Evaluation of CSEE on Rat Leukocytes
3. Materials and Methods
3.1. Plant Origin, and Extraction Procedure
3.2. Analysis of Phenolic Compounds (HPLC-DAD)
3.3. TPC, TFC, and TCT Contents
3.4. PASS, ADME, and the Prediction of the Toxicity Analysis (Pro-Tox II)
3.5. Antioxidant Activity
3.5.1. 2,2-Diphenyl-1-Picrylhydrazil Free Radical Scavenging Assay
3.5.2. β-Carotene Bleaching Assay
3.5.3. ABTS Scavenging Activity Assay
3.5.4. Total Antioxidant Capacity
3.6. Antibacterial Activity
3.6.1. Bacterial Strains and Growth Conditions
3.6.2. Disc Diffusion Method
3.6.3. Determination of the MIC, and the MBC
3.7. Antifungal Activity
3.7.1. Selection and Source of Bacterial Strains
3.7.2. Inoculum Preparation and Disk Diffusion Technique
3.7.3. Determination of the MIC, and the MFC
3.8. Cytotoxicity against Breast Cancer Cell Lines
3.8.1. Cell Culture
3.8.2. Cell Viability by MTT Assay
3.9. Genotoxic Effect
3.9.1. Blood Sample Collection and Treatment of Cells
3.9.2. Comet Assay
3.9.3. Examination under Microscope
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aboul-Soud, M.A.M.; Ashour, A.E.; Challis, J.K.; Ahmed, A.F.; Kumar, A.; Nassrallah, A.; Alahmari, T.A.; Saquib, Q.; Siddiqui, M.A.; Al-Sheikh, Y.; et al. Biochemical and Molecular Investigation of In Vitro Antioxidant and Anticancer Activity Spectrum of Crude Extracts of Willow Leaves Salix safsaf. Plants 2020, 9, 1295. [Google Scholar] [CrossRef] [PubMed]
- Saha, T.; Makar, S.; Swetha, R.; Gutti, G.; Singh, S.K. Estrogen Signaling: An Emanating Therapeutic Target for Breast Cancer Treatment. Eur. J. Med. Chem. 2019, 177, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The Role of Oxidative Stress on Breast Cancer Development and Therapy. Tumor Biol. 2016, 37, 4281–4291. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Salinas, F.L.; Delgado-Magallón, A.; Montes-Alvarado, J.B.; Ramírez-Ramírez, D.; Flores-Alonso, J.C.; Cortés-Hernández, P.; Reyes-Leyva, J.; Herrera-Camacho, I.; Anaya-Ruiz, M.; Pelayo, R.; et al. Breast Cancer Subtypes Present a Differential Production of Reactive Oxygen Species (ROS) and Susceptibility to Antioxidant Treatment. Front. Oncol. 2019, 9, 480. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, M.C.; Bevers, T.; Linos, E.; Willett, W.C. Opportunities and Strategies for Breast Cancer Prevention through Risk Reduction. CA Cancer J. Clin. 2008, 58, 347–371. [Google Scholar] [CrossRef]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer—Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies—An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef]
- Urzì Brancati, V.; Scarpignato, C.; Minutoli, L.; Pallio, G. Use of Pharmacogenetics to Optimize Immunosuppressant Therapy in Kidney-Transplanted Patients. Biomedicines 2022, 10, 1798. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Ozleyen, A.; Boyunegmez Tumer, T.; Oluwaseun Adetunji, C.; El Omari, N.; Balahbib, A.; Taheri, Y.; Bouyahya, A.; Martorell, M.; Martins, N. Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules 2019, 9, 679. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Pinto, D.C.G.A. Plant Secondary Metabolites as Anticancer Agents: Successes in Clinical Trials and Therapeutic Application. Int. J. Mol. Sci. 2018, 19, 263. [Google Scholar] [CrossRef] [Green Version]
- Da Rocha, A. Natural Products in Anticancer Therapy. Curr. Opin. Pharmacol. 2001, 1, 364–369. [Google Scholar] [CrossRef]
- Batlle, I. Carob Tree: Ceratonia siliqua L.—Promoting the Conservation and Use of Underutilized and Neglected Crops; Bioversity International: Rome, Italy, 1997; Volume 17, ISBN 9290433280. [Google Scholar]
- Tous, J.; Romero, A.; Batlle, I. The Carob Tree: Botany, horticulture and genetic resources. In Horticultural Reviews; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; Volume 41, pp. 385–456. [Google Scholar]
- Ramón-Laca, L.; Mabberley, D.J. The Ecological Status of the Carob-Tree (Ceratonia siliqua, Leguminosae) in the Mediterranean. Bot. J. Linn. Soc. 2004, 144, 431–436. [Google Scholar] [CrossRef]
- Calixto, F.S.; Cañellas, J. Components of Nutritional Interest in Carob Pods (Ceratonia siliqua). J. Sci. Food Agric. 1982, 33, 1319–1323. [Google Scholar] [CrossRef]
- Rodríguez-Solana, R.; Romano, A.; Moreno-Rojas, J.M. Carob Pulp: A Nutritional and Functional By-Product Worldwide Spread in the Formulation of Different Food Products and Beverages. A Review. Processes 2021, 9, 1146. [Google Scholar] [CrossRef]
- Makris, D.P.; Kefalas, P. Carob Pods (Ceratonia siliqua L.) as a Source of Polyphenolic Antioxidants. Food Technol. Biotechnol. 2004, 42, 105–108. [Google Scholar]
- Silaev, A.A. Carob (Ceratonia siliqua): Health, Medicine and Chemistry. Eur. Chem. Bull. 2017, 6, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Rtibi, K.; Selmi, S.; Grami, D.; Amri, M.; Eto, B.; El-Benna, J.; Sebai, H.; Marzouki, L. Chemical Constituents and Pharmacological Actions of Carob Pods and Leaves (Ceratonia siliqua L.) on the Gastrointestinal Tract: A Review. Biomed. Pharmacother. 2017, 93, 522–528. [Google Scholar] [CrossRef]
- Lakkab, I.; El Hajaji, H.; Lachkar, N.; El Bali, B.; Lachkar, M.; Ciobica, A. Phytochemistry, Bioactivity: Suggestion of Ceratonia siliqua L. as Neurodegenerative Disease Therapy. J. Complement. Integr. Med. 2018, 15, 20180013. [Google Scholar] [CrossRef] [PubMed]
- Rashed, K. Phytochemical and Biological Effects of Ceratonia siliqua L.: A Review. Int. J. Innov. Pharm. Sci. Res. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Ghanemi, F.Y.; Belarbi, M. Phytochemistry and Pharmacology of Ceratonia siliqua L. Leaves. J. Nat. Prod. Res. Appl. 2021, 1, 69–82. [Google Scholar] [CrossRef]
- Eldahshan, O.A. Isolation and Structure Elucidation of Phenolic Compounds of Carob Leaves Grown in Egypt. Curr. Res. J. Biol. Sci. 2011, 3, 52–55. [Google Scholar]
- Goulas, V.; Hadjisolomou, A. Dynamic Changes in Targeted Phenolic Compounds and Antioxidant Potency of Carob Fruit (Ceratonia siliqua L.) Products during In Vitro Digestion. LWT 2019, 101, 269–275. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, A.A.; Başaran, N. The Antioxidant and Antigenotoxic Properties of Citrus Phenolics Limonene and Naringin. Food Chem. Toxicol. 2015, 81, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Gelen, V.; Şengül, E. Antioxidant, Anti-Inflammatory and Antiapoptotic Effects of Naringin on Cardiac Damage Induced by Cisplatin. Indian J. Tradit. Knowl. 2020, 19, 459–465. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer Potential of Quercetin: A Comprehensive Review. Phyther. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef] [PubMed]
- Dajas, F. Life or Death: Neuroprotective and Anticancer Effects of Quercetin. J. Ethnopharmacol. 2012, 143, 383–396. [Google Scholar] [CrossRef]
- Reyes-Farias, M.; Carrasco-Pozo, C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int. J. Mol. Sci. 2019, 20, 3177. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [Green Version]
- Kubina, R.; Iriti, M.; Kabała-Dzik, A. Anticancer Potential of Selected Flavonols: Fisetin, Kaempferol and Quercetin on Head and Neck Cancers. Nutrients 2021, 13, 845. [Google Scholar] [CrossRef]
- Sharma, N.; Biswas, S.; Al-Dayan, N.; Alhegaili, A.S.; Sarwat, M. Antioxidant Role of Kaempferol in Prevention of Hepatocellular Carcinoma. Antioxidants 2021, 10, 1419. [Google Scholar] [CrossRef]
- Cherrat, A.; Amalich, S.; Regragui, M.; Bouzoubae, A.; Elamrani, M.; Mahjoubi, M.; Bourakhouadar, M.; Zair, T. Polyphenols Content and Evaluation of Antioxidant Activity of Anacyclus pyrethrum (L.) Lag. from Timahdite a Moroccan Middle Atlas Region. Int. J. Adv. Res. 2017, 5, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Sakanaka, S.; Tachibana, Y.; Okada, Y. Preparation and Antioxidant Properties of Extracts of Japanese Persimmon Leaf Tea (Kakinoha-Cha). Food Chem. 2005, 89, 569–575. [Google Scholar] [CrossRef]
- Gregoriou, G.; Neophytou, C.M.; Vasincu, A.; Gregoriou, Y.; Hadjipakkou, H.; Pinakoulaki, E.; Christodoulou, M.C.; Ioannou, G.D.; Stavrou, I.J.; Christou, A. Anti-Cancer Activity and Phenolic Content of Extracts Derived from Cypriot Carob (Ceratonia siliqua L.) Pods Using Different Solvents. Molecules 2021, 26, 5017. [Google Scholar] [CrossRef]
- Ydjedd, S.; Chaala, M.; Richard, G.; Kati, D.E.; López-Nicolás, R.; Fauconnier, M.-L.; Louaileche, H. Assessment of Antioxidant Potential of Phenolic Compounds Fractions of Algerian Ceratonia Siliqua L. Pods during Ripening Stages. Int. Food Res. J. 2017, 24, 2041–2049. [Google Scholar]
- Avallone, R.; Plessi, M.; Baraldi, M.; Monzani, A. Determination of Chemical Composition of Carob (Ceratonia siliqua): Protein, Fat, Carbohydrates and Tannins. J. Food Compos. Anal. 1997, 10, 166–172. [Google Scholar] [CrossRef]
- Martin, Y.C. A Bioavailability Score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef]
- Hubatsch, I.; Ragnarsson, E.G.E.; Artursson, P. Determination of Drug Permeability and Prediction of Drug Absorption in Caco-2 Monolayers. Nat. Protoc. 2007, 2, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wang, J. Renal Drug Transporters and Their Significance in Drug–Drug Interactions. Acta Pharm. Sin. B 2016, 6, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A Boiled-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [Green Version]
- Custódio, L.; Escapa, A.L.; Fernandes, E.; Fajardo, A.; Aligué, R.; Alberício, F.; Neng, N.; Nogueira, J.M.F.; Romano, A. Phytochemical Profile, Antioxidant and Cytotoxic Activities of the Carob Tree (Ceratonia siliqua L.) Germ Flour Extracts. Plant Foods Hum. Nutr. 2011, 66, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Lakkab, I.; El Hajaji, H.; Lachkar, N.; Lefter, R.; Ciobica, A.; El Bali, B.; Lachkar, M. Ceratonia siliqua L. Seed Peels: Phytochemical Profile, Antioxidant Activity and Effect on Mood Disorders. J. Funct. Foods 2019, 54, 457–465. [Google Scholar] [CrossRef]
- Sebai, H.; Souli, A.; Chehimi, L.; Rtibi, K.; Amri, M.; El-Benna, J.; Sakly, M. In Vitro and In Vivo Antioxidant Properties of Tunisian Carob (Ceratonia siliqua L.). J. Med. Plants Res. 2013, 7, 85–90. [Google Scholar] [CrossRef]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Hano, C.; Bousta, D. Assessment of Antidepressant-like, Anxiolytic Effects and Impact on Memory of Pimpinella anisum L. Total Extract on Swiss Albino Mice. Plants 2021, 10, 1573. [Google Scholar] [CrossRef]
- Hazzit, M.; Baaliouamer, A.; Veríssimo, A.R.; Faleiro, M.L.; Miguel, M.G. Chemical Composition and Biological Activities of Algerian Thymus Oils. Food Chem. 2009, 116, 714–721. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Usman, H.; Abdulrahman, F.I.; Usman, A. Qualitative Phytochemical Screening and In Vitro Antimicrobial Effects of Methanol Stem Bark Extract of Ficus thonningii (Moraceae). Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Kivçak, B.; Mert, T.; Öztürk, H.T. Antimicrobial and Cytotoxic Activities of Ceratonia siliqua L. Extracts. Turk. J. Biol. 2002, 26, 197–200. [Google Scholar]
- Meziani, S.; Oomah, B.D.; Zaidi, F.; Simon-Levert, A.; Bertrand, C.; Zaidi-Yahiaoui, R. Antibacterial Activity of Carob (Ceratonia siliqua L.) Extracts against Phytopathogenic Bacteria Pectobacterium atrosepticum. Microb. Pathog. 2015, 78, 95–102. [Google Scholar] [CrossRef]
- Ben Othmen, K.; Garcia-Beltrán, J.M.; Elfalleh, W.; Haddad, M.; Esteban, M.Á. Phytochemical Compounds and Biological Properties of Carob Pods (Ceratonia siliqua L.) Extracts at Different Ripening Stages. Waste Biomass Valoriz. 2021, 12, 4975–4990. [Google Scholar] [CrossRef]
- Nohynek, L.J.; Alakomi, H.-L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.-M.; Puupponen-Pimiä, R.H. Berry Phenolics: Antimicrobial Properties and Mechanisms of Action against Severe Human Pathogens. Nutr. Cancer 2006, 54, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amorese, V.; Donadu, M.; Usai, D.; Sanna, A.; Milia, F.; Pisanu, F.; Molicotti, P.; Zanetti, S.; Doria, C. In Vitro Activity of Essential Oils against Pseudomonas aeruginosa Isolated from Infected Hip Implants. J. Infect. Dev. Ctries. 2018, 12, 996–1001. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Wei, H.; Hu, J.; Gao, M.-T. Structure Analysis of Condensed Tannin from Rice Straw and Its Inhibitory Effect on Staphylococcus aureus. Ind. Crops Prod. 2020, 145, 112130. [Google Scholar] [CrossRef]
- Wen, W.; Alseekh, S.; Fernie, A.R. Conservation and Diversification of Flavonoid Metabolism in the Plant Kingdom. Curr. Opin. Plant Biol. 2020, 55, 100–108. [Google Scholar] [CrossRef]
- Biharee, A.; Sharma, A.; Kumar, A.; Jaitak, V. Antimicrobial Flavonoids as a Potential Substitute for Overcoming Antimicrobial Resistance. Fitoterapia 2020, 146, 104720. [Google Scholar] [CrossRef]
- Stoner, G.D.; Mukhtar, H. Polyphenols as Cancer Chemopreventive Agents. J. Cell. Biochem. 1995, 59, 169–180. [Google Scholar] [CrossRef]
- Corsi, L.; Avallone, R.; Cosenza, F.; Farina, F.; Baraldi, C.; Baraldi, M. Antiproliferative Effects of Ceratonia siliqua L. on Mouse Hepatocellular Carcinoma Cell Line. Fitoterapia 2002, 73, 674–684. [Google Scholar] [CrossRef]
- Custódio, L.; Luísa Escapa, A.; Fernandes, E.; Fajardo, A.; Aligué, R.; Alberício, F.; Neng, N.; Manuel, J.; Nogueira, F.; Romano, A. In Vitro Cytotoxic Effects and Apoptosis Induction by a Methanol Leaf Extract of Carob Tree (Ceratonia siliqua L.). J. Med. Plant Res. 2011, 5, 1987–1996. [Google Scholar]
- Custódio, L.; Fernandes, E.; Escapa, A.; López-Avilés, S.; Fajardo, A.; Aligué, R.; Alberício, F.; Romano, A. Antiproliferative and Apoptotic Activities of Extracts from Carob Tree (Ceratonia siliqua L.) in MDA-MB-231 Human Breast Cancer Cells. Planta Med. 2008, 74, PA48. [Google Scholar] [CrossRef]
- Ghanemi, F.Z.; Belarbi, M.; Fluckiger, A.; Nani, A.; Dumont, A.; De Rosny, C.; Aboura, I.; Khan, A.S.; Murtaza, B.; Benammar, C.; et al. Carob Leaf Polyphenols Trigger Intrinsic Apoptotic Pathway and Induce Cell Cycle Arrest in Colon Cancer Cells. J. Funct. Foods 2017, 33, 112–121. [Google Scholar] [CrossRef]
- Yen, G.; Chen, H.; Peng, H. Evaluation of the Cytotoxicity, Mutagenicity and Antimutagenicity of Emerging Edible Plants. Food Chem. Toxicol. 2001, 39, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, H.; Sadeghnia, H.R. Effect of Safranal, a Constituent of Crocus sativus (Saffron), on Methyl Methanesulfonate (MMS)—Induced DNA Damage in Mouse Organs: An Alkaline Single-Cell Gel Electrophoresis (Comet) Assay. DNA Cell Biol. 2007, 26, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Tice, R.R. The Single Cell Gel/Comet Assay: A Microgel Electrophoretic Technique for the Detection of DNA Damage and Repair in Individual Cells. Environ. Mutagen. 1995, 2, 315–339. [Google Scholar]
- Fairbairn, D.W.; Olive, P.L.; O’Neill, K.L. The Comet Assay: A Comprehensive Review. Mutat. Res. Genet. Toxicol. 1995, 339, 37–59. [Google Scholar] [CrossRef]
- Tice, R.R.; Andrews, P.W.; Hirai, O.; Singh, N.P. The Single Cell Gel (SCG) assay: An electrophoretic technique for the detection of DNA damage in individual cells. In Biological Reactive Intermediates IV: Molecular and Cellular Effects and Their Impact on Human Health; Springer: Berlin/Heidelberg, Germany, 1991; pp. 157–164. [Google Scholar]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Labieniec, M.; Gabryelak, T. Effects of Tannins on Chinese Hamster Cell Line B14. Mutat. Res. Toxicol. Environ. Mutagen. 2003, 539, 127–135. [Google Scholar] [CrossRef]
- Stopper, H.; Schmitt, E.; Kobras, K. Genotoxicity of Phytoestrogens. Mutat. Res. Mol. Mech. Mutagen. 2005, 574, 139–155. [Google Scholar] [CrossRef]
- Kunwar, A.; Priyadarsini, K.I. Free Radicals, Oxidative Stress and Importance of Antioxidants in Human Health. J. Med. Allied Sci. 2011, 1, 53–60. [Google Scholar]
- Baldim, J.L.; de Alcântara, B.G.V.; Domingos, O.D.S.; Soares, M.G.; Caldas, I.S.; Novaes, R.D.; Oliveira, T.B.; Lago, J.H.G.; Chagas-Paula, D.A. The Correlation between Chemical Structures and Antioxidant, Prooxidant and Antitrypanosomatid Properties of Flavonoids. Oxid. Med. Cell. Longev. 2017, 2017, 3789856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, N.K. Modulation of Radiation-Induced and Mitomycin C-Induced Chromosome Damage by Apigenin in Human Lymphocytes In Vitro. J. Radiat. Res. 2013, 54, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noel, S.; Kasinathan, M.; Rath, S.K. Evaluation of Apigenin Using in Vitro Cytochalasin Blocked Micronucleus Assay. Toxicol. Vitro 2006, 20, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Yetiştirme, D.H.; Erdem, M.G.; Cinkılıç, N.; Vatan, Ö.; Yılmaz, D.; Bağdaş, D.; Bilaloğlu, R. Genotoxic and Anti-Genotoxic Effects of Vanillic Acid against Mitomycin C-Induced Genomic Damage in Human Lymphocytes In Vitro. Asian Pac. J. Cancer Prev. 2012, 13, 4993–4998. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.H.; Azmi, A.S.; Hadi, S.M. Prooxidant DNA Breakage Induced by Caffeic Acid in Human Peripheral Lymphocytes: Involvement of Endogenous Copper and a Putative Mechanism for Anticancer Properties. Toxicol. Appl. Pharmacol. 2007, 218, 249–255. [Google Scholar] [CrossRef]
- Czeczot, H.; Tudek, B.; Kusztelak, J.; Szymczyk, T.; Dobrowolska, B.; Glinkowska, G.; Malinowski, J.; Strzelecka, H. Isolation and Studies of the Mutagenic Activity in the Ames Test of Flavonoids Naturally Occurring in Medical Herbs. Mutat. Res. Toxicol. 1990, 240, 209–216. [Google Scholar] [CrossRef]
- Duthie, S.J.; Johnson, W.; Dobson, V.L. The Effect of Dietary Flavonoids on DNA Damage (Strand Breaks and Oxidised Pyrimdines) and Growth in Human Cells. Mutat. Res. Toxicol. Environ. Mutagen. 1997, 390, 141–151. [Google Scholar] [CrossRef]
- Stanisģaw, J.; Rosochacki, Z.E.F. In Vitro Evaluation of Biological Activity of Cinnamic, Caffeic, Ferulic and Chlorogenic Acids with Use of Escherichia coli K-12 RECA:: GFP Biosensor Strain. Drugs 2017, 2, 6–13. [Google Scholar]
- Loukili, E.L.; Bouchal, B.; Bouhrim, M.; Abrigach, F.; Genva, M.; Zidi, K.; Bnouham, M.; Bellaoui, M.; Hammouti, B.; Addi, M. Chemical Composition, Antibacterial, Antifungal and Antidiabetic Activities of Ethanolic Extracts of Opuntia dillenii Fruits Collected from Morocco. J. Food Qual. 2022, 2022, 9471239. [Google Scholar] [CrossRef]
- Zrouri, H.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Kharchoufa, L.; Ouahhoud, S.; Ouassou, H.; El Assri, S.; Choukri, M. Phytochemical Analysis, Antioxidant Activity and Nephroprotective Effect of the Raphanus sativus Aqueous Extract. Mediterr. J. Chem. 2021, 11, 84. [Google Scholar] [CrossRef]
- Frond, A.D.; Iuhas, C.I.; Stirbu, I.; Leopold, L.; Socaci, S.; Andreea, S.; Ayvaz, H.; Andreea, S.; Mihai, S.; Diaconeasa, Z. Phytochemical Characterization of Five Edible Purple-Reddish Vegetables: Anthocyanins, Flavonoids and Phenolic Acid Derivatives. Molecules 2019, 24, 1536. [Google Scholar] [CrossRef] [Green Version]
- Mohti, H.; Taviano, M.F.; Cacciola, F.; Dugo, P.; Mondello, L.; Zaid, A.; Cavò, E.; Miceli, N. Silene vulgaris Subsp. Macrocarpa Leaves and Roots from Morocco: Assessment of the Efficiency of Different Extraction Techniques and Solvents on Their Antioxidant Capacity, Brine Shrimp Toxicity and Phenolic Characterization. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2020, 154, 692–699. [Google Scholar] [CrossRef]
- Alam, A.; Jawaid, T.; Alam, P. In Vitro Antioxidant and Anti-Inflammatory Activities of Green Cardamom Essential Oil and In Silico Molecular Docking of Its Major Bioactives. J. Taibah Univ. Sci. 2021, 15, 757–768. [Google Scholar] [CrossRef]
- Linde, G.A.; Gazim, Z.C.; Cardoso, B.K.; Jorge, L.F.; Tešević, V.; Glamočlija, J.; Soković, M.; Colauto, N.B. Antifungal and Antibacterial Activities of Petroselinum crispum Essential Oil. Genet. Mol. Res. 2016, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the PASS Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandsi, F.; Lafdil, F.Z.; Elbouzidi, A.; Bouknana, S.; Miry, A.; Addi, M.; Conte, R.; Hano, C.; Gseyra, N. Evaluation of Acute and Subacute Toxicity and LC-MS/MS Compositional Alkaloid Determination of the Hydroethanolic Extract of Dysphania ambrosioides (L.) Mosyakin and Clemants Flowers. Toxins 2022, 14, 475. [Google Scholar] [CrossRef]
- Nakyai, W.; Pabuprapap, W.; Sroimee, W.; Ajavakom, V.; Yingyongnarongkul, B.E.; Suksamrarn, A. Anti-Acne Vulgaris Potential of the Ethanolic Extract of Mesua ferrea L. Flowers. Cosmetics 2021, 8, 107. [Google Scholar] [CrossRef]
- Chaudhary, S.; Chandrashekar, K.S.; Pai, K.S.R.; Setty, M.M.; Devkar, R.A.; Reddy, N.D.; Shoja, M.H. Evaluation of Antioxidant and Anticancer Activity of Extract and Fractions of Nardostachys Jatamansi DC in Breast Carcinoma. BMC Complement. Altern. Med. 2015, 15, 50. [Google Scholar] [CrossRef] [Green Version]
- Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Meskali, N.; Azghar, A.; Addi, M.; Hano, C.; Maleb, A.; Gseyra, N. Antibacterial and Antioxidant Activity of Dysphania Ambrosioides (L.) Mosyakin and Clemants Essential Oils: Experimental and Computational Approaches. Antibiotics 2022, 11, 482. [Google Scholar] [CrossRef]
- Rădulescu, M.; Jianu, C.; Lukinich-Gruia, A.T.; Mioc, M.; Mioc, A.; Șoica, C.; Stana, L.G. Chemical Composition, In Vitro and In Silico Antioxidant Potential of Melissa officinalis Subsp.: Officinalis Essential Oil. Antioxidants 2021, 10, 1081. [Google Scholar] [CrossRef] [PubMed]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Barry, A.L.; Craig, W.A.; Nadler, H.; Reller, L.B.; Sanders, C.C.; Swenson, J.M. Methods for Determining Bactericidal Activity of Antimicrobial Agents. Approv. Guidel. 1999, 19, 1–3. [Google Scholar]
- Wayne, P.A. Performance Standards for Antimicrobial Disk Susceptibility Tests; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002; Volume 12, pp. 1–53. [Google Scholar]
- Danciu, C.; Muntean, D.; Alexa, E.; Farcas, C.; Oprean, C.; Zupko, I.; Bor, A.; Minda, D.; Proks, M.; Buda, V.; et al. Phytochemical Characterization and Evaluation of the Antimicrobial, Antiproliferative and Pro-Apoptotic Potential of Ephedra alata Decne. Hydroalcoholic Extract against the MCF-7 Breast Cancer Cell Line. Molecules 2018, 24, 13. [Google Scholar] [CrossRef] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for In Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbouzidi, A.; Ouassou, H.; Aherkou, M.; Kharchoufa, L.; Meskali, N.; Baraich, A.; Mechchate, H.; Bouhrim, M.; Idir, A.; Hano, C. LC–MS/MS Phytochemical Profiling, Antioxidant Activity and Cytotoxicity of the Ethanolic Extract of Atriplex halimus L. against Breast Cancer Cell Lines: Computational Studies and Experimental Validation. Pharmaceuticals 2022, 15, 1156. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ouahhoud, S.; Khoulati, A.; Kadda, S.; Bencheikh, N.; Mamri, S.; Ziani, A.; Baddaoui, S.; Eddabbeh, F.-E.; Lahmass, I.; Benabbes, R.; et al. Antioxidant Activity, Metal Chelating Ability and DNA Protective Effect of the Hydroethanolic Extracts of Crocus sativus Stigmas, Tepals and Leaves. Antioxidants 2022, 11, 932. [Google Scholar] [CrossRef]
- Strubbia, S.; Lyons, B.P.; Lee, R.J. Spatial and Temporal Variation of Three Biomarkers in Mytilus Edulis. Mar. Pollut. Bull. 2019, 138, 322–327. [Google Scholar] [CrossRef]
N° | Compounds | Formula | Group | RT (min) | Area | %Area |
---|---|---|---|---|---|---|
1 | Gallic acid | C7H6O5 | Phenolic acids | 3.133 | 940.85 | 0.70 |
2 | Chlorogenic acid | C16H18O9 | Hydroxycinnamic acids | 9.636 | 4163.66 | 3.12 |
3 | Catechin | C15H14O6 | Flavonoids (Flavan-3-ols) | 10.614 | 3993.53 | 2.99 |
4 | 4-Hydroxybenzoic acid | C7H6O3 | Hydroxybenzoic acids | 10.923 | 6061.32 | 4.54 |
5 | Catechin hydrate | C15H14O6•H2O | Flavonoids (Flavan-3-ols) | 12.004 | 1701.96 | 1.27 |
6 | Caffeic acid | C9H8O4 | Hydroxycinnamic acids | 12.924 | 926.39 | 0.69 |
7 | Syringic acid | C9H10O5 | Hydroxybenzoic acids | 13.682 | 2254.99 | 1.69 |
8 | Orcinol | C7H8O2 | Phenolics | 13.920 | 7421.81 | 5.56 |
9 | Vanillic acid | C8H8O4 | Hydroxybenzoic acids | 14.91 | 1573.56 | 1.18 |
10 | Vanillin | C8H8O3 | Phenolic aldehydes | 15.24 | 2633.05 | 1.97 |
11 | 3-Hydroxybenzoic acid | C7H6O3 | Hydroxybenzoic acids | 15.94 | 6976.20 | 5.22 |
12 | Naringin | C27H32O14 | Flavonoids (Flavanones) | 16.14 | 23,431.57 | 17.54 |
13 | Cinnamic acid | C9H8O2 | Hydroxycinnamic acids | 16.47 | 1537.51 | 1.15 |
14 | Ferulic acid | C10H10O4 | Hydroxycinnamic acids | 16.88 | 2446.93 | 1.83 |
15 | p-coumaric acid | C9H8O3 | Hydroxycinnamic acids | 17.69 | 499.77 | 0.37 |
16 | Sinapic acid | C11H12O5 | Hydroxycinnamic acids | 18.13 | 1763.00 | 1.32 |
17 | Salicylic acid | C7H6O3 | Hydroxybenzoic acids | 18.42 | 6891.03 | 5.16 |
18 | Flavanone | C15H12O2 | Flavonoids (Flavanones) | 19.410 | 2581.39 | 1.93 |
19 | Quercetin 3-O-β-D-glucoside | C21H20O12 | Flavonoid glycosides | 19.763 | 3448.31 | 2.58 |
20 | Rutin | C27H30O16 | Flavonoid glycosides | 20.597 | 468.33 | 0.35 |
21 | Quercetin | C15H10O7 | Flavonoids | 21.283 | 4558.55 | 3.41 |
22 | Chalcone | C15H12O | Flavonoids | 21.730 | 4131.55 | 3.09 |
23 | Succinic acid | C4H6O4 | Dicarboxylic acids | 22.023 | 16,122.19 | 12.07 |
24 | 2-hydroxycinnamic acid | C9H8O4 | Hydroxycinnamic acids | 22.703 | 11,096.60 | 8.31 |
25 | Rutin hydrate | C27H30O16•xH2O | Flavonoid glycosides | 23.600 | 744.53 | 0.56 |
26 | Kaempferol | C15H10O6 | Flavonoids | 23.988 | 2205.06 | 1.65 |
27 | Phloridzin dihydrate | C21H28O12 | Dihydrochalcones | 25.745 | 2819.78 | 2.11 |
28 | Flavone | C15H10O2 | Flavonoids (Flavones) | 27.978 | 8316.22 | 6.23 |
29 | Apigenin | C15H10O5 | Flavonoids (Flavones) | 39.344 | 351.88 | 0.26 |
30 | 3-hydroxy flavone | C15H10O3 | Flavonoids (Flavones) | 41.522 | 1504.01 | 1.13 |
Extract | Total Polyphenol Content (mg GAE/100 g DW) | Total Flavone and Flavonol Content (mg RE/100 g DW) | Total Condensed Tannins (mg CE/100 DW) |
---|---|---|---|
C. siliqua Ethanolic Extract (CSEE) | 96.98 ± 1.15 | 5.92 ± 0.06 | 29.61 ± 0.36 |
Compound Number | HBD | HBA | TPSA (Å2) | Log Po/w (WLOGP) | Log S (SILICO S-IT) | Lipinski’s Rule of Five | Veber Filter |
---|---|---|---|---|---|---|---|
1 | 6 | 9 | 164.75 | −0.75 | 0.40 (+++) | Yes; 1 violation: NHorOH > 5 | No; 1 violation: TPSA > 140 |
2 | 5 | 6 | 110.38 | 1.22 | −2.14 (+++) | Yes; 0 violation | Yes; 0 violation |
3 | 2 | 3 | 57.53 | 1.09 | −1.17 (+++) | Yes; 0 violation | Yes; 0 violation |
4 | 2 | 2 | 40.46 | 1.41 | −1.59 (+++) | Yes; 0 violation | Yes; 0 violation |
5 | 2 | 3 | 57.53 | 1.09 | −1.17 (+++) | Yes; 0 violation | Yes; 0 violation |
6 | 8 | 14 | 225.06 | −1.49 | −0.49 (+++) | No; 3 violations: MW > 500, NorO > 10, NHorOH > 5 | No; 1 violation: TPSA > 140 |
7 | 8 | 12 | 210.51 | −0.54 | −1.51 (+++) | No; 2 violations: NorO > 10, NHorOH > 5 | No; 1 violation: TPSA > 140 |
8 | 2 | 3 | 57.53 | 1.09 | −1.17 (+++) | Yes; 0 violation | Yes; 0 violation |
9 | 5 | 7 | 131.36 | 1.99 | −3.24 (+++) | Yes; 0 violation | Yes; 0 violation |
10 | 0 | 1 | 17.07 | 3.47 | −4.96 (++) | Yes; 0 violation | Yes; 0 violation |
11 | 2 | 4 | 74.60 | −0.06 | 0.61 (+++) | Yes; 0 violation | Yes; 0 violation |
12 | 2 | 3 | 57.53 | 1.38 | −1.28 (+++) | Yes; 0 violation | Yes; 0 violation |
13 | 9 | 12 | 195.60 | −0.33 | −1.66 (+++) | No; 2 violations: NorO > 10, NHorOH > 5 | No; 1 violation: TPSA > 140 |
14 | 0 | 2 | 30.21 | 3.46 | −6.13 (+) | Yes; 0 violation | Yes; 0 violation |
Prediction | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADME Prediction Absorption Parameters | ||||||||||||||
Bioavailability score | 0.11 | 0.55 | 0.85 | 0.55 | 0.85 | 0.17 | 0.17 | 0.85 | 0.55 | 0.55 | 0.85 | 0.85 | 0.17 | 0.55 |
Caco-2 Permeability | −0.84 | −0.283 | 1.151 | 1.677 | 1.123 | −0.658 | 1.151 | 0.242 | −0.229 | 1.335 | 0.603 | 1.210 | 0.203 | 1.263 |
Intestinal Absorption (%) | 36.37 | 68.82 | 83.96 | 91.78 | 79.08 | 25.79 | 83.88 | 47.99 | 77.20 | 94.97 | 71.74 | 93.49 | 28.00 | 97.38 |
Distribution Parameters | ||||||||||||||
Log Kp (cm/s) | −2.735 | −2.735 | −2.723 | −2.585 | −2.735 | −2.735 | −2.723 | −2.735 | −2.735 | −1.998 | −2.735 | −2.712 | −2.735 | −2.215 |
VDss | 0.581 | 1.027 | −1.557 | 0.134 | −1.607 | 0.619 | −1.570 | 1.846 | 1.559 | 0.365 | −1.013 | −1.191 | 0.596 | 0.129 |
BBB Permeability | −1.407 | −1.054 | −0.334 | −0.292 | −0.397 | −1.600 | −0.334 | −1.688 | −1.098 | 0.560 | −0.163 | −0.225 | −1.146 | 0.165 |
Metabolism Parameters | ||||||||||||||
CYP2D6, and CYP3A4 Substrate | No | No | No | No | No | No | No | No | No | No | No | No | No | No |
CYP2D6, and CYP3A4 Inhibitors | No | No | No | No | No | No | No | No | No | No | No | No | No | No |
Excretion Parameters | ||||||||||||||
Total Clearance | 0.307 | 0.183 | 0.593 | 0.552 | 0.588 | 0.318 | 0.607 | 0.394 | 0.407 | 0.223 | 0.722 | 0.736 | 0.258 | 0.382 |
Renal OCT2 Substrate | No | No | No | No | No | No | No | No | No | No | No | No | No | No |
Compounds | Biological Activities | |||||||
---|---|---|---|---|---|---|---|---|
Antioxidant | Antibacterial | Antifungal | Antineoplastic (Breast Cancer) | |||||
Pa | Pi | Pa | Pi | Pa | Pi | Pa | Pi | |
Chlorogenic acid | 0.785 | 0.004 | 0.537 | 0.013 | 0.638 | 0.014 | 0.391 | 0.033 |
Catechin | 0.810 | 0.003 | 0.320 | 0.053 | 0.552 | 0.023 | 0.486 | 0.020 |
4-Hydroxybenzoic acid | 0.320 | 0.020 | 0.384 | 0.034 | 0.384 | 0.053 | 0.168 | 0.118 |
Orcinol | 0.440 | 0.009 | 0.325 | 0.051 | 0.416 | 0.047 | 0.368 | 0.038 |
3-Hydroxybenzoic acid | 0.329 | 0.019 | 0.373 | 0.037 | 0.378 | 0.055 | 0.187 | 0.103 |
Naringin | 0.851 | 0.003 | 0.669 | 0.005 | 0.816 | 0.004 | 0.858 | 0.006 |
Salicylic acid | 0.318 | 0.020 | 0.404 | 0.029 | 0.395 | 0.051 | n.d. | n.d. |
Quercetin 3-O-β-D-glucoside | 0.913 | 0.003 | 0.599 | 0.009 | 0.714 | 0.009 | 0.833 | 0.008 |
Quercetin | 0.872 | 0.003 | 0.387 | 0.033 | 0.490 | 0.032 | 0.797 | 0.012 |
Chalcone | 0.421 | 0.010 | 0.284 | 0.066 | 0.361 | 0.059 | 0.544 | 0.015 |
Succinic acid | 0.251 | 0.036 | 0.288 | 0.065 | 0.343 | 0.065 | n.d. | n.d. |
2-hydroxycinnamic acid | 0.523 | 0.006 | 0.355 | 0.042 | 0.464 | 0.037 | 0.352 | 0.041 |
Phloridzin dihydrate | 0.655 | 0.004 | 0.551 | 0.012 | 0.651 | 0.013 | 0.606 | 0.044 |
Flavone | 0.469 | 0.008 | 0.286 | 0.065 | 0.369 | 0.057 | 0.597 | 0.010 |
N | Predicted LD50 (mg/kg) | Class | Hepatotoxicity | Carcinogenicity | Immunotoxicity | Mutagenicity | Cytotoxicity | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Predi. * | Prob. ** | Predi. | Prob. | Predi. | Prob. | Predi. | Prob. | Predi. | Prob. | |||
1 | 5000 | V | Ina. | 0.72 | Ina. | 0.68 | Act. | 0.99 | Ina. | 0.93 | Ina. | 0.80 |
2 | 10,000 | VI | Ina. | 0.72 | Ina. | 0.51 | Ina. | 0.96 | Ina. | 0.55 | Ina. | 0.84 |
3 | 2200 | V | Ina. | 0.52 | Ina. | 0.51 | Ina. | 0.99 | Ina. | 0.99 | Ina. | 0.86 |
4 | 770 | IV | Ina. | 0.81 | Ina. | 0.72 | Ina. | 0.99 | Ina. | 0.98 | Ina. | 0.90 |
5 | 2000 | IV | Ina. | 0.52 | Ina. | 0.51 | Ina. | 0.99 | Ina. | 0.99 | Ina. | 0.86 |
6 | 2300 | V | Ina. | 0.81 | Ina. | 0.90 | Act. | 0.99 | Ina. | 0.73 | Ina. | 0.66 |
7 | 2300 | V | Ina. | 0.81 | Ina. | 0.90 | Act. | 0.99 | Ina. | 0.73 | Ina. | 0.66 |
8 | 1034 | IV | Act. | 0.51 | Ina. | 0.67 | Ina. | 0.99 | Ina. | 0.98 | Ina. | 0.86 |
9 | 159 | III | Ina. | 0.69 | Act. | 0.68 | Ina. | 0.87 | Ina. | 0.51 | Ina. | 0.99 |
10 | 1048 | IV | Ina. | 0.68 | Ina. | 0.64 | Ina. | 0.78 | Ina. | 0.99 | Ina. | 0.98 |
11 | 2260 | V | Ina. | 0.83 | Ina. | 0.80 | Ina. | 0.99 | Ina. | 0.98 | Ina. | 0.75 |
12 | 2850 | V | Act. | 0.53 | Act. | 0.51 | Ina. | 0.86 | Ina. | 0.92 | Ina. | 0.81 |
13 | 3000 | V | Ina. | 0.83 | Ina. | 0.82 | Ina. | 0.83 | Ina. | 0.85 | Ina. | 0.84 |
14 | 2500 | V | Ina. | 0.70 | Act. | 0.69 | Ina. | 0.99 | Ina. | 0.54 | Act. | 0.75 |
Extract/Reference | DPPH Scavenging Capacity IC50 (µg/mL) | β-Carotene Bleaching Assay (µg/mL) | ABTS Scavenging (TE µmol/mL) | Total Antioxidant Capacity * |
---|---|---|---|---|
CSEE | 302.78 ± 7.55 | 352.06 ± 12.16 | 48.13 ± 3.66 | 165 ± 7.66 |
Ascorbic acid (AA) | 260.24 ± 6.45 | - | 8.23 ± 0.97 | - |
Butylated hydroxytoluene (BHT) | - | 29.23 ± 9.34 | - | - |
Bacterial Strains | Gram Type | CSEE | Imipeneme (10 µg/disc) | Amoxicillin (25 µg/disc) | |||
---|---|---|---|---|---|---|---|
IZ * (mm) | MIC (µL/mL) | MBC (µL/mL) | MBC/MIC | IZ (mm) | IZ (mm) | ||
S. aureus | G+ | 21 ± 1.50 | 0.35 | 0.70 | 2 | 19 ± 0.50 | 13 ± 1.30 |
E. faecalis | G+ | 24 ± 0.66 | 0.35 | 0.35 | 1 | 15 ± 0.33 | 11 ± 0.66 |
E. coli | G- | 28 ± 0.33 | 0.35 | 0.35 | 1 | 19 ± 0.66 | 18 ± 0.33 |
E. vekanda | G- | 23 ± 0.50 | 0.35 | 0.35 | 1 | 24 ± 0.66 | 9 ± 1.5 |
P. aeruginosa | G- | 18 ± 0.66 | 0.35 | 0.70 | 2 | 23 ± 0.33 | 16 ± 0.33 |
Fungal Strains | CSEE | Cycloheximide (1 mg/mL) | |||
---|---|---|---|---|---|
IZ (mm) | MIC (µL/mL) | MFC (µL/mL) | MFC/MIC | IZ (mm) | |
C. albicans | 24 ± 1.00 | 10 | 10 | 1 | 22 ± 0.66 |
G. candidum | 23 ± 0.66 | 10 | 10 | 1 | 18 ± 0.5 |
Treatments | IC50 Value ± SD (µg/mL) * | Selectivity Index (SI) | |||||
---|---|---|---|---|---|---|---|
MCF-7 | MDA-MB-231 | MDA-MB-436 | PBMC | MCF-7 | MDA-MB-231 | MDA-MB-436 | |
CSEE | 32.44 ± 5.23 | 40.05 ± 3.21 | 53.55 ± 5.35 | 891.30 ± 28.10 | 27.47 | 22.25 | 16.64 |
Cisplatin | 5.19 ± 1.85 | 4.40 ± 1.20 | 6.73 ± 1.33 | 32.88 ± 5.28 | 6.33 | 7.47 | 4.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbouzidi, A.; Taibi, M.; Ouassou, H.; Ouahhoud, S.; Ou-Yahia, D.; Loukili, E.H.; Aherkou, M.; Mansouri, F.; Bencheikh, N.; Laaraj, S.; et al. Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals 2023, 16, 840. https://doi.org/10.3390/ph16060840
Elbouzidi A, Taibi M, Ouassou H, Ouahhoud S, Ou-Yahia D, Loukili EH, Aherkou M, Mansouri F, Bencheikh N, Laaraj S, et al. Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals. 2023; 16(6):840. https://doi.org/10.3390/ph16060840
Chicago/Turabian StyleElbouzidi, Amine, Mohamed Taibi, Hayat Ouassou, Sabir Ouahhoud, Douâae Ou-Yahia, El Hassania Loukili, Marouane Aherkou, Farid Mansouri, Noureddine Bencheikh, Salah Laaraj, and et al. 2023. "Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity" Pharmaceuticals 16, no. 6: 840. https://doi.org/10.3390/ph16060840
APA StyleElbouzidi, A., Taibi, M., Ouassou, H., Ouahhoud, S., Ou-Yahia, D., Loukili, E. H., Aherkou, M., Mansouri, F., Bencheikh, N., Laaraj, S., Bellaouchi, R., Saalaoui, E., Elfazazi, K., Berrichi, A., Abid, M., & Addi, M. (2023). Exploring the Multi-Faceted Potential of Carob (Ceratonia siliqua var. Rahma) Leaves from Morocco: A Comprehensive Analysis of Polyphenols Profile, Antimicrobial Activity, Cytotoxicity against Breast Cancer Cell Lines, and Genotoxicity. Pharmaceuticals, 16(6), 840. https://doi.org/10.3390/ph16060840