Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Carbon Dioxide Flow on the Distillation Process, Yield and Kinetics Modelling
2.2. Evolution of Energy Consumption during the SHSD and SHSDACD Extraction
2.3. Scanning Electron Microscopy Observations
2.4. Chemical Composition of VOs
2.5. Antioxidant Activity
2.6. Anti-Enzymatic Activity
3. Materials and Methods
3.1. Plant Material
3.2. SHSD and SHSDACD Extraction Methods
3.3. Kinetics of the Volatile Oil Extraction
3.3.1. First-Order Kinetic Model
3.3.2. Adsorption Kinetic Model
3.3.3. Sigmoid Model
3.4. Evolution of Energy Consumption during the SHSD and SHSDACD Methods
3.5. Model Validation
3.6. Scanning Electron Microscopy (SEM)
3.7. Chemical Analysis of Volatile Oils
Gas Chromatography-Mass Spectrometry: GC-MS Analysis
3.8. Free Radical Scavenging Assays
3.8.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free Radical-Scavenging Assay
3.8.2. Nitric Oxide Free Radical-Scavenging Assay
3.8.3. Superoxide Anion Free Radical Scavenging Assay
3.9. Enzymatic Assays
3.9.1. α-Glucosidase Inhibition Assay
3.9.2. Acetylcholinesterase Inhibition Assay
3.9.3. Lipoxygenase Inhibition Assay
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ISO 9235:2013; Aromatic Natural Raw Materials—Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2013.
- Gavahian, M.; Farahnaky, A. Ohmic-assisted hydrodistillation technology: A review. Trends Food Sci. Technol. 2018, 72, 153–161. [Google Scholar] [CrossRef]
- Khajeh, M.; Moghaddam, M.G.; Shakeri, M. Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction. J. Supercrit. Fluids 2012, 69, 91–96. [Google Scholar] [CrossRef]
- Zhang, C.-Y.; Guo, M. Comparing three different extraction techniques on essential oil profiles of cultivated and wild lotus (Nelumbo nucifera) flower. Life 2020, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Danh, L.T.; Truong, P.; Mammucari, R.; Foster, N. Extraction of vetiver essential oil by ethanol-modified supercritical carbon dioxide. Chem. Eng. J. 2010, 165, 26–34. [Google Scholar] [CrossRef]
- DeCuir, M.; Gupta, R.B.; Sastri, B. Beneficiation of coal using supercritical water and carbon dioxide extraction: Sulfur removal. Int. J. Coal Sci. Technol. 2021, 8, 717–726. [Google Scholar] [CrossRef]
- Gary, L.; Filipe, G.; Regina, S. Influence of Water on the Extraction of Essential Oils from a Model Herb Using Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2002, 41, 2033–2039. [Google Scholar] [CrossRef]
- Radzali, S.A.; Markom, M.; Saleh, N.M. Co-Solvent Selection for Supercritical Fluid Extraction (SFE) of Phenolic Compounds from Labisia pumila. Molecules 2020, 25, 5859. [Google Scholar] [CrossRef]
- Btissam, R.; Rajae, R.; Amina, A.; Brigitte, V.; Mohamed, N. In vitro study of anti-glycation and radical scavenging activities of the essential oils of three plants from Morocco: Origanum compactum, Rosmarinus officinalis and Pelargonium asperum. Pharmacogn. J. 2015, 7, 124–135. [Google Scholar] [CrossRef]
- Stanojević, L.P.; Todorović, Z.B.; Stanojević, K.S.; Stanojević, J.S.; Troter, D.Z.; Nikolić, L.B.; Đorđević, B. The influence of natural deep eutectic solvent glyceline on the yield, chemical composition and antioxidative activity of essential oil from rosemary (Rosmarinus officinalis L.) leaves. J. Essent. Oil Res. 2021, 33, 247–255. [Google Scholar] [CrossRef]
- Cutillas, A.; Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Rosmarinus officinalis L. essential oils from Spain: Composition, antioxidant capacity, lipoxygenase and acetylcholinesterase inhibitory capacities, and antimicrobial activities. Plant Biosyst. 2018, 152, 1282–1292. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Upadhyay, R.K.; Singh, V.R. Productivity and essential oil composition of rosemary (Rosmarinus officinalis L.) harvested at different growth stages under the subtropical region of north India. J. Essent. Oil Res. 2021, 32, 144–149. [Google Scholar] [CrossRef]
- Perović, A.; Stanković, M.Z.; Veljković, V.B.; Kostić, M.D.; Stamenković, O.S. A further study of the kinetics and optimization of the essential oil hydrodistillation from lavender flowers. Chin. J. Chem. Eng. 2020, 29, 126–130. [Google Scholar] [CrossRef]
- Danh, L.T.; Triet, N.D.A.; Han, L.T.N.; Zhao, J.; Mammucari, R.; Foster, N. Antioxidant activity, yield and chemical composition of lavender essential oil extracted by supercritical CO2. J. Supercrit. Fluids 2012, 70, 27–34. [Google Scholar] [CrossRef]
- Hassanein, H.D.; El-Gendy, A.E.G.; Saleh, I.A.; Hendawy, S.F.; Elmissiry, M.M.; Omer, E.A. Profiling of essential oil chemical composition of some Lamiaceae species extracted using conventional and microwave-assisted hydrodistillation extraction methods via chemometrics tools. Flavour Fragr. J. 2020, 35, 329–340. [Google Scholar] [CrossRef]
- Marković, M.S.; Radosavljević, D.B.; Pavićević, V.P.; Ristić, M.S.; Milojević, S.Ž.; Bošković-Vragolović, N.M.; Veljiković, V.B. Influence of common juniperus berries pretreatment on the essential oil yield, chemical composition and extraction kinetics of classical and microwave-assisted hydrodistillation. Ind. Crop. Prod. 2018, 122, 402–413. [Google Scholar] [CrossRef]
- Bousbia, N.; Vian, M.A.; Ferhat, M.A.; Petitcolas, E.; Meklati, B.Y.; Chemat, F. Comparison of two isolation methods for essential oil from rosemary leaves: Ydrodistillation and microwave hydrodiffusion and gravity. Food Chem. 2009, 114, 355–362. [Google Scholar] [CrossRef]
- Filly, A.; Fabiano-Tixier, A.S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. C. R. Chim. 2016, 19, 707–717. [Google Scholar] [CrossRef]
- Liu, T.; Sui, X.; Yang, R.Z.L.; Zu, Y.; Zhang, L.; Zhang, Y.Z.Z. Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis. J. Chromatogr. A 2011, 1218, 8480–8489. [Google Scholar] [CrossRef]
- Farhat, A.; Ginies, C.; Romdhane, M.; Chemat, F. Eco-friendly and cleaner process for isolation of essential oil using microwave energy: Experimental and theoretical study. J. Chromatogr. A 2009, 1216, 5077–5085. [Google Scholar] [CrossRef]
- Tsimogiannis, D.; Oreopoulou, V. A kinetic study of essential oil components distillation for the recovery of carvacrol rich fractions. J. Appl. Res. Med. Aromat. Plants 2018, 9, 117–123. [Google Scholar] [CrossRef]
- Da Porto, C.; Decorti, D.; Natolino, A. Separation of aroma compounds from industrial hemp inflorescences (Cannabis sativa L.) by supercritical CO2 extraction and on-line fractionation. Ind. Crop. Prod. 2014, 58, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Al-Hilphy, A.R.S. A practical study for new design of essential oils extraction apparatus using ohmic heating. Int. J. Agric. Sci. 2014, 4, 351–366. [Google Scholar]
- Meziane, I.A.A.; Maizi, N.; Abatzoglou, N.; Benyoussef, E.-H. Modelling and optimization of energy consumption in essential oil extraction processes. Food Bioprod. Process. 2019, 119, 373–389. [Google Scholar] [CrossRef]
- Boukroufa, M.; Boutekedjiret, C.; Petigny, L.; Rakotomanomana, N.; Chemat, F. Bio-refinery of orange peels waste: A new concept based on integrated green and solvent free extraction processes using ultrasound and microwave techniques to obtain essential oil, polyphenols and pectin. Ultrason. Sonochem. 2015, 24, 72–79. [Google Scholar] [CrossRef]
- Desai, M.A.; Parikh, J. Extraction of essential oil from leaves of lemongrass using microwave radiation: Optimization, comparative, kinetic, and biological studies. ACS Sustain. Chem. Eng. 2015, 3, 421–431. [Google Scholar] [CrossRef]
- Moussi, I.M.; Nayme, K.; Timinouni, M.; Jamaleddine, J.; Filali, H.; Hakkou, F. Synergistic antibacterial effects of Moroccan Artemisia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils. Synergy 2019, 10, 100057. [Google Scholar] [CrossRef]
- da Porto, C.; Decorti, D. Analysis of the volatile compounds of flowers and essential oils from Lavandula angustifolia cultivated in Northeastern Italy by headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry. Planta Med. 2008, 74, 182–187. [Google Scholar] [CrossRef]
- Carrasco, A.; Martinez-Gutierrez, R.; Tomas, V.; Tudela, J. Lavandula angustifolia and Lavandula latifolia essential oils from Spain: Aromatic profile and bioactivities. Planta Med. 2015, 82, 163–170. [Google Scholar]
- Aboukhalid, K.; Lamiri, A.; Agacka-Mołdoch, M.; Doroszewska, T.; Douaik, A.; Bakha, M.; Casanova, J.; Tomi, F.; Machon, N.; Al Faiz, C. Chemical polymorphism of Origanum compactum grown in all natural habitats in Morocco. Chem. Biodivers. 2016, 13, 1126–1139. [Google Scholar] [CrossRef]
- Bouyahya, A.; Dakka, N.; Talbaoui, A.; Et-Touys, A.; El-Boury, H.; Abrini, J.; Bakri, Y. Correlation between phenological changes, chemical composition and biological activities of the essential oil from Moroccan endemic oregano (Origanum compactum Benth). Ind. Crop. Prod. 2017, 108, 729–737. [Google Scholar] [CrossRef]
- Linstrom, P.J.; Mallard, W.G. (Eds.) NIST Chemistry WebBook; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 1998. Available online: http://webbook.nist.gov (accessed on 1 March 2022).
- Joulain, D.; Köning, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E.B.-Verlag Hamburg: Hamburg, Germany, 1998. [Google Scholar]
- Benyoucef, F.; Dib, M.A.; Arrar, Z.; Costa, J.; Muselli, A. Synergistic antioxidant activity and chemical composition of essential oils from Thymus fontanesii, Artemisia herba-alba and Rosmarinus officinalis. J. Appl. Biotechnol. Rep. 2018, 5, 151–156. [Google Scholar] [CrossRef]
- Oualdi, I.; Brahmi, F.; Mokhtari, O.; Abdellaoui, S.; Tahani, A.; Oussaid, A. Rosmarinus officinalis from Morocco, Italy and France: Insight into chemical compositions and biological properties. Mater. Today Proc. 2021, 45, 7706–7710. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, N.; Fu, Y.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G.; Liu, X.-L. Chemical composition and antimicrobial activity of the essential oil of rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Schaefer, J.; Streicher, C.; Stimson, J.; Fagan, J. Qualitative analysis of essential oil from French and Italian varieties of rosemary (Rosmarinus officinalis L.) grown in the Midwestern United States. Anal. Chem. Lett. 2020, 10, 104–112. [Google Scholar] [CrossRef]
- Özcan, M.M.; Chalchat, J.-C. Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int. J. Food Sci. Nutr. 2008, 58, 691–698. [Google Scholar] [CrossRef]
- El-Kharraf, S.; El-Guendouz, S.; Farah, A.; Bennani, B.; Mateus, M.C.; El Hadrami, E.M.; Miguel, M.G. Hydrodistillation and simultaneous hydrodistillation-steam distillation of Rosmarinus officinalis and Origanum compactum: Antioxidant, anti-inflammatory, and antibacterial effect of the essential oils. Ind. Crop. Prod. 2021, 168, 113591. [Google Scholar] [CrossRef]
- Mastelić, J.; Jerković, I.; Blažević, I.; Poljak-Blaži, M.; Borović, S.; Ivančić-Baće, I.M.; Smrečki, V.; Žarković, N.; Brčić-Kostic, K.; Virić-Topić, D.; et al. Comparative study on the antioxidant and biological activities of carvacrol, thymol, and eugenol derivatives. J. Agric. Food Chem. 2008, 56, 3989–3996. [Google Scholar] [CrossRef]
- Bouhdid, S.; Skali, S.N.; Idaomar, M.; Zhiri, A.; Baudoux, D.; Amensour, M.; Abrini, J. Antibacterial and antioxidant activities of Origanum compactum essential oil. Afr. J. Biotechnol. 2008, 7, 1563–1570. [Google Scholar]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 2011, 16, 7672–7690. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.I.; Anwar, F.; Chatha, S.A.S.; Jabbar, A.; Mahboob, S.; Nigam, P.S. Rosmarinus officinalis essential oil: Antiproliferative, antioxidant and antibacterial activities. Braz. J. Microbiol. 2010, 41, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Selmi, S.; Rtibi, K.; Grami, D.; Sebai, H.; Marzouki, L. Rosemary (Rosmarinus officinalis) essential oil components exhibit anti-hyperglycemic, anti-hyperlipidemic and antioxidant effects in experimental diabetes. Pathophysiology 2017, 24, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Kokina, M.; Salević, A.; Kalušević, A.; Lević, S.; Pantić, M.; Pljevljakušić, D.; Šavikin, K.; Shamtsyan, M.; Nikšić, M.; Nedović, V. Characterization, antioxidant and antibacterial activity of essential oils and their encapsulation into biodegradable material followed by freeze drying. Food Technol. Biotechnol. 2019, 57, 282–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimian, P.; Kavoosi, G.; Saharkhiz, M.J. Antioxidant, nitric oxide scavenging and malondialdehyde scavenging activities of essential oils from different chemotypes of Zataria multiflora. Nat. Prod. Res. 2012, 26, 2144–2147. [Google Scholar] [PubMed]
- El-Kharraf, S.; Faleiro, M.L.; Farah, A.; El-Guendouz, S.; Hadrami, E.M.E.; Miguel, G. Simultaneous hydrodistillation-steam distillation of Rosmarinus officinalis, Lavandula angustifolia and Citrus aurantium from Morocco, major terpenes: Impact on biological activities. Molecules 2021, 26, 5452. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, L.; Yang, L.; Qiu, J. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata. EXCLI J. Exper. Clin. Sci. 2013, 12, 479–490. [Google Scholar]
- Gunaseelan, S.; Balupillai, A.; Govindasamy, K.; Ramasamy, K.; Muthusamy, G.; Shanmugam, M.; Thangaiyan, R.; Robert, B.M.; Nagarajan, P.R.; Ponniresan, V.K.; et al. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLoS ONE 2017, 12, e0176699. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.Q.; Li, M.; Zhu, F.; Liu, F.L.; Huang, J.B. Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against α-glucosidase and α-amylase linked to type 2 diabetes. Food Chem. 2012, 130, 261–266. [Google Scholar] [CrossRef]
- Najibullah, S.N.M.; Ahamad, J.; Aldahish, A.A.; Sultana, S.; Sultana, S. Chemical characterization and α-glucosidase inhibitory activity of essential oil of Lavandula angustifolia flowers. J. Essent. Oil Bear. Plants 2021, 24, 431–438. [Google Scholar] [CrossRef]
- Ahamad, J.; Uthirapathy, S.; Ameen, M.S.M.; Anwer, E.T. Essential oil composition and antidiabetic, anticancer activity of Rosmarinus officinalis L. leaves from Erbil (Iraq). J. Essent. Oil Bear. Plants 2019, 22, 1544–1553. [Google Scholar] [CrossRef]
- Orhan, I.; Kartal, M.; Kan, Y.; Sener, B. Activity of essential oils and individual components against acetyl and butyrylcholinesterase. Z. Naturfors. C J. Biosci. 2008, 63, 547–553. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Mighri, H.; Aouni, M.; Gharsallah, N.; Kadri, A. Chemical composition and in vitro evaluation of antioxidant, antimicrobial, cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Microb. Pathog. 2016, 95, 86–94. [Google Scholar] [CrossRef] [PubMed]
- López, V.; Cascella, M.; Benelli, G.; Maggi, F.; Gómez-Rincón, C. Green drugs in the fight against Anisakis simplex—larvicidal activity and acetylcholinesterase inhibition of Origanum compactum essential oil. Parasitol. Res. 2018, 117, 861–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.; Araujo, M.E. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Frum, Y.; Viljoen, A. In vitro 5-lipoxygenase activity of three indigenous South African aromatic plants used in traditional healing and the stereospecific activity of limonene in the 5-lipoxygenase. J. Essent. Oil Res. 2006, 18 (Suppl. 1), 831–839. [Google Scholar] [CrossRef]
- Baylac, S.; Racine, P. Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. Int. J. Aromather. 2003, 13, 138–142. [Google Scholar] [CrossRef]
- Samadi, M.; Abidin, Z.Z.; Yunus, R.; Biak, D.R.A.; Yoshida, H.; Lok, E.H. Assessing the kinetic model of hydro-distillation and chemical composition of Aquilaria malaccensis leaves essential oil. Chin. J. Chem. Eng. 2016, 25, 216–222. [Google Scholar] [CrossRef]
- Babu, G.D.; Singh, B. Simulation of Eucalyptus cinerea oil distillation: A study on optimization of 1,8-cineole production. Biochem. Eng. J. 2009, 44, 226–231. [Google Scholar] [CrossRef]
- Stanisavljević, I.T.; Lazić, M.L.; Veljković, V.B.; Stojičević, S.S.; Veličković, D.T.; Ristić, M.S. Kinetics of hydrodistillation and chemical composition of essential oil from cherry laurel (Prunus laurocerasus L. var. serbica Pančić) leaves. J. Essent. Oil Res. 2010, 22, 564–567. [Google Scholar] [CrossRef]
- Machado, A.M.; Antunes, M.; Miguel, M.G.; Vilas-Boas, M.; Figueiredo, A.C. Volatile profile of Portuguese monofloral honeys: Significance in botanical origin determination. Molecules 2021, 26, 4970. [Google Scholar] [CrossRef]
- ISO 7609; Essential Oils—Analysis by Gas Chromatography on Capillary Columns—General Method. International Organization for Standardization: Geneva, Switzerland, 1985.
- Navanesan, S.; Wahab, N.A.; Manickam, S.; Sim, K.S. Evaluation of selected biological capacities of Baeckea frutescens. BMC Complement. Altern. Med. 2015, 15, 186. [Google Scholar] [CrossRef] [Green Version]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Bankova, V.; Popova, M.; Neto, L.; Faleiro, M.L.; Miguel, M.G. Moroccan propolis: A natural antioxidant, antibacterial, and antibiofilm against Staphylococcus aureus with no induction of resistance after continuous exposure. Evid.-Based Complemen. Altern. Med. 2018, 2018, 9759240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Antunes, M.D.; Faleiro, M.L.; Miguel, M. Anti-acetylcholinesterase, antidiabetic, anti-inflammatory, antityrosinase and antixanthine oxidase activities of Moroccan propolis. Int. J. Food Sci. Technol. 2016, 51, 1762–1773. [Google Scholar] [CrossRef] [Green Version]
Extraction Methods | Samples | Extraction Time | P | Plant Mass | Y∞ | First-Order Model | Adsorption Model | Sigmoid Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | MSE | R2 | b | MSE | R2 | K | b | MSE | R2 | ||||||
(min) | (W) | (g) | (%, v/w) | (min−1) | (%) | (%) | (%) | (%) | (min−1) | (%) | (%) | ||||
SHSD | R. officinalis | 120 | 220 | 100 | 2.00 ± 0.01 b | 0.02 | 4 | 99.4 | 77.6 | 84 | 63.2 | 0.01 | 0.02 | 98 | 55.3 |
L. angustifolia | 100 | 220 | 100 | 1.20 ± 0.00 ef | 0.04 | 1 | 98.0 | 12.1 | 7 | 50.0 | 0.04 | 0.13 | 10 | 75.0 | |
O. compactum | 60 | 220 | 100 | 1.60 ± 0.05 cd | 0.10 | 0 | 98.9 | 3.14 | 6 | 96.6 | 0.10 | 0.02 | 1 | 98.3 | |
SHSDACD | R. officinalis | 30 | 220 | 100 | 2.80 ± 0.10 a | 0.16 | 6 | 99.3 | 2.73 | 86 | 56.3 | 0.15 | −0.22 | 0 | 93.9 |
L. angustifolia | 28 | 220 | 100 | 1.50 ± 0.00 e | 0.23 | 4 | 92.6 | 4.60 | 7 | 27.7 | 0.25 | −0.21 | 0 | 99.8 | |
O. compactum | 20 | 220 | 100 | 1.70 ± 0.01 c | 0.19 | 1 | 99.2 | 2.73 | 5 | 94.7 | 0.27 | −0.26 | 0 | 99.2 |
Components | RI a | RI b,c | SHSD | SHSDACD | ||||
---|---|---|---|---|---|---|---|---|
Ro | La | Oc | Ro | La | Oc | |||
α-Thujene | 924 | 929 | 0.2 | 0.4 | t | t | t | |
α-Pinene | 930 | 931 | 10.8 | 0.4 | 0.6 | 9.9 | 0.3 | 0.3 |
Camphene | 938 | 938 | 3.4 | 0.5 | 0.1 | 2.6 | 0.5 | 0.1 |
Thuja-2,4(10)-diene * | 940 | 939 | t | t | t | t | ||
Sabinene | 958 | 959 | 0.5 | t | 0.7 | t | ||
1-Octen-3-ol | 961 | 972 | t | t | 1.0 | t | t | 2.0 |
3-Octanone | 961 | 962 | 1.0 | 2.0 | ||||
β-Pinene | 963 | 962 | 1.0 | 0.7 | 1.4 | 0.6 | ||
Dehydroxy-trans-linalool oxide * | 973 | 0.1 | t | |||||
Dehydro-1,8-cineole | 973 | 972 | t | 0.1 | ||||
β-Myrcene | 975 | 980 | 1.0 | 0.5 | 1.1 | 1.1 | 0.1 | 0.7 |
Dehydroxy-cis-linalool oxide * | 995 | 0.1 | 0.1 | |||||
Hexyl acetate | 995 | 995 | 0.1 | t | ||||
α-Phellandrene | 995 | 986 | t | 0.1 | 0.2 | t | ||
α-Terpinene | 1002 | 1001 | 0.1 | 1.2 | 0.4 | 0.2 | ||
p-Cymene | 1003 | 1004 | 2.5 | 0.3 | 27.3 | 1.9 | 0.3 | 25.0 |
1,8-Cineole | 1005 | 1010 | 50.2 | 16.1 | 0.7 | 48.2 | 13.1 | 1.5 |
β-Phellandrene | 1005 | 1011 | t | t | ||||
Limonene | 1009 | 1014 | 3.4 | 0.7 | 0.2 | 2.2 | 0.7 | t |
cis-β-Ocimene | 1017 | 1015 | t | 0.1 | t | t | t | t |
trans-β-Ocimene | 1027 | 1026 | 0.3 | t | t | t | ||
γ-Terpinene | 1035 | 1043 | t | 0.1 | 9.8 | 0.4 | t | 0.8 |
trans-Sabinene hydrate | 1037 | 1096 | 0.2 | 0.2 | ||||
cis-Linalool oxide (furanoid) | 1045 | 2.3 | 2.3 | |||||
trans-Linalool oxide (furanoid) | 1059 | 1.8 | 1.8 | |||||
2,5-Dimethyl styrene | 1059 | 1076 | 0.1 | 0.1 | t | 0.2 | ||
Terpinolene | 1064 | 1077 | t | 0.1 | t | 0.2 | t | t |
cis-Sabinene hydrate | 1066 | 1080 | 0.2 | 0.3 | ||||
Linalool | 1074 | 1082 | 1.1 | 20.5 | 1.5 | 1.0 | 14.2 | 2.6 |
endo-Fenchol | 1085 | 1088 | 0.1 | t | ||||
1-Octen-3-yl acetate | 1086 | 1092 | 0.8 | 0.8 | ||||
α-Campholenal | 1092 | 1103 | 0.1 | t | ||||
Camphor | 1102 | 1107 | 15.3 | 16.5 | 0.2 | 11.7 | 15.1 | 0.4 |
Hexyl isobutanoate | 1127 | 1130 | 0.1 | 0.1 | ||||
Nerol oxide | 1127 | 1140 | 0.2 | 0.3 | ||||
Borneol | 1134 | 1147 | 3.7 | 10.4 | 0.4 | 5.2 | 10.3 | 0.8 |
Cryptone * | 1143 | 1148 | 0.4 | 0.3 | ||||
Terpinen-4-ol | 1148 | 1153 | 0.9 | 0.9 | 0.9 | 0.9 | 0.8 | 0.9 |
p-Cymen-8-ol | 1148 | 1156 | 0.3 | 0.9 | ||||
α-Terpineol | 1159 | 1157 | 3.8 | 2.7 | 3.3 | 4.3 | 0.8 | 19.3 |
Hexyl butyrate | 1173 | 1174 | 0.3 | 0.2 | ||||
Bornyl formate | 1200 | 1208 | 0.2 | 0.2 | ||||
Cumin aldehyde | 1200 | 1221 | 0.2 | 0.2 | ||||
Thymoquinone | 1210 | 1226 | 0.1 | 0.4 | ||||
Methyl thymol | 1210 | 1227 | 0.7 | 4.8 | ||||
Hexyl 2-methyl butyrate | 1220 | 1222 | t | t | ||||
Geraniol | 1236 | 1234 | 1.2 | t | ||||
Linalyl acetate | 1245 | 1255 | 0.2 | 13.1 | t | t | 25.5 | t |
Bornyl acetate | 1265 | 1259 | 0.2 | 0.2 | 0.3 | 0.2 | ||
Cumin alcohol | 1265 | 1265 | 0.6 | 0.7 | ||||
Thymol | 1275 | 1278 | 0.1 | 37.8 | 0.1 | 10.5 | ||
Lavandulyl acetate | 1278 | 1273 | 0.8 | 0.8 | ||||
Carvacrol | 1286 | 1278 | t | 5.5 | t | 17.9 | ||
Myrtenyl acetate | 1290 | 1285 | 0.1 | 0.5 | ||||
Hexyl tiglate | 1316 | 1310 | 0.1 | 0.1 | ||||
Eugenol | 1327 | 1327 | 0.2 | t | ||||
α-Terpenyl acetate | 1334 | 1334 | 0.5 | 0.1 | ||||
Geranyl acetate | 1370 | 1360 | t | 1.0 | t | 0.1 | ||
β-Caryophyllene | 1414 | 1415/1421 | 0.1 | 0.3 | 1.1 | 5.6 | 0.7 | 1.1 |
α-Santalene | 1422 | 1422 | 0.1 | 0.3 | ||||
Geranyl acetone | 1434 | 1426 | t | t | ||||
α-Humulene | 1447 | 1439/1455 | t | 0.9 | 0.1 | |||
trans-α-Farnesene | 1455 | 1446 | 0.1 | 0.4 | ||||
β-Bisabolene | 1500 | 1487 | t | 0.1 | t | 0.1 | ||
γ-Cadinene | 1500 | 1507 | 0.4 | 1.1 | ||||
β-Sesquiphellandrene | 1508 | 1508 | t | 0.1 | ||||
tert-Butylhydroquinone | 1510 | t | 0.8 | |||||
α-Calacorene | 1525 | 1525/1527 | t | t | ||||
β-Caryophyllene oxide | 1561 | 1565 | 0.2 | 0.8 | 1.6 | 0.3 | 1.5 | 1.5 |
Humulene epoxide | 1580 | 1581 | t | 0.1 | ||||
T-Cadinol | 1616 | 1540 | 0.2 | 1.4 | t | 1.9 | ||
α-Bisabolol oxide B * | 1630 | 1616 | 0.1 | 0.1 | ||||
α-Bisabolol | 1656 | 1656 | t | 0.5 | t | 0.6 | ||
% Identification | 99.4 | 98.1 | 98.1 | 99.5 | 97.0 | 96.4 | ||
Grouped components | ||||||||
Monoterpene hydrocarbons | 23.0 | 3.7 | 40.9 | 21.0 | 2.5 | 27.3 | ||
Oxygen-containing monoterpenes | 75.7 | 89.3 | 52.4 | 71.7 | 86.7 | 61.3 | ||
Sesquiterpene hydrocarbons | 0.1 | 0.9 | 1.2 | 6.5 | 2.5 | 1.4 | ||
Oxygen-containing sesquiterpenes | 0.4 | 2.8 | 1.6 | 0.3 | 4.1 | 1.6 | ||
Phenylpropanoid | 0.2 | t | ||||||
Others | t | 1.4 | 2.0 | t | 1.2 | 4.8 |
Extraction Methods | VOs Samples | Half Maximal Inhibitory Concentration IC50 (mg/mL) | ||
---|---|---|---|---|
DPPH | NO | Superoxide | ||
SHD | R. officinalis | 3.06 ± 0.23 b | ND | ND |
L. angustifolia | 4.92 ± 0.20 a | ND | 1.53 ± 0.07 a | |
O. compactum | 1.51 ± 0.03 c | 0.20 ± 0.00 c | 1.40 ± 0.12 ab | |
SHDACD | R. officinalis | 1.09 ± 0.05 d | 4.23 ± 0.24 b | 0.77 ± 0.02 c |
L. angustifolia | 3.50 ± 0.13 b | 5.02 ± 0.25 a | 0.21 ± 0.01 e | |
O. compactum | 0.01± 0.00 e | 0.05 ± 0.00 d | 0.55 ± 0.02 d |
Extraction Methods | VOs Samples | Half Maximal Inhibitory Concentration IC50 (µg/mL) | ||
---|---|---|---|---|
α-Glucosidase | Acetylcholinesterase | Lipoxygenase | ||
SHD | R. officinalis | 219.44 ± 2.53 c | 513.58 ± 33.13 a | 819.97 ± 15.12 a |
L. angustifolia | 721.07 ± 83.06 a | 499.19 ± 14.45 ab | 143.78 ± 2.59 b | |
O. compactum | 107.18 ± 2.11 d | 10.66 ± 0.45 f | 123.60 ± 5.37 c | |
SHDACD | R. officinalis | 8.57 ± 0.39 e | 349.16 ± 16.76 c | 21.45 ± 0.22 ef |
L. angustifolia | 459.62 ± 30.21 b | 83.35 ± 4.01 d | 31.33 ± 0.57 d | |
O. compactum | 3.24 ± 0.30 f | 71.47 ± 2.77 e | 25.08 ± 0.49 ef |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Kharraf, S.; El-Guendouz, S.; Abdellah, F.; El Hadrami, E.M.; Machado, A.M.; Tavares, C.S.; Figueiredo, A.C.; Miguel, M.G. Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils. Pharmaceuticals 2022, 15, 567. https://doi.org/10.3390/ph15050567
El-Kharraf S, El-Guendouz S, Abdellah F, El Hadrami EM, Machado AM, Tavares CS, Figueiredo AC, Miguel MG. Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils. Pharmaceuticals. 2022; 15(5):567. https://doi.org/10.3390/ph15050567
Chicago/Turabian StyleEl-Kharraf, Sara, Soukaïna El-Guendouz, Farah Abdellah, El Mestafa El Hadrami, Alexandra M. Machado, Cláudia S. Tavares, Ana Cristina Figueiredo, and Maria Graça Miguel. 2022. "Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils" Pharmaceuticals 15, no. 5: 567. https://doi.org/10.3390/ph15050567
APA StyleEl-Kharraf, S., El-Guendouz, S., Abdellah, F., El Hadrami, E. M., Machado, A. M., Tavares, C. S., Figueiredo, A. C., & Miguel, M. G. (2022). Unassisted and Carbon Dioxide-Assisted Hydro- and Steam-Distillation: Modelling Kinetics, Energy Consumption and Chemical and Biological Activities of Volatile Oils. Pharmaceuticals, 15(5), 567. https://doi.org/10.3390/ph15050567