Synergy of Plant Essential Oils in Antibiotic Therapy to Combat Klebsiella pneumoniae Infections
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of EOs
2.2. Antimicrobial Activity of EOs against Kp Strains
2.3. Synergic Effect of EOs with Ceftazidime (CAZ)
2.4. Synergic Effect of EOs with Gentamicin (GEN)
2.5. Synergic Effect of EOs with Ciprofloxacin (CIP)
2.6. Effect of EOs over the Hypermucoviscosity Phenotype of Kp Strains
3. Discussion
4. Materials and Methods
4.1. Essential Oils
4.2. Chemical Analysis
4.3. Microorganisms
4.4. Antimicrobial Activity Test
4.5. Synergy between EOs and Antibiotics
4.6. EO Activity on Hypermucoviscosity Phenotype of the Strains
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clegg, S.; Murphy, C.N. Epidemiology and Virulence of Klebsiella Pneumoniae. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Vuotto, C.; Longo, F.; Balice, M.P.; Donelli, G.; Varaldo, P.E. Antibiotic Resistance Related to Biofilm Formation in Klebsiella Pneumoniae. Pathogens 2014, 3, 743–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Huo, T.; Luo, X.; Lu, F.; Hui, S.; Yang, B. Klebsiella Pneumoniae-Related Brain Abscess and Meningitis in Adults: Case Report. Medicine 2022, 101, e28415. [Google Scholar] [CrossRef] [PubMed]
- Jajić, I.; Benčić, A.; Siroglavić, M.; Zarfel, G.; Ružić, B.; Pezelj, I.; Bedenić, B. Klebsiella Pneumoniaeoxa-48 in a Urology Patient: Case Report. Acta Clin. Croat. 2017, 56, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Kano, Z.; Onoyama, S.; Tsuji, M.; Tezuka, J.; Furuno, K. Klebsiella Pneumoniae-Associated Septic Pulmonary Emboli in a Healthy Child. Pediatr. Int. 2018, 60, 663–665. [Google Scholar] [CrossRef]
- Sturm, E.; Tai, A.; Lin, B.; Kwong, J.; Athan, E.; Howden, B.P.; Angliss, R.D.; Asaid, R.; Pollard, J. Bilateral Osteomyelitis and Liver Abscess Caused by Hypervirulent Klebsiella Pneumoniae- a Rare Clinical Manifestation (Case Report). BMC Infect. Dis. 2018, 18, 380. [Google Scholar] [CrossRef]
- Bilal, S.; Volz, M.S.; Fiedler, T.; Podschun, R.; Schneider, T. Klebsiella Pneumoniae-Induced Liver Abscesses, Germany. Emerg. Infect. Dis. 2014, 20, 1939–1940. [Google Scholar] [CrossRef]
- Taglietti, F.; Di Bella, S.; Galati, V.; Topino, S.; Iappelli, M.; Petrosillo, N. Carbapenemase-Producing Klebsiella Pneumoniae-Related Mortality among Solid Organ-Transplanted Patients: Do We Know Enough? Transpl. Infect. Dis. 2013, 15, E164–E165. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, P.; Li, Y.; Wang, Y. Klebsiella Pneumoniae-Induced Multiple Invasive Abscesses: A Case Report and Literature Review. Medicine 2019, 98, e17362. [Google Scholar] [CrossRef] [PubMed]
- Baykara, B.; Cimentepe, M.; Kandemir, T.; Koksal, F. Investigation of the Relationship between Colistin Resistance and Capsule Serotypes in Carbapenem Resistant Klebsiella Pneumoniae Strains. New. Microbiol. 2022, 45, 124–129. [Google Scholar] [PubMed]
- Zhang, M.; Zhang, J.; Li, J.; Wu, X.; Xiao, L.; Liu, X.; Yang, X.; Yang, L.; Zou, Q.; Huang, W. AmpR Increases the Virulence of Carbapenem-Resistant Klebsiella Pneumoniae by Regulating the Initial Step of Capsule Synthesis. Infect. Drug. Resist. 2020, 13, 3431–3441. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.-J.; Fang, H.-C.; Yang, H.-C.; Lin, T.-L.; Hsieh, P.-F.; Tsai, F.-C.; Keynan, Y.; Wang, J.-T. Capsular Polysaccharide Synthesis Regions in Klebsiella Pneumoniae Serotype K57 and a New Capsular Serotype. J. Clin. Microbiol. 2008, 46, 2231–2240. [Google Scholar] [CrossRef] [Green Version]
- Campos, M.A.; Vargas, M.A.; Regueiro, V.; Llompart, C.M.; Albertí, S.; Bengoechea, J.A. Capsule Polysaccharide Mediates Bacterial Resistance to Antimicrobial Peptides. Infect. Immun. 2004, 72, 7107–7114. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.C.; Chuang, Y.C.; Yu, W.L.; Lee, N.Y.; Chang, C.M.; Ko, N.Y.; Wang, L.R.; Ko, W.C. Clinical Implications of Hypermucoviscosity Phenotype in Klebsiella Pneumoniae Isolates: Association with Invasive Syndrome in Patients with Community-Acquired Bacteraemia. J. Intern. Med. 2006, 259, 606–614. [Google Scholar] [CrossRef]
- Struve, C.; Bojer, M.; Nielsen, E.M.; Hansen, D.S.; Krogfelt, K.A. Investigation of the Putative Virulence Gene MagA in a Worldwide Collection of 495 Klebsiella Isolates: MagA Is Restricted to the Gene Cluster of Klebsiella Pneumoniae Capsule Serotype K1 [1]. J. Med. Microbiol. 2005, 54, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.L.; Ko, W.C.; Cheng, K.C.; Lee, H.C.; Ke, D.S.; Lee, C.C.; Fung, C.P.; Chuang, Y.C. Association between RmpA and MagA Genes and Clinical Syndromes Caused by Klebsiella Pneumoniae in Taiwan. Clin. Infect. Dis. 2006, 42, 1351–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Togawa, A.; Toh, H.; Onozawa, K.; Yoshimura, M.; Tokushige, C.; Shimono, N.; Takata, T.; Tamura, K. Influence of the Bacterial Phenotypes on the Clinical Manifestations in Klebsiella Pneumoniae Bacteremia Patients: A Retrospective Cohort Study. J. Infect. Chemother. 2015, 21, 531–537. [Google Scholar] [CrossRef]
- Sutaria, D.S.; Moya, B.; Green, K.B.; Kim, T.H.; Tao, X.; Jiao, Y.; Louie, A.; Drusano, G.L.; Bulitta, J.B. First Penicillin-Binding Protein Occupancy Patterns of β-Lactams and β-Lactamase Inhibitors in Klebsiella Pneumoniae. Antimicrob. Agents Chemother. 2018, 62, e00282-18. [Google Scholar] [CrossRef] [Green Version]
- Wyres, K.L.; Holt, K.E. Klebsiella Pneumoniae as a Key Trafficker of Drug Resistance Genes from Environmental to Clinically Important Bacteria. Curr. Opin. Microbiol. 2018, 45, 131–139. [Google Scholar] [CrossRef]
- Lin, Z.; Yu, J.; Liu, S.; Zhu, M. Prevalence and Antibiotic Resistance of Klebsiella Pneumoniae in a Tertiary Hospital in Hangzhou, China, 2006–2020. J. Int. Med. Res. 2022, 50, 03000605221079761. [Google Scholar] [CrossRef]
- Uzairue, L.I.; Rabaan, A.A.; Adewumi, F.A.; Okolie, O.J.; Folorunso, J.B.; Bakhrebah, M.A.; Garout, M.; Alfouzan, W.A.; Halwani, M.A.; Alamri, A.A.; et al. Global Prevalence of Colistin Resistance in Klebsiella Pneumoniae from Bloodstream Infection: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 1092. [Google Scholar] [CrossRef]
- Rawson, T.M.; Zhu, N.; Ranganathan, N.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Co-Infection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing Timothy. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Jafri, H.; Ansari, F.A.; Ahmad, I. Prospects of Essential Oils in Controlling Pathogenic Biofilm. In New Look to Phytomedicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 203–236. [Google Scholar]
- Williams, L. Essential Oils with High Antimicrobial Activity for Therapeutic Use. Int. J. Aromather. 1998, 8, 30–40. [Google Scholar] [CrossRef]
- Sferrazzo, G.; Palmeri, R.; Restuccia, C.; Parafati, L.; Siracusa, L.; Spampinato, M.; Carota, G.; Distefano, A.; di Rosa, M.; Tomasello, B.; et al. Mangifera Indica L. Leaves as a Potential Food Source of Phenolic Compounds with Biological Activity. Antioxidants 2022, 11, 1313. [Google Scholar] [CrossRef]
- Donga, S.; Bhadu, G.R.; Chanda, S. Antimicrobial, Antioxidant and Anticancer Activities of Gold Nanoparticles Green Synthesized Using Mangifera Indica Seed Aqueous Extract. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, V.; Mendoza, R.; Chiong, L.; del Aguila, E.; Alvítez-Temoche, D.; Mayta-Tovalino, F. Comparison of the Antibacterial Activity of the Ethanol Extract vs Hydroalcoholic Extract of the Leaves of Mangifera Indica L. (Mango) in Different Concentrations: An In Vitro Study. J. Contemp. Dent. Pract. 2020, 21, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Ramdan, B.; Mrid, R.B.; Ramdan, R.; El Karbane, M.; Nhiri, M. Promising Effects of Rosa Damascena Petal Extracts as Antioxidant and Antibacterial Agents. Pak. J. Pharm. Sci. 2021, 34, 1–8. [Google Scholar] [PubMed]
- Tanimoto, H.; Shigemura, K.; Osawa, K.; Kado, M.; Onishi, R.; Fang, S.-B.; Sung, S.-Y.; Miyara, T.; Fujisawa, M. Comparative Genetic Analysis of the Antimicrobial Susceptibilities and Virulence of Hypermucoviscous and Non-Hypermucoviscous ESBL-Producing Klebsiella Pneumoniae in Japan. J. Microbiol. Immunol. Infect. 2023, 56, 93–103. [Google Scholar] [CrossRef]
- Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Lemberkovics, E.; Kéry, A.; Simándi, B.; Kakasy, A.; Balázs, A.; Héthelyi, E.; Szoke, E. Influence of Extraction Methods on the Composition of Essential Oils. Acta Pharm. Hung. 2004, 74, 166–170. [Google Scholar]
- Marino, M.; Bersani, C.; Comi, G. Antimicrobial Activity of the Essential Oils of Thymus Vulgaris L. Measured Using a Bioimpedometric Method. J. Food Prot. 1999, 62, 1017–1023. [Google Scholar] [CrossRef]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Mączka, W.; Duda-Madej, A.; Górny, A.; Grabarczyk, M.; Wińska, K. Can Eucalyptol Replace Antibiotics? Molecules 2021, 26, 4933. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A Simple Monoterpene with Remarkable Biological Properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Abozid, M.M.; Asker, M.M. Chemical Composition, Antioxidant and Antimicrobial Activity of the Essential Oil of the Thyme and Rosemary. Int. J. Acad. Res. 2013, 5, 186–195. [Google Scholar] [CrossRef]
- Rašković, A.; Milanović, I.; Pavlović, N.; Ćebović, T.; Vukmirović, S.; Mikov, M. Antioxidant Activity of Rosemary (Rosmarinus Officinalis L.) Essential Oil and Its Hepatoprotective Potential. BMC Complement Altern. Med. 2014, 14, 225. [Google Scholar] [CrossRef] [Green Version]
- Sienkiewicz, M.; Łysakowska, M.; Pastuszka, M.; Bienias, W.; Kowalczyk, E. The Potential of Use Basil and Rosemary Essential Oils as Effective Antibacterial Agents. Molecules 2013, 18, 9334–9351. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.; Bail, S.; Buchbauer, G.; Stoilova, I.; Atanasova, T.; Stoyanova, A.; Krastanov, A.; Jirovetz, L. Chemical Composition, Olfactory Evaluation and Antioxidant Effects of Essential Oil from Mentha x Piperita. Nat. Prod. Commun. 2009, 4, 1934578X0900400. [Google Scholar] [CrossRef] [Green Version]
- Negi, P.S.; Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Antibacterial Activity of Turmeric Oil: A Byproduct from Curcumin Manufacture. J. Agric. Food Chem. 1999, 47, 4297–4300. [Google Scholar] [CrossRef]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians. J. Anaesthesiol. Clin. Pharm. Pharmacol. 2017, 33, 300. [Google Scholar] [CrossRef]
- Hriouech, S.; Akhmouch, A.A.; Mzabi, A.; Chefchaou, H.; Tanghort, M.; Oumokhtar, B.; Chami, N.; Remmal, A. The Antistaphylococcal Activity of Amoxicillin/Clavulanic Acid, Gentamicin, and 1,8-Cineole Alone or in Combination and Their Efficacy through a Rabbit Model of Methicillin-Resistant Staphylococcus Aureus Osteomyelitis. Evid.-Based Complement. Altern. Med. 2020, 2020, 4271017. [Google Scholar] [CrossRef]
- Reichling, J. Anti-Biofilm and Virulence Factor-Reducing Activities of Essential Oils and Oil Components as a Possible Option for Bacterial Infection Control. Planta Med. 2020, 86, 520–537. [Google Scholar] [CrossRef]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Rai, M.; Paralikar, P.; Jogee, P.; Agarkar, G.; Ingle, A.P.; Derita, M.; Zacchino, S. Synergistic Antimicrobial Potential of Essential Oils in Combination with Nanoparticles: Emerging Trends and Future Perspectives. Int. J. Pharm. 2017, 519, 67–78. [Google Scholar] [CrossRef]
- Nair, A.; Mallya, R.; Suvarna, V.; Khan, T.A.; Momin, M.; Omri, A. Nanoparticles-Attractive Carriers of Antimicrobial Essential Oils. Antibiotics 2022, 11, 108. [Google Scholar] [CrossRef]
- Schiffelers, R.M.; Storm, G.; ten Kate, M.T.; Stearne-Cullen, L.E.; den Hollander, J.G.; Verbrugh, H.A.; Bakker-Woudenberg, I.A. In Vivo Synergistic Interaction of Liposome-Coencapsulated Gentamicin and Ceftazidime. J. Pharm. Pharmacol. Exp. Ther. 2001, 298, 369–375. [Google Scholar]
- Masango, P. Cleaner Production of Essential Oils by Steam Distillation. J. Clean. Prod. 2005, 13, 833–839. [Google Scholar] [CrossRef]
- Cruz-Córdova, A.; Esteban-Kenel, V.; Espinosa-Mazariego, K.; Ochoa, S.A.; Moreno Espinosa, S.; de la Garza Elhain, A.; Fernández Rendón, E.; López Villegas, E.O.; Xicohtencatl-Cortes, J. Pathogenic Determinants of Clinical Klebsiella Pneumoniae Strains Associated with Their Persistence in the Hospital Environment. Bol. Med. Hosp. Infant. Mex. 2014, 71, 15–24. [Google Scholar]
- Elmi, S.Y.K.; Ashour, M.S.; Alsewy, F.Z.; Abd El Moez Azzam, N.F. Phenotypic and Genotypic Detection of Extended Spectrum β-Lactamases among Escherichia Coli and Klebsiella Pneumoniae Isolates from Type 2 Diabetic Patients with Urinary Tract Infections. Afr. Health Sci. 2021, 21, 497–504. [Google Scholar] [CrossRef] [PubMed]
Common Name | Scientific Name | Part Used | Extraction Method |
---|---|---|---|
Thyme | Thymus vulgaris | Leaf | Steam Distillation |
Peppermint | Mentha piperita | Leaf/stem | Steam Distillation |
Rosemary | Rosmarinus officinalis | Flower, leaf | Steam Distillation |
Turmeric | Curcuma longa | Rhizome | Steam distillation |
Essential Oil | Compound * | Retention Time | Match | % Area | Standard | IK exp | IK rep |
---|---|---|---|---|---|---|---|
(min) | |||||||
Thyme | Thymol | 13.33 | 98.4 | 37.31 | Yes | 1296 | 1291 |
o-Cymene | 8.4 | 98.9 | 22.12 | No | 1029 | 1022 | |
γ-Terpinene | 9.06 | 99.5 | 11.97 | Yes | 1063 | 1060 | |
Caryophyllene | 15.59 | 98.8 | 4.37 | No | 1433 | 1419 | |
Linalool | 9.81 | 98.4 | 2.75 | Yes | 1102 | 1099 | |
Carvacrol | 13.47 | 97.4 | 2.43 | Yes | 1304 | 1299 | |
β-Myrcene | 7.7 | 98.3 | 1.78 | No | 993 | 991 | |
(+)-4-Carene | 8.23 | 96.9 | 1.66 | No | 1020 | 1009 | |
Methyl carvacrol | 12.5 | 95.9 | 1.25 | No | 1249 | 1244 | |
1-Octen-3-ol | 7.45 | 96.9 | 1.22 | No | 980 | 980 | |
α-Pinene | 6.61 | 96.5 | 1.16 | Yes | 937 | 937 | |
Camphene | 6.9 | 98.1 | 1.12 | No | 952 | 951 | |
Borneol | 11.33 | 98.1 | 1.06 | No | 1183 | 1167 | |
Camphor | 10.74 | 97.5 | 0.91 | No | 1151 | 1142 | |
D-Limonene | 8.47 | 91.6 | 0.71 | Yes | 1032 | 1018 | |
trans-4-Thuja-nol | 9.22 | 94.5 | 0.71 | No | 1071 | 1070 | |
Caryophyllene oxide | 18.13 | 88.2 | 0.64 | No | 1600 | 1581 | |
α-Thujene | 6.47 | 94.8 | 0.49 | No | 930 | 929 | |
(+)-δ-Cadinene | 17.16 | 82.4 | 0.35 | No | 1534 | 1524 | |
Eucalyptol | 8.53 | 86.4 | 0.3 | Yes | 1036 | 1032 | |
(+)-epi-Bicyclosesquiphellandrene | 17.05 | 84.3 | 0.26 | No | 1527 | 1435 | |
p-Mentha-2,4-(8)-diene | 9.63 | 88.2 | 0.25 | No | 1092 | 1004 | |
Rosemary | Eucalyptol | 8.54 | 99.8 | 43.28 | Yes | 1036 | 1032 |
(+)-2-Bornano-ne | 10.74 | 99.4 | 13.34 | No | 1151 | 1143 | |
α-Pinene | 6.61 | 99.3 | 13.17 | Yes | 937 | 937 | |
Caryophyllene | 15.59 | 99.3 | 4.97 | No | 1433 | 1419 | |
β-Pinene | 7.46 | 97.5 | 4.67 | Yes | 981 | 943 | |
Camphene | 6.9 | 98.7 | 4.54 | No | 952 | 951 | |
Borneol | 11.33 | 97.2 | 3.51 | No | 1172 | 1167 | |
D-Limonene | 8.48 | 86 | 2.16 | Yes | 1033 | 1018 | |
α-Terpineol | 11.56 | 90.04 | 2.15 | Yes | 1195 | 1189 | |
o-Cymene | 8.39 | 97.7 | 1.53 | No | 1028 | 1022 | |
β-Myrcene | 7.7 | 98.2 | 1.16 | No | 993 | 991 | |
Linalool | 9.81 | 95.6 | 0.97 | Yes | 1102 | 1099 | |
Bornyl acetate | 13.27 | 95.8 | 0.71 | No | 1293 | 1284 | |
Terpinen-4-ol | 11.33 | 90.04 | 0.69 | Yes | 1183 | 1182 | |
δ-Terpinene | 9.06 | 96.1 | 0.67 | Yes | 1063 | 1060 | |
(+)-4-Carene | 8.23 | 96.4 | 0.52 | No | 1020 | 1009 | |
Humulene | 16.13 | 86.2 | 0.41 | No | 1467 | 1454 | |
Isoterpinolene | 9.64 | 91.7 | 0.31 | No | 1093 | 1004 | |
β-Phellandre-ne | 6.38 | 87.8 | 0.16 | No | 925 | 1031 | |
α-Thujene | 6.47 | 90.01 | 0.15 | No | 930 | 929 | |
Peppermint | Menthol | 11.26 | 99.8 | 38.19 | No | 1179 | 1164 |
D-menthone | 10.91 | 99.3 | 22.96 | No | 1160 | 1166 | |
p-Menthan-1-ol | 11.09 | 95.2 | 8.39 | No | 1170 | 1178 | |
Eucalyptol | 8.53 | 99.2 | 6.09 | Yes | 1036 | 1032 | |
D-Limonene | 8.47 | 96.8 | 2.15 | Yes | 1032 | 1018 | |
Caryophyllene | 15.59 | 97.3 | 1.81 | No | 1433 | 1419 | |
β-Myrcene | 7.7 | 82.5 | 1.78 | No | 993 | 991 | |
Pulegone | 12.47 | 97.8 | 1.67 | No | 1247 | 1237 | |
L-terpinen-4-ol | 11.34 | 93 | 1.3 | No | 1183 | 1182 | |
β-Pinene | 7.46 | 93.7 | 1.23 | Yes | 981 | 943 | |
α-Pinene | 6.61 | 95.5 | 0.83 | Yes | 937 | 937 | |
dl-menthol | 11.44 | 94.7 | 0.81 | No | 1189 | 1174 | |
Caryophyllene oxide | 18.13 | 87.4 | 0.68 | No | 1600 | 1581 | |
o-Cymene | 8.38 | 95.3 | 0.67 | No | 1028 | 1022 | |
Piperitone | 12.72 | 94.3 | 0.59 | No | 1261 | 1253 | |
α-Terpineol | 11.57 | 87.7 | 0.56 | Yes | 1196 | 1189 | |
Mintlactone | 16.77 | 80.8 | 0.52 | No | 1508 | 1500 | |
δ-Terpinene | 9.06 | 92.4 | 0.47 | Yes | 1063 | 1060 | |
Cadina-1(6),4-diene | 17.16 | 86.9 | 0.4 | No | 1534 | 1469 | |
Linalool | 9.81 | 83.6 | 0.31 | Yes | 1102 | 1099 | |
β-Bourbonene | 15.01 | 89.6 | 0.27 | No | 1396 | 1384 | |
α-Thujene | 6.47 | 92.1 | 0.25 | No | 930 | 929 | |
3-Octanol | 7.78 | 88.9 | 0.25 | No | 997 | 994 | |
cis-Muurola-4(14),5-diene | 16.45 | 83.5 | 0.25 | No | 1487 | 1435 | |
Turmeric | ar-Turmerone | 19.22 | 97.7 | 40.4 | No | 1677 | 1644 |
Tumerone | 19.28 | 98 | 16.36 | No | 1682 | 1632 | |
α-Curcumene | 16.5 | 99 | 4.53 | No | 1491 | 1483 | |
Zingiberene | 16.69 | 97.3 | 4.25 | No | 1503 | 1495 | |
β-Sesquiphellandrene | 17.14 | 97.1 | 3.15 | No | 1533 | 1524 | |
(E)-Atlantone | 20.7 | 97.6 | 2.54 | No | 1786 | 1773 | |
β-Bisabolene | 16.89 | 96.9 | 1.25 | No | 1516 | 1509 | |
(Z)-γ-Atlanto-ne | 19.59 | 91.5 | 0.85 | No | 1704 | 1699 | |
γ-Curcumene | 16.45 | 85.7 | 0.75 | No | 1487 | 1480 | |
Caryophyllene | 15.59 | 91.1 | 0.67 | No | 1433 | 1419 | |
7-epi-Bisabol-1-one | 20.33 | 92 | 0.63 | No | 1759 | 1747 | |
o-Cymene | 8.38 | 96.4 | 0.53 | No | 1028 | 1022 | |
Dicumene | 16.84 | 83.6 | 0.48 | No | 1513 | 2021 | |
Eucalyptol | 8.53 | 88.2 | 0.38 | Yes | 1036 | 1032 | |
2-Cyclohexen-1-one,3,4,4-tri-methyl | 17.65 | 81.8 | 0.31 | No | 1568 | 1198 | |
α-Phellandre-ne | 7.99 | 93.5 | 0.26 | No | 1008 | 1005 | |
Humulene | 16.13 | 81.8 | 0.26 | No | 1467 | 1454 | |
(+)-4-Carene | 9.64 | 88.6 | 0.21 | No | 1093 | 1009 |
Kp Strain | 640U | 889U | 126U | 98LCR | 338U | 537U1 | 971U | 197U | 182D | ATCC 700603 | Mean FICI |
---|---|---|---|---|---|---|---|---|---|---|---|
CAZ + thyme | 0.333 | 0.333 | 0.083 | 0.333 | 0.083 | 0.333 | 0.333 | 0.333 | 0.167 | 0.167 | 0.250 |
CAZ + turmeric | 0.625 | 0.500 | 0.750 | 0.508 | 0.281 | 0.516 | 0.252 | 0.502 | 0.516 | 1.000 | 0.545 |
CAZ + rosemary | 0.750 | 0.500 | 1.000 | 0.508 | 0.266 | 0.516 | 0.254 | 0.502 | 0.502 | 0.563 | 0.536 |
CAZ + peppermint | 0.375 | 0.500 | 0.313 | 0.266 | 0.313 | 0.266 | 0.252 | 0.500 | 0.250 | 0.531 | 0.357 |
Kp Strain | 889U | 98LCR | 197U | Mean FICI |
---|---|---|---|---|
GEN + thyme | 0.333 | 0.333 | 0.563 | 0.410 |
GEN + turmeric | 2.250 | 0.375 | 0.625 | 1.083 |
GEN + rosemary | 0.250 | 0.500 | 0.625 | 0.458 |
GEN + peppermint | 0.060 | 0.250 | 0.516 | 0.275 |
Kp Strain | 197U | 817LCR | 910LCR | Mean FICI |
---|---|---|---|---|
CIP + thyme | 0.333 | 0.333 | 0.500 | 0.389 |
CIP + turmeric | 0.750 | 1.250 | 0.500 | 0.835 |
CIP + rosemary | 0.490 | 0.370 | 0.516 | 0.459 |
CIP + peppermint | 0.180 | 0.250 | 0.50 | 0.311 |
Strain | Resistance Classification | Resistant | Intermediate | Susceptible |
---|---|---|---|---|
640U | LRS | ATM | - | CPD, CRO, CAZ, CEF, CIP, AMI, GEN, STX |
889U | LRS | STX | - | CPD, CRO, CAZ, CEF, CIP, ATM, AMI, GEN |
126U | LRS | ATM | - | CPD, CRO, CAZ, CEF, CIP, AMI, GEN, STX |
98LCR | MRS | CPD | CAZ, CRO, GEN | CEF, CIP, ATM, AMI, STX |
338U | MRS | CPD, GEN | CRO, CAZ, ATM, STX | CEF, CIP, AMI |
537U1 | MRS | CPD | CRO, CAZ, ATM, AMI, | CEF, CIP, GEN, STX |
971U | HRS | CPD, CRO, CAZ, CEF, ATM, AMI, GEN, | CIP, STX | |
197U | HRS | CPD, CRO, CAZ, CEF, ATM, AMI, GEN, STX | CIP | |
182D | HRS | CPD, CRO, CAZ, CEF, ATM, AMI, | STX | CIP, GEN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romo-Castillo, M.; Flores-Bautista, V.A.; Guzmán-Gutiérrez, S.L.; Reyes-Chilpa, R.; León-Santiago, M.; Luna-Pineda, V.M. Synergy of Plant Essential Oils in Antibiotic Therapy to Combat Klebsiella pneumoniae Infections. Pharmaceuticals 2023, 16, 839. https://doi.org/10.3390/ph16060839
Romo-Castillo M, Flores-Bautista VA, Guzmán-Gutiérrez SL, Reyes-Chilpa R, León-Santiago M, Luna-Pineda VM. Synergy of Plant Essential Oils in Antibiotic Therapy to Combat Klebsiella pneumoniae Infections. Pharmaceuticals. 2023; 16(6):839. https://doi.org/10.3390/ph16060839
Chicago/Turabian StyleRomo-Castillo, Mariana, Victor Andrés Flores-Bautista, Silvia Laura Guzmán-Gutiérrez, Ricardo Reyes-Chilpa, Mayra León-Santiago, and Victor Manuel Luna-Pineda. 2023. "Synergy of Plant Essential Oils in Antibiotic Therapy to Combat Klebsiella pneumoniae Infections" Pharmaceuticals 16, no. 6: 839. https://doi.org/10.3390/ph16060839
APA StyleRomo-Castillo, M., Flores-Bautista, V. A., Guzmán-Gutiérrez, S. L., Reyes-Chilpa, R., León-Santiago, M., & Luna-Pineda, V. M. (2023). Synergy of Plant Essential Oils in Antibiotic Therapy to Combat Klebsiella pneumoniae Infections. Pharmaceuticals, 16(6), 839. https://doi.org/10.3390/ph16060839