An In Silico Approach toward the Appropriate Absorption Rate Metric in Bioequivalence
Abstract
:1. Introduction
2. Results
2.1. Relationships between the Pharmacokinetic Parameters
2.2. Pharmacokinetic–Bioequivalence Simulations
2.2.1. Sensitivity
2.2.2. Statistical Power
3. Discussion
4. Materials and Methods
4.1. Route of Analysis
4.2. Drugs and Pharmacokinetic Properties
4.3. Pharmacokinetic-Bioequivalence Metrics
- -
- AUC and AUCinf as metrics to express the extent of absorption
- -
- Cmax, which is the traditionally used metric for assessing absorption rate
- -
- AS and ASw, referring to the average slope and its weighted analogue
4.4. Simulations
4.5. Principal Component Analysis
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- European Medicines Agency 2010. Committee for Medicinal Products for Human Use (CHMP). Guideline on the Investigation of Bioequivalence. CPMP/EWP/QWP/1401/98 Rev. 1/ Corr**. London, 20 January 2010. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf (accessed on 21 March 2023).
- Food and Drug Administration (FDA) 2014. Guidance for Industry. Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs—General Considerations. Draft Guidance. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). December 2013. Available online: https://www.fda.gov/media/88254/download (accessed on 21 March 2023).
- Niazi, S. Handbook of Bioequivalence Testing (Drugs and the Pharmaceutical Sciences), 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Basson, R.; Cerimele, B.; DeSante, K.; Howey, D. Tmax: An unconfounded metric for rate of absorption in single dose bioequivalence studies. Pharm. Res. 1996, 13, 324–328. [Google Scholar] [CrossRef]
- Rostami-Hodjegan, A.; Jackson, P.; Tucker, G. Sensitivity of indirect metrics for assessing “rate” in bioequivalence studies: Moving the “goalposts” or changing the “game”. J. Pharm. Sci. 1994, 83, 1554–1557. [Google Scholar] [CrossRef] [PubMed]
- Schall, R.; Luus, H. Comparison of absorption rates in bioequivalence studies of immediate release drug formulations. Int. J. Clin. Pharmacol. Ther. Toxicol. 1992, 30, 153–159. [Google Scholar] [PubMed]
- Karalis, V. Modeling and Simulation in Bioequivalence. In Modeling in Biopharmaceutics, Pharmacokinetics and Pharmaco-Dynamics. Homogeneous and Heterogeneous Approaches, 2nd ed.; Macheras, P., Iliadis, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 227–255. [Google Scholar]
- Chen, M. An alternative approach for assessment of rate of absorption in bioequivalence studies. Pharm. Res. 1992, 9, 1380–1385. [Google Scholar] [CrossRef]
- Bois, F.; Tozer, T.; Hauck, W.; Chen, M.; Patnaik, R.; Williams, R. Bioequivalence: Performance of several measures of extent of absorption. Pharm. Res. 1994, 11, 715–722. [Google Scholar] [CrossRef]
- Schall, R.; Luus, H.G.; Steinijans, V.W.; Hauschke, D. Choice of characteristics and their bioequivalence ranges for the comparison of absorption rates of immediate-release drug formulations. Int. J. Clin. Pharmacol. Ther. 1994, 32, 323–328. [Google Scholar] [PubMed]
- Lacey, L.; Keene, O.; Duquesnoy, C.; Bye, A. Evaluation of different indirect measures of rate of drug absorption in comparative pharmacokinetic studies. J. Pharm. Sci. 1994, 83, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Endrenyi, L.; Al-Shaikh, P. Sensitive and specific determination of the equivalence of absorption rates. Pharm. Res. 1995, 12, 1856–1864. [Google Scholar] [CrossRef]
- Tothfalusi, L.; Endrenyi, L. Without extrapolation, Cmax/AUC is an effective metric in investigations of bioequivalence. Pharm. Res. 1995, 12, 937–942. [Google Scholar] [CrossRef]
- Chen, M.; Lesko, L.; Williams, R. Measures of exposure versus measures of rate and extent of absorption. Clin. Pharmacokinet. 2001, 40, 565–572. [Google Scholar] [CrossRef]
- Jackson, A. Determination of in vivo bioequivalence. Pharm. Res. 2002, 19, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Midha, K.K.; Rawson, M.J.; McKay, G.; Hubbard, J.W. Exposure measures applied to the bioequivalence of two sustained release formulations of bupropion. Int. J. Clin. Pharmacol. Ther. 2005, 43, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Endrenyi, L.; Tothfalusi, L. Metrics for the evaluation of bioequivalence of modified-release formulations. AAPS J. 2012, 14, 813–819. [Google Scholar] [CrossRef]
- Stier, E.; Davit, B.; Chandaroy, P.; Chen, M.; Fourie-Zirkelbach, J.; Jackson, A.; Kim, S.; Lionberger, R.; Mehta, M.; Uppoor, R.; et al. Use of partial area under the curve metrics to assess bioequivalence of methylphenidate multiphasic modified release formulations. AAPS J. 2012, 14, 925–926. [Google Scholar] [CrossRef] [PubMed]
- Karalis, V. Machine Learning in Bioequivalence: Towards Identifying an Appropriate Measure of Absorption Rate. Appl. Sci. 2023, 13, 418. [Google Scholar] [CrossRef]
- Karalis, V. On the Interplay between Machine Learning, Population Pharmacokinetics, and Bioequivalence to Introduce Average Slope as a New Measure for Absorption Rate. Appl. Sci. 2023, 13, 2257. [Google Scholar] [CrossRef]
- Vlachou, M.; Karalis, V. An In Vitro–In Vivo Simulation Approach for the Prediction of Bioequivalence. Materials 2021, 14, 555. [Google Scholar] [CrossRef]
- Van Wart, S.A.; Shoaf, S.E.; Mallikaarjun, S.; Mager, D.E. Population-based meta-analysis of hydrochlorothiazide pharmacokinetics. Biopharm. Drug Dispos. 2013, 34, 527–539. [Google Scholar] [CrossRef]
- Neves, R.; Almeida, S.; Filipe, A.; Spínola, A.C.; Abolfathi, Z.; Yritia, M.; Ortuño, J. Bioequivalence study of two different film-coated tablet formulations of losartan-hydrochlorothiazide in healthy volunteers. Arzneimittelforschung 2008, 58, 369–375. [Google Scholar]
- Noetzli, M.; Guidi, M.; Ebbing, K.; Eyer, S.; Wilhelm, L.; Michon, A.; Thomazic, V.; Stancu, I.; Alnawaqil, A.M.; Bula, C.; et al. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance. Br. J. Clin. Pharmacol. 2014, 78, 135–144. [Google Scholar] [CrossRef]
- US Food and Drug Administration. Approval Package for: Application Number NDA 19-787/S30. Clinical Pharmacology and Biopharmaceutics Review, Norvasc®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/019787_S30_NORVASC_BIOPHARMR.pdf (accessed on 21 March 2023).
- Flynn, J.T.; Nahata, M.C.; Mahan, J.D.; Portman, R.J. PATH-2 Investigators. Population pharmacokinetics of amlodipine in hypertensive children and adolescents. J. Clin. Pharmacol. 2006, 46, 905–916. [Google Scholar] [CrossRef]
- Vincze, I.; Endrényi, L.; Tóthfalusi, L. Bioequivalence Metrics for Absorption Rates: Linearity, Specificity, Sensitivity. Acta Pharm. Hung. 2019, 89, 17–21. [Google Scholar] [CrossRef]
- Basson, R.P.; Ghosh, A.; Cerimele, B.J.; DeSante, K.A.; Howey, D.C. Why rate of absorption inferences in single dose bioequivalence studies are often inappropriate. Pharm Res. 1998, 15, 276–279. [Google Scholar] [CrossRef]
- European Medicines Agency 2001; Committee for Proprietary Medicinal Products (CPMP). Note for Guidance on the Investigation of Bioavailability and Bioequivalence. CPMP/EWP/QWP/1401/98. London, 26 July 2001. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/note-guidance-investigation-bioavailability-bioequivalence_en.pdf (accessed on 21 March 2023).
- Enalapril Maleate and Hydrochlorothiazide 20 mg/12.5 mg Tablets. Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/9862/smpc/print (accessed on 21 March 2023).
- FDA Approved Drug Products: Hydrochlorothiazide Oral Tablets. 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/040735s004,040770s003lbl.pdf (accessed on 21 March 2023).
- O’Neil, M.J. The Merck Index—An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th ed.; Whitehouse Station; Merck & Co.: Rahway, NJ, USA, 2001. [Google Scholar]
- Tsume, Y.; Mudie, D.M.; Langguth, P.; Amidon, G.E.; Amidon, G.L. The biopharmaceutics classification system: Subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur. J. Pharm. Sci. 2014, 57, 152–163. [Google Scholar] [CrossRef] [PubMed]
- Tsume, Y.; Takeuchi, S.; Matsui, K.; Amidon, G.E.; Amidon, G.L. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib. Eur. J. Pharm. Sci. 2015, 76, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Donepezil Hydrochloride 5 mg Film-Coated Tablets. Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/5319/smpc/print (accessed on 21 March 2023).
- de Campos, D.P.; Silva-Barcellos, N.M.; Caldeira, T.G.; Mussel, W.D.N.; Silveira, V.; de Souza, J. Donepezil Hydrochloride BCS Class Ambiguity: Relevant Aspects to be Considered in Drug Classification. J. Pharm. Sci. 2022, 111, 3064–3074. [Google Scholar] [CrossRef]
- Amlodipine 5mg Tablets. Summary of Product Characteristics. Available online: https://www.medicines.org.uk/emc/product/4717/smpc/print (accessed on 21 March 2023).
- Ette, E.I.; Williams, P.J. Population pharmacokinetics I: Background, concepts, and models. Ann. Pharmacother. 2004, 38, 1702–1706. [Google Scholar] [CrossRef]
- Halko, N.; Martinsson, P.G.; Tropp, J.A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev. 2011, 53, 217–288. [Google Scholar] [CrossRef]
- Savic, R.; Lavielle, M. Performance in population models for count data, part II: A new SAEM algorithm. J. Pharmacokin. Pharm. 2009, 36, 367–379. [Google Scholar] [CrossRef]
Characteristic | Drug | ||
---|---|---|---|
Hydrochlorothiazide | Donepezil | Amlodipine | |
Bioavailability | 60–80% | 100% | 64–80% |
Tmax | 1–1.5 h | 3–4 h | 6–12 h |
Model | Two-compartment | One-compartment | One-compartment |
Lag time | Yes | No | No |
Elimination half-life | 8–15 h | 81.5 +/− 22.0 h | 40–50 h |
BCS class | II | I | I |
Reference(s) | [21,22,23,24,25] | [26,27] | [28] |
Characteristic | Drug | ||
---|---|---|---|
Hydrochlorothiazide | Donepezil | Amlodipine | |
Tlag (min) | 24.24 | - | - |
Ka (min−1) | 0.01288 | 0.02167 | 0.01417 |
Cl/F (mL/min) | 575 | 143.33 | 370 |
Q/F (mL/min) | 423.33 | - | - |
V1/F (mL) | 137,000 | 391,000 | 1300 |
V2/F (mL) | 146,000 | - | - |
References | [29] | [19] | [29] |
Number | Sampling Times (Minutes) | ||
---|---|---|---|
Hydrochlorothiazide | Donepezil | Amlodipine | |
1 | 0 | 0 | 0 |
2 | 10 | 30 | 60 |
3 | 20 | 60 | 120 |
4 | 40 | 90 | 240 |
5 | 60 | 120 | 300 |
6 | 90 | 150 | 360 |
7 | 120 | 180 | 420 |
8 | 180 | 210 | 480 |
9 | 240 | 240 | 600 |
10 | 360 | 360 | 720 |
11 | 480 | 480 | 960 |
12 | 720 | 720 | 1440 |
13 | 960 | 1080 | 2880 |
14 | 1440 | 1440 | 4320 |
15 | 2160 | ||
16 | 2880 | ||
17 | 4320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karalis, V.D. An In Silico Approach toward the Appropriate Absorption Rate Metric in Bioequivalence. Pharmaceuticals 2023, 16, 725. https://doi.org/10.3390/ph16050725
Karalis VD. An In Silico Approach toward the Appropriate Absorption Rate Metric in Bioequivalence. Pharmaceuticals. 2023; 16(5):725. https://doi.org/10.3390/ph16050725
Chicago/Turabian StyleKaralis, Vangelis D. 2023. "An In Silico Approach toward the Appropriate Absorption Rate Metric in Bioequivalence" Pharmaceuticals 16, no. 5: 725. https://doi.org/10.3390/ph16050725
APA StyleKaralis, V. D. (2023). An In Silico Approach toward the Appropriate Absorption Rate Metric in Bioequivalence. Pharmaceuticals, 16(5), 725. https://doi.org/10.3390/ph16050725