Annona cherimola Miller and Its Flavonoids, an Important Source of Products for the Treatment of Diabetes Mellitus: In Vivo and In Silico Evaluations
Abstract
:1. Introduction
2. Results
2.1. In Vivo Assays
2.1.1. Acute Evaluation of the Antidiabetic Effect of Ethanolic Extract from Annona cherimola and Its Polyphenols
2.1.2. Subchronical Evaluation of the Antidiabetic Effect of Ethanolic Extract from Annona cherimola, AcRFr, Myricetin, and Rutin
2.1.3. Oral Glucose and Sucrose Tolerance Test (OGTT and OSTT) of Ethanolic Extract from Annona cherimola, AcRFr, Myricetin, and Rutin
2.2. In Silico Assays
2.2.1. Molecular Docking Studies of Rutin, Myricetin, and Acarbose on α-Glucosidase Enzyme
2.2.2. Molecular Docking Studies of Rutin, Myricetin and Canagliflozin on SGLT1 Cotransporter
3. Discussion
4. Materials and Methods
4.1. Chemicals, Reagents, and Drugs
4.2. Plant Material
4.3. Extraction, Isolation, and Identification of Minor Components from Annona cherimola
4.4. In Vivo Assays
4.4.1. Animals
4.4.2. Induction of Experimental Type 2 Diabetes
4.4.3. Grouping
4.4.4. Acute Evaluation of the Antidiabetic Effect of Ethanolic Extract from Annona cherimola, Fractions, and Isolated Compounds
4.4.5. Subchronic Evaluation of the Antidiabetic Effect of Ethanolic Extract from Annona cherimola, Fractions, and Isolated Compounds
4.4.6. Oral Glucose and Sucrose Tolerance Test (OGTT and OSTT) of Ethanolic Extract from Annona cherimola, Fractions, and Isolated Compounds
4.5. In Silico Studies
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of Medical Care in Diabetes 2020. Diabetes Care 2021, 43, S14–S31. [Google Scholar]
- DF Diabetes Atlas 10th Edition. 2021. Available online: https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf (accessed on 6 May 2022).
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 22 August 2022).
- DeFronzo, R. From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef]
- Strain, W.D.; Paldánius, P.M. Diabetes, Cardiovascular Disease and the Microcirculation. Cardiovasc. Diabetology 2018, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S111–S124. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Wong, J.L.M.; Sim, Y.J.; Wong, S.S.; Elhassan, S.A.M.; Tan, S.H.; Lim, G.P.L.; Rong Tay, N.W.; Annan, N.C.; Bhattamisra, S.K.; et al. Type 1 and 2 Diabetes Mellitus: A Review on Current Treatment Approach and Gene Therapy as Potential Intervention. Diabetes Metab. Syndr. 2019, 13, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, P.; Ande, C.; Vankar, Y.D. Synthesis of zero sugar (5,6 and 6,6)-oxa-oxa as glucosidase inhibitors from 2-formylgalactal using iodocyclization as a key step. ARKIVOC 2022, 6, 5–23. [Google Scholar] [CrossRef]
- Tseng, P.S.; Ande, C.; Moremen, K.W.; Crich, D. Influence of the conformation of the side chain on the activity of glucosidase inhibitors. Angew. Chem. Int. Ed. 2023, 135, e202217809. [Google Scholar] [CrossRef]
- Giovannini, P.; Howes, M.; Edwards, S. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. J. Ethnopharmacol. 2016, 184, 58–71. [Google Scholar] [CrossRef] [PubMed]
- El-Tantawy, W.; Temraz, A. Management of diabetes using herbal extracts: Review. Arch. Physiol. Biochem. 2018, 124, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; Thakur, P.; Chowdhry, A.; Jaiswal, S.; Sharma, A.; Goel, R.; Sharma, J.; Priyadarshi, S.S.; Kumar, V.; Sharma, R.K.; et al. Evidence-Based Herbal Drug Standardization Approach in Coping with Challenges of Holistic Management of Diabetes: ADreadful Lifestyle Disorder of 21st Century. J. Diabetes Metab. Disord. 2013, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, H.; Pandey, M.; Hua, C. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med. 2017, 8, 361–376. [Google Scholar] [CrossRef]
- González Vega, M.E. Cherimoya (Annona cherimola Miller), fruit-bearing tropical and sub-tropical of promissory values. Cultiv. Trop. 2013, 34, 52–63. [Google Scholar]
- Quilez, A.M.; Fernández-Arche, M.A.; García-Giménez, M.M.; De la Puerta, R. Potential therapeutic applications of the genus Annona Local and traditional uses and pharmacology. J. Ethnopharmacol. 2018, 225, 244–270. [Google Scholar] [CrossRef]
- CABI. Annona cherimola (Cherimoya); Invasive Species Compendium; CAB International: Wallingford, UK, 2014; Available online: https://www.cabi.org/isc/datasheet/5806 (accessed on 28 April 2022).
- Amador, M.D.C.V.; Rodríguez, F.M.; Rodríguez, Z.M.; Guerra, M.J.M.; Barreiro, M.L. Tamizaje Fitoquímico, Actividad Antiinflamatoria y Toxicidad Aguda de Extractos de Hojas de Annona Squamosa L. Rev. Cuba. Plantas Med. 2006, 11, 1–12. [Google Scholar]
- Larranaga, N.; Albertazzi, F.; Fontecha, G. A Mesoamerican origin of cherimoya (Annona cherimola Mill.): Implications for the conservation of plant genetic resources. Mol. Ecol. 2017, 26, 4116–4130. [Google Scholar] [CrossRef]
- Young, A. Tropical forests and their crops: N. J. H. Smith, J.T. Williams, D.L. Plucknett and J. P. Talbot, Comstock Publishing Associates, Ithaca and London. Agric. Syst. 1994, 45, 235–237. [Google Scholar] [CrossRef]
- Gentile, C.; Mannino, G.; Palazzolo, E.; Gianguzzi, G.; Perrone, A.; Serio, G.; Farina, V. Pomological, Sensorial, Nutritional and Nutraceutical Profile of Seven Cultivars of Cherimoya (Annona cherimola Mill). Foods 2020, 10, 35. [Google Scholar] [CrossRef]
- Grossberger, D. The California cherimoya industry. Proceedings of the First International Symposium on Cherimoya. Acta Hortic. 1999, 497, 131–142. [Google Scholar]
- Martínez-Vázquez, M.; Estrada-Reyes, R.; Escalona, A.A.; Velázquez, I.L.; Martínez-Mota, L.; Moreno, J.; Heinze, G. Antidepressant-like Effects of an Alkaloid Extract of the Aerial Parts of Annona cherimola in Mice. J. Ethnopharmacol. 2012, 139, 164–170. [Google Scholar] [CrossRef]
- Ammoury, C.; Younes, M.; El Khoury, M.; Hodroj, M.H.; Haykal, T.; Nasr, P.; Sily, M.; Taleb, R.I.; Sarkis, R.; Khalife, R.; et al. The Pro-Apoptotic Effect of a Terpene-Rich Annona cherimola Leaf Extract on Leukemic Cell Lines. BMC Complement. Altern. Med. 2019, 19, 365. [Google Scholar] [CrossRef]
- Martínez-Solís, J.; Calzada, F.; Barbosa, E.; Valdés, M. Antihyperglycemic and Antilipidemic Properties of a Tea Infusion of the Leaves from Annona cherimola Miller on Streptozocin-Induced Type 2 Diabetic Mice. Molecules 2021, 9, 2408. [Google Scholar] [CrossRef] [PubMed]
- Calzada, F.; Solares-Pascasio, J.I.; Ordoñez-Razo, R.M.; Velazquez, C.; Barbosa, E.; García-Hernández, N.; Mendez-Luna, D.; Correa-Basurto, J. Antihyperglycemic Activity of the Leaves from Annona Cherimola Miller and Rutin on Alloxan-Induced Diabetic Rats. Pharmacogn. Res. 2017, 9, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Valdes, M.; Calzada, F.; Martínez-Solís, J.; Martínez-Rodríguez, J. Antihyperglycemic Effects of Annona cherimola Miller and the Flavonoid Rutin in Combination with Oral Antidiabetic Drugs on Streptozocin-Induced Diabetic Mice. Pharmaceuticals 2023, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Solís, J.; Calzada, F.; Barbosa, E.; Gutiérrez-Meza, J.M. Antidiabetic and Toxicological Effects of the Tea Infusion of Summer Collection from Annona cherimola Miller Leaves. Plants 2022, 11, 3224. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Aguilera-Saez, L.M.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.; Fernández, I.; Arráez-Román, D. Characterization of Bioactive Compounds of Annona cherimola L. Leaves Using a Combined Approach Based on HPLC-ESI-TOF-MS and NMR. Anal. Bioanal. Chem. 2018, 410, 3607–3619. [Google Scholar] [CrossRef]
- Albuquerque, T.G.; Santos, F.; Sanches-Silva, A.; Oliveira, M.; Bento, A.; Costa, H. Nutritional and Phytochemical Composition of Annona cherimola Mill. Fruits and by-Products: Potential Health Benefits. Food Chem. 2014, 193, 187–195. [Google Scholar] [CrossRef]
- Mannino, G.; Gentile, C.; Porcu, A.; Agliassa, C.; Caradonna, F.; Bertea, C.M. Chemical Profile and Biological Activity of Cherimoya (Annona cherimola Mill.) and Atemoya (Annona Atemoya) Leaves. Molecules 2020, 25, 2612. [Google Scholar] [CrossRef]
- Ghorbani, A. Mechanisms of Antidiabetic Effects of Flavonoid Rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In Vitro Antioxidant Properties of Rutin. LWT-Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Kamalakkannan, N.; Prince, P.S.M. Antihyperglycaemic and Antioxidant Effect of Rutin, a Polyphenolic Flavonoid, in Streptozotocin-Induced Diabetic Wistar Rats. Basic Clin. Pharmacol. Toxicol. 2006, 98, 97–103. [Google Scholar] [CrossRef]
- Llave, F. Actualización en el manejo de los antidiabéticos orales en atención primaria. Med. Fam. 2008, 8, 98–111. [Google Scholar]
- Gonzales-Duhart, D.; Tamay-Cach, F.; Álvarez-Almazán, S.; Mendieta-Wejebe, J. Current advances in the biochemical and physiological aspects of the treatment of type 2 Diabetes Mellitus with thiazolidinediones. PPAR Res. 2016, 2016, 7614270. [Google Scholar]
- Alam, U.; Usghar, O.; Azmi, S.; Malik, R. General aspects of diabetes mellitus. Handb. Clin. Neurol. 2014, 126, 211–222. [Google Scholar]
- Blanco-Salas, J.; Vazquez, F.; Hortigó-Vinagre, M.; Ruiz-Tellez, T. Bioactive Pytochemicals from Mercurialis spp. Used in Traditional Spanish Medicine. Plants 2019, 8, 193. [Google Scholar] [PubMed]
- Bai, L.; Li, X.; He, L.; Zheng, H.; Li, J.; Zhong, L.; Tong, R.; Jiang, Z.; Shi, J.; Li, J. Antidiabetic Potential of Flavonoids from Traditional Chinese Medicine: A Review. Am. J. Chin. Med. 2019, 47, 933–957. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, N.; Ahmed, Q.; Mahmood, S.; Shah, S.; Sarian, M.; Khattak, M.; Khatib, A.; Sabere, A.; Yusoff, Y.; Latip, J. Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef] [PubMed]
- Valdés, M.; Calzada, F.; Mendieta-Wejebe, J.; Merlín-Lucas, V.; Veláquez, C.; Barbosa, E. Antihyperglycemic Effects of Annona diversifolia Safford and Its Acyclic Terpenoids: α-Glucosidase and Selective SGLT-1 Inhibitiors. Molecules 2020, 25, 3361. [Google Scholar] [CrossRef]
- Jhong, C.H.; Riyaphan, J.; Lin, S.H.; Chia, Y.C.; Weng, C.F. Screening alpha-glucosidase and alpha-amylase inhibitors from natural compounds by molecular docking in silico. BioFactors 2015, 41, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Röder, P.V.; Geillinger, K.E.; Zietek, T.S.; Thorens, B.; Koepsell, H.; Daniel, H. The role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS ONE 2014, 9, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.; Hornby, P. Intestinal SGLT1 in metabolic health and disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G887–G898. [Google Scholar] [CrossRef]
- Sim, L.; Willemsma, C.; Mohan, S.; Naim, H.Y.; Mario Pinto, B.; Rose, D.R. Structural Basis for Substrate Selectivity in Human Maltase-Glucoamylase and Sucrase-Isomaltase N-terminal Domains. J. Biol. Chem. 2010, 285, 17763. [Google Scholar] [CrossRef]
- Kashton, H.; Kwang-Hyun, B. Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes. Plants 2022, 11, 2722. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.; Loo, D.; Hirayama, B. Biology of human Sodium Glucose Transporters. Physiol. Rev. 2011, 91, 733–794. [Google Scholar] [CrossRef]
- Diario Oficial de la Federación. NOM-062-ZOO-1999, 2001. Norma Oficial Mexicana. Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio; Diario Oficial de La Federación: México City, México, 1999; p. 58. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf (accessed on 14 October 2022).
- OECD Test Guidelines for Chemicals—OECD. Available online: http://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm (accessed on 25 April 2023).
- Valdes, M.; Calzada, F.; Mendieta-Wejebe, J. Structure-activity relationship study of acyclic terpenes in blood glucose levels: Potential α-glucosidase and sodium-glucose cotransporter (SGLT-1) inhibitors. Molecules 2019, 24, 4020. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.; Curtis, D.; Lonie, D.; Vandermeersch, T.; Zurek, E.; Hutchison, G. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Lindstrom, W.; Sanner, M.; Belew, R.; Goodshell, D.; Olson, A. Autodock4 and AutodockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
Treatment | Glycemia (mg/dL) | ||
---|---|---|---|
0 h | 2 h | 4 h | |
NM Control | 154.3 ± 0.4 | 151.3 ± 1.2 | 146.6 ± 2.1 |
AIT2D Control | 214.0 ± 5.7 | 218.5 ± 3.7 | 221.5 ± 3.9 |
AIT2D + EEAch | 205.0 ± 4.0 | 143.7 ± 2.4 *,Δ | 134.0 ± 5.1 *,ΔΔ |
AIT2D + AcRFr | 204.0 ± 2.8 | 163.7 ± 3.6 *,Δ | 174.7 ± 0.8 *,ΔΔ |
AIT2D + DCMFr | 207.0 ± 5.1 | 181.0 ± 0.8 *,Δ | 189.0 ± 0.4 *,ΔΔ |
AIT2D + Astragalin | 203.3 ± 4.8 | 190.7 ± 1.3 Δ | 200.0 ± 2.6 ΔΔ |
AIT2D + Chlorogenic acid | 171.0 ± 12.5 | 193.0 ± 6.4 Δ | 211.0 ± 3.4 ΔΔ |
AIT2D + Hyperin | 203.0 ± 1.4 | 152.7 ± 5.5 *,Δ | 184.0 ± 5.3 *,ΔΔ |
AIT2D + Isoquercitrin | 206.3 ± 5.1 | 169.0 ± 3.2 *,Δ | 197.7 ± 3.6 ΔΔ |
AIT2D + Myricetin | 197.3 ± 2.5 | 161.0 ± 6.2 *,Δ | 155.0 ± 3.1 *,ΔΔ |
AIT2D + Narcissin | 204.7 ± 4.0 | 186.0 ± 4.1 Δ | 167.3 ± 6.3 *,ΔΔ |
AIT2D + Nicotiflorin | 206.7 ± 0.3 | 176.7 ± 2.1 *,Δ | 179.7 ± 2.4 *,ΔΔ |
AIT2D + Rutin | 214.3 ± 4.0 | 170.6 ± 8.3 *,Δ | 162.3 ± 3.6 *,ΔΔ |
AIT2D + Acarbose | 205.0 ± 1.6 | 190.0 ± 2.0 *,Δ | 181.3 ± 3.0 *,ΔΔ |
Ligand | α-Glucosidase | |||
---|---|---|---|---|
ΔG (kcal·mol−1) | H-BR | NPI | RMSD | |
Rutin | −6.03 | Asp203, Asp327, Trp441, Met444, Ser448, Phe450, Arg526, Trp539 Asp542, His600 | Tyr299, Trp406, Asp443, Phe575, | - |
Myricetin | −3.32 | Asp203, Thr204, Thr205, Trp406, Met444, Ser448, Asn449, Phe450, Arg526, Asp542 | Tyr299, Lys480, Phe575 | - |
Acarbose | −4.39 | Arg202, Thr204, Tyr299, Asp327, Ile328, Ile364, Trp441, Asp443, Phe450, Asp474, Lys480, Arg526, Trp539, Asp542, Phe575, His600 | Trp406, Met444 | 1.93 |
Ligand | Sodium-Glucose Cotransporter (SGLT1) | |||
---|---|---|---|---|
ΔG (kcal·mol−1) | H-BR | NPI | RMSD | |
Rutin | 22.82 | Ser77, Asn78, His83, Phe101, Glu102, Ala105, Lys157, Gly282, Met283, Leu286, Thr287, Trp289, Tyr290, Lys321, Ser393, Ile397, Gln457, Thr460, Leu527 | Asp161, Ile456 | - |
Myricetin | −7.89 | Asn78, His83, Phe101, Glu102, Met283, Thr287, Tyr290, Gln457, Thr 460 | Ala105, Lys157, Trp291, Ile456 | - |
Canagliflozin | −10.08 | Thr56, Ser77, His83, Phe101, Glu102, Asp161, Met283, Thr287, Trp289, Trp291, Ser393, Ser396, Phe453, Gln457, Thr460 | Asn78, Lys157, Tyr290, Val296, Ile397, Ile456 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calzada, F.; Valdes, M.; Martínez-Solís, J.; Velázquez, C.; Barbosa, E. Annona cherimola Miller and Its Flavonoids, an Important Source of Products for the Treatment of Diabetes Mellitus: In Vivo and In Silico Evaluations. Pharmaceuticals 2023, 16, 724. https://doi.org/10.3390/ph16050724
Calzada F, Valdes M, Martínez-Solís J, Velázquez C, Barbosa E. Annona cherimola Miller and Its Flavonoids, an Important Source of Products for the Treatment of Diabetes Mellitus: In Vivo and In Silico Evaluations. Pharmaceuticals. 2023; 16(5):724. https://doi.org/10.3390/ph16050724
Chicago/Turabian StyleCalzada, Fernando, Miguel Valdes, Jesús Martínez-Solís, Claudia Velázquez, and Elizabeth Barbosa. 2023. "Annona cherimola Miller and Its Flavonoids, an Important Source of Products for the Treatment of Diabetes Mellitus: In Vivo and In Silico Evaluations" Pharmaceuticals 16, no. 5: 724. https://doi.org/10.3390/ph16050724
APA StyleCalzada, F., Valdes, M., Martínez-Solís, J., Velázquez, C., & Barbosa, E. (2023). Annona cherimola Miller and Its Flavonoids, an Important Source of Products for the Treatment of Diabetes Mellitus: In Vivo and In Silico Evaluations. Pharmaceuticals, 16(5), 724. https://doi.org/10.3390/ph16050724