Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization
Abstract
:1. Introduction
2. Stabilization and Formulation of Bacteriophage Therapeutics
2.1. Emulsification
2.2. Freeze-Drying
2.3. Spray-Drying
2.4. Liposomes
2.5. Electrospinning
3. Bacteriophage Immobilization
3.1. Physical Adsorption
3.2. Charge-Directed Immobilization
3.3. Protein Ligand
3.4. Covalent
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the european economic area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Willmann, M.; Steglich, M.; Bunk, B.; Peter, S.; Neher, R.A. Rapid and consistent evolution of colistin resistance in extensively drug-resistant Pseudomonas aeruginosa during morbidostat culture. Antomicrob. Agents Chemother. 2017, 61, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Azam, A.H.; Tanji, Y. Bacteriophage-host arm race: An update on themechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl. Microbiol. Biotechnol. 2019, 103, 2121–2131. [Google Scholar] [CrossRef]
- Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A review on antibiotic resistance: Alarm bells are ringing. Cureus 2017, 9, e1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hume, P.J.; Singh, V.; Davidson, A.C.; Koronakis, V. Swiss army pathogen: The salmonella entry toolkit. Front. Cell. Infect. Microbiol. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Valilis, E.; Ramsey, A.; Sidiq, S.; DuPont, H.L. Non-o157 shiga toxin-producing escherichia coli—a poorly appreciated enteric pathogen: Systematic review. Int. J. Infect. Dis. 2018, 76, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of virulence in enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr. Opin. Microbiol. 2018, 41, 76–82. [Google Scholar] [CrossRef]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Curtright, A.J.; Abedon, S. Phage therapy: Emergent property pharmacology. J. Bioanal. Biomed. 2012, S6. [Google Scholar] [CrossRef] [Green Version]
- Abedon, S. Phage therapy pharmacology: Calculating phage dosing. Adv. Appl. Microbiol. 2011, 77, 1–40. [Google Scholar] [CrossRef]
- Seo, B.-J.; Song, E.-T.; Lee, K.; Kim, J.-W.; Jeong, C.-G.; Moon, S.-H.; Son, J.S.; Kang, S.H.; Cho, H.-S.; Jung, B.Y.; et al. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various salmonella serovars and their effects on weaned pigs infected with salmonella typhimurium. J. Vet. Med. Sci. 2018, 80, 851–860. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.Y.K.; Chen, K.; Wang, J.; Wallin, M.; Britton, W.; Morales, S.; Kutter, E.; Li, J.; Chan, H.-K. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage pev20 in a dry-powder formulation. Antimicrob. Agents Chemother. 2018, 62, e01714-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabil, N.M.; Tawakol, M.M.; Hassan, H.M. Assessing the impact of bacteriophages in the treatment of salmonella in broiler chickens. Infect. Ecol. Epidemiol. 2018, 8, 1539056. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Hawkins, C.H.; Änggård, E.E.; Harper, D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 2009, 34, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 2019, 25, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Aminov, R.; Caplin, B.J.; Chanishvili, N.; Coffey, A.; Cooper, I.; De Vos, D.; Rí Doška, J.; Friman, V.-P.; Kurtböke, I.; Pantucek, R.; et al. Application of bacteriophages in focus. Microbiol. Aust. 2017, 38, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Sarker, S.A.; Sultana, S.; Reuteler, G.; Moine, D.; Descombes, P.; Charton, F.; Bourdin, G.; McCallin, S.; Ngom-Bru, C.; Neville, T.; et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: A randomized trial in children from bangladesh. EBioMedicine 2016, 4, 124–137. [Google Scholar] [CrossRef] [Green Version]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.P.; Que, Y.-A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019, 19. [Google Scholar] [CrossRef]
- Górski, A.; Borysowski, J.; Międzybrodzki, R. Phage therapy: Towards a successful clinical trial. Antibiotics 2020, 9, 827. [Google Scholar] [CrossRef]
- Hodyra-Stefaniak, K.; Miernikiewicz, P.; Drapała, J.; Drab, M.; Jończyk-Matysiak, E.; Lecion, D.; Kaźmierczak, Z.; Beta, W.; Majewska, J.; Harhala, M.; et al. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Vandenheuvel, D.; Lavigne, R.; Brüssow, H. Bacteriophage therapy: Advances in formulation strategies and human clinical trials. Annu. Rev. Virol. 2015, 2, 599–618. [Google Scholar] [CrossRef]
- Malik, D.J.; Sokolov, I.J.; Vinner, G.K.; Mancuso, F.; Cinquerrui, S.; Vladisavljevic, G.T.; Clokie, M.R.J.; Garton, N.J.; Stapley, A.G.F.; Kirpichnikova, A. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017, 249, 100–133. [Google Scholar] [CrossRef] [Green Version]
- Hosseinidoust, Z.; Olsson, A.L.J.; Tufenkji, N. Going viral: Designing bioactive surfaces with bacteriophage. Colloids Surf. 2014, 124, 2–16. [Google Scholar] [CrossRef]
- Choińska-Pulit, A.; Mituła, P.; Śliwka, P.; Łaba, W.; Skaradzińska, A. Bacteriophage encapsulation: Trends and potential applications. Trends Food Sci. Technol. 2015, 45, 212–221. [Google Scholar] [CrossRef]
- Lin, Y.; Chang, R.Y.K.; Britton, W.J.; Morales, S.; Kutter, E.; Chan, H.-K. Synergy of nebulized phage pev20 and ciprofloxacin combination against pseudomonas aeruginosa. Int. J. Pharm. 2018, 551, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Esteban, P.P.; Alves, D.R.; Enright, M.C.; Bean, J.E.; Gaudion, A.; Jenkins, A.T.A.; Young, A.E.R.; Arnot, T.C. Enhancement of the antimicrobial properties of bacteriophage-k via stabilization using oil-in-water nano-emulsions. Biotechnol. Prog. 2014, 30, 932–944. [Google Scholar] [CrossRef] [Green Version]
- Dryakhlov, V.O.; Nikitina, M.Y.; Shaikhiev, I.G.; Galikhanov, M.F.; Shaikhiev, T.I.; Bonev, B.S. Effect of parameters of the corona discharge treatment of the surface of polyacrylonitrile membranes on the separation efficiency of oil-in-water emulsions. Surf. Eng. Appl. Electrochem. 2015, 51, 406–411. [Google Scholar] [CrossRef]
- Vagenende, V.; Yap, M.G.S.; Trout, B.L. Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 2009, 48, 11084–11096. [Google Scholar] [CrossRef]
- Olofsson, L.; Ankarloo, J.; Andersson, P.O.; Nicholls, I.A. Filamentous bacteriophage stability in non-aqueous media. Chem. Biol. 2001, 8, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Taj, M.K.; Ling, J.X.; Bing, L.L.; Qi, Z.; Taj, I.; Hassani, T.M.; Samreen, Z.; Yunlin, W. Effect of dilution, temperature and ph on the lysis activity of t4 phage against e. coli bl21. J. Anim. Plant Sci. 2014, 24, 1252–1255. [Google Scholar]
- Litt, P.K.; Jaroni, D. Isolation and physiomorphological characterization of escherichia coli o157:h7-infecting bacteriophages recovered from beef cattle operations. Int. J. Microbiol. 2017, 2017, 7013236. [Google Scholar] [CrossRef] [Green Version]
- Silva, Y.J.; Costa, L.; Pereira, C.; Cunha, Â.; Calado, R.; Gomes, N.C.M.; Almeida, A. Influence of environmental variables in the efficiency of phage therapy in aquaculture. Microb. Biotechnol. 2014, 7, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Moghimian, P.; Srot, V.; Pichon, B.P.; Facey, S.J.; van Aken, P.A. Stability of m13 phage in organic solvents. J. Biomater. Nanobiotechnol. 2016, 7, 72–77. [Google Scholar] [CrossRef] [Green Version]
- Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages—review. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Łobocka, M.B.; Głowacka, A.; Golec, P. Methods for bacteriophage preservation. In Bacteriophage Therapy; Azaredo, J., Sillankorva, S., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1693. [Google Scholar] [CrossRef]
- Ackermann, H.-W.; Tremblay, D.; Moineau, S. Long-term bacteriophage preservation. WFCC Newsl. 2004, 38, 35–40. [Google Scholar]
- Tovkach, F.; Zhuminska, G.; Khushkina, A. Long-term preservation of unstable bacteriophages of enterobacteria. Mīkrobiol. Zh. 2012, 74, 60–66. [Google Scholar]
- Leung, S.S.Y.; Parumasivam, T.; Gao, F.G.; Carter, E.A.; Carrigy, N.B.; Vehring, R.; Finlay, W.H.; Morales, S.; Britton, W.J.; Kutter, E.; et al. Effects of storage conditions on the stability of spray dried, inhalable bacteriophage powders. Int. J. Pharm. 2017, 521, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Dini, C.; de Urraza, P.J. Effect of buffer systems and disaccharides concentration on podoviridae coliphage stability during freeze drying and storage. Cryobiology 2013, 66, 339–342. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, X.; Zhang, H.; Watts, A.B.; Ghosh, D. Manufacturing and ambient stability of shelf freeze dried bacteriophage powder formulations. Int. J. Pharm. 2018, 542, 1–7. [Google Scholar] [CrossRef]
- Singla, S.; Harjai, K.; Raza, K.; Wadhwa, S.; Katare, O.P.; Chhibber, S. Phospholipid vesicles encapsulated bacteriophage: A novel approach to enhance phage biodistribution. J. Virol. Methods 2016, 236, 68–76. [Google Scholar] [CrossRef]
- Costa, M.; Milho, C.; Teixeira, J.; Sillankova, S.; Cerqueira, M. Electrospun nanofibres as a novel encapsulation vehicle for felix o1 bacteriophage for new food packaging applications. IUFoST World Congr. Food Sci. Technol. 2018, 755, 23–27. [Google Scholar]
- Bean, J.E.; Alves, D.R.; Laabei, M.; Esteban, P.P.; Thet, N.T.; Enright, M.C.; Jenkins, A.T.A. Triggered Release of Bacteriophage K from Agarose/Hyaluronan Hydrogel Matrixes by Staphylococcus Aureus Virulence Factors. Chem. Mater. 2014, 26, 7201–7208. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.L.; Thomas, T.; Odgers, J.; Petrovski, S.; Spark, M.J.; Tucci, J. Bacteriophage formulated into a range of semisolid and solid dosage forms maintain lytic capacity against isolated cutaneous and opportunistic oral bacteria. J. Pharm. Pharmacol. 2017, 69. [Google Scholar] [CrossRef]
- Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and emulsion stability: The role of the interfacial properties. Adv. Colloid Interface Sci. 2021, 288, 102344. [Google Scholar] [CrossRef] [PubMed]
- Jintapattanakit, A. Preparation of nanoemulsions by phase inversion temperature (pit). Pharm. Sci. Asia 2018, 42, 1–12. [Google Scholar] [CrossRef]
- Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm. 2017, 526, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Meher, J.G.; Raval, K.; Khan, F.A.; Chaurasia, M.; Jain, N.K.; Chourasia, M.K. Nanoemulsion: Concepts, development and applications in drug delivery. J. Control. Release 2017, 252, 28–49. [Google Scholar] [CrossRef]
- Otto, A.; du Plessis, J.; Wiechers, J.W. Formulation effects of topical emulsions on transdermal and dermal delivery. Int. J. Cosmet. Sci. 2009, 31. [Google Scholar] [CrossRef]
- Puapermpoonsiri, U.; Spencer, J.; van der Walle, C.F. A freeze-dried formulation of bacteriophage encapsulated in biodegradable microspheres. Eur. J. Pharm. Biopharm. 2009, 72, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Balcao, V.M.; Azevedo, A.F.; Castro, C.I.; Santos, S.; Matos, C.M.; Moutinho, C.; Texeira, J.A.; Azaredo, J. Design of a lipid nanovesicle system encapsulating bacteriophages integrated in a multiple emulsion formulation: A proof-of-concept. NSTI Nanotechnol. Conf. Expo 2010, 459–462. [Google Scholar]
- Dini, C.; Islan, G.A.; de Urraza, P.J.; Castro, G.R. Novel biopolymer matrices for microencapsulation of phages: Enhanced protection against acidity and protease activity. Macromol. Biosci. 2012, 12, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Esteban, P.P.; Jenkins, A.T.A.; Arnot, T.C. Elucidation of the mechanisms of action of bacteriophage k/nano-emulsion formulations against s. aureus via measurement of particle size and zeta potential. Colloids Surf. B Biointerfaces 2016, 139, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, H.; Lakhani, P.; Police, A.; Kallakunta, V.; Ajjarapu, S.S.; Wu, K.-W.; Ponkshe, P.; Repka, M.A.; Narasimha Murthy, S. Microbial stability of pharmaceutical and cosmetic products. AAPS PharmSciTech 2018, 19. [Google Scholar] [CrossRef] [PubMed]
- Nail, S.L.; Jiang, S.; Chongprasert, S.; Knopp, S.A. Fundamentals of freeze-drying. Pharm. Biotechnol. 2002, 14, 281–360. [Google Scholar] [CrossRef] [PubMed]
- Leung, S.S.Y.; Parumasivam, T.; Gao, F.G.; Carrigy, N.B.; Vehring, R.; Finlay, W.H.; Morales, S.; Britton, W.J.; Kutter, E.; Chan, H.-K. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections. Pharm. Res. 2016, 33, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Carrigy, N.B.; Kariuki, S.; Muturi, P.; Onsare, R.; Nagel, T.; Vehring, R.; Connerton, P.L.; Connerton, I.F. Development of a lyophilization process for campylobacter bacteriophage storage and transport. Microorganisms 2020, 8, 282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Menendez, E.; Fernandez, L.; Gutierrez, D.; Rodríguez, A.; Martínez, B.; GarcíaI, P. Comparative analysis of different preservation techniques for the storage of staphylococcus phages aimed for the industrial development of phage-based antimicrobial products. PLoS ONE 2018, 13, e0205728. [Google Scholar] [CrossRef]
- Anany, H.; Chen, W.; Pelton, R.; Griffiths, M.W. Biocontrol of listeria monocytogenes and escherichia coli o157:h7 in meat by using phages immobilized on modified cellulose membranes. Appl. Environ. Microbiol. 2011, 77, 6379–6387. [Google Scholar] [CrossRef] [Green Version]
- Merabishvili, M.; Vervaet, C.; Pirnay, J.-P.; De Vos, D.; Verbeken, G.; Mast, J.; Chanishvili, N.; Vaneechoutte, M. Stability of staphylococcus aureus phage isp after freeze-drying (lyophilization). PLoS ONE 2013, 8, e68797. [Google Scholar] [CrossRef] [Green Version]
- Chang, R.Y.; Wong, J.; Mathai, A.; Morales, S.; Kutter, E.; Britton, W.; Li, J.; Chan, H.K. Production of highly stable spray dried phage formulations for treatment of pseudomonas aeruginosa lung infection. Eur. J. Pharm. Biopharm. 2017, 121, 1–13. [Google Scholar] [CrossRef]
- Ly, A.; Carrigy, N.B.; Wang, H.; Harrison, M.; Sauvageau, D.; Martin, A.R.; Vehring, R.; Finlay, W.H. Atmospheric spray freeze drying of sugar solution with phage d29. Front. Microbiol. 2019, 10, 488. [Google Scholar] [CrossRef]
- Calliste, C.A.; Trouillas, P.; Allais, D.P.; Simon, A.; Duroux, J.L. Free Radical scavenging activities measured by electron spin resonance spectroscopy and b16 cell antiproliferative behaviors of seven plants. J. Agric. Food Chem. 2001, 49, 3321–3327. [Google Scholar] [CrossRef]
- Malik, D.J. Bacteriophage encapsulation using spray drying for phage therapy. Curr. Issues Mol. Biol. 2021, 40, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Leung, V.; Szewczyk, A.; Chau, J.; Hosseinidoust, Z.; Groves, L.; Hawsawi, H.; Anany, H.; Griffiths, M.W.; Ali, M.M.; Filipe, C.D.M. Long-term preservation of bacteriophage antimicrobials using sugar glasses. ACS Biomater. Sci. Eng. 2017, 4, 3802–3808. [Google Scholar] [CrossRef] [PubMed]
- Carrigy, N.B.; Liang, L.; Wang, H.; Kariuki, S.; Nagel, T.E.; Connerton, I.F.; Vehring, R. Trileucine and pullulan improve anti-campylobacter bacteriophage stability in engineered spray-dried microparticles. Ann. Biomed. Eng. 2020, 48, 1169–1180. [Google Scholar] [CrossRef]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New developments in liposomal drug delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019, 164, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Trucillo, P.; Campardelli, R.; Reverchon, E. Liposomes: From bangham to supercritical fluids. Processes 2020, 8, 1022. [Google Scholar] [CrossRef]
- Leung, S.S.Y.; Morales, S.; Britton, W.; Kutter, E.; Chan, H.-K. Microfluidic-assisted bacteriophage encapsulation into liposomes. Int. J. Pharm. 2018, 545, 176–182. [Google Scholar] [CrossRef]
- Cinquerrui, S.; Mancuso, F.; Vladisavljević, G.T.; Bakker, S.E.; Malik, D.J. Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front. Microbiol. 2018, 9, 2172. [Google Scholar] [CrossRef] [Green Version]
- Chadha, P.; Katare, O.P.; Chhibber, S. Liposome loaded phage cocktail: Enhanced therapeutic potential in resolving klebsiella pneumoniae mediated burn wound infections. Burns 2017, 43, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Singla, S.; Harjai, K.; Katare, O.P.; Chhibber, S. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS ONE 2016, 11, e0153777. [Google Scholar] [CrossRef] [Green Version]
- Colom, J.; Cano-Sarabia, M.; Otero, J.; Cortés, P.; Maspoch, D.; Llagostera, M. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against salmonella spp. Appl. Environ. Microbiol. 2015, 81, 4841–4849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef] [PubMed]
- Salalha, W.; Kuhn, J.; Dror, Y.; Zussman, E. Encapsulation of bacteria and viruses in electrospun nanofibres. Nanotechnology 2006, 17, 4675–4681. [Google Scholar] [CrossRef]
- Korehei, R.; Kadla, J. Incorporation of T4 bacteriophage in electrospun fibres. J. Appl. Microbiol. 2013, 114, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Korehei, R.; Kadla, J.F. Encapsulation of T4 bacteriophage in electrospun poly(ethylene oxide)/cellulose diacetate fibers. Carbohydr. Polym. 2014, 100, 150–157. [Google Scholar] [CrossRef]
- Dai, M.; Senecal, A.; Nugen, S.R. Electrospun water-soluble polymer nanofibers for the dehydration and storage of sensitive reagents. Nanotechnology 2014, 25. [Google Scholar] [CrossRef]
- Díaz, A.; del Valle, L.; Rodrigo, N.; Casas, M.; Chumburidze, G.; Katsarava, R.; Puiggalí, J. Antimicrobial activity of poly(ester urea) electrospun fibers loaded with bacteriophages. Fibers 2018, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Andriolo, J.M.; Sutton, N.J.; Murphy, J.P.; Huston, L.G.; Kooistra-Manning, E.A.; West, R.F.; Pedulla, M.L.; Hailer, M.K.; Skinner, J.L. Electrospun fibers for controlled release of nanoparticle-assisted phage therapy treatment of topical wounds. MRS Adv. 2018, 3. [Google Scholar] [CrossRef]
- Jabrane, T.; Dubé, M.; Griffiths, M.; Mangin, P.J. Towards a Commercial Production of Phage-Based Bioactive Paper. J. Sci. Technol. For. Prod. Process 2011, 1, 6–13. [Google Scholar]
- Olsson, A.L.J.; Wargenau, A.; Tufenkji, N. Optimizing bacteriophage surface densities for bacterial capture and sensing in quartz crystal microbalance with dissipation monitoring. ACS Appl. Mater. Interfaces 2016, 8, 13698–13706. [Google Scholar] [CrossRef] [PubMed]
- Richter, Ł.; Bielec, K.; Leśniewski, A.; Łoś, M.; Paczesny, J.; Hołyst, R. Dense layer of bacteriophages ordered in alternating electric field and immobilized by surface chemical modification as sensing element for bacteria detection. ACS Appl. Mater. Interfaces 2017, 9, 19622–19629. [Google Scholar] [CrossRef]
- Tolba, M.; Minikh, O.; Brovko, L.Y.; Evoy, S.; Griffiths, M.W. Oriented immobilization of bacteriophages for biosensor applications. Appl. Environ. Microbiol. 2010, 76, 528–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokulova, I.; Olsen, E.; Vodyanoy, V. Bacteriophage biosensors for antibiotic-resistant bacteria. Expert Rev. Med. Dev. 2014, 11, 175–186. [Google Scholar] [CrossRef]
- Farooq, U.; Yang, Q.; Ullah, M.W.; Wang, S. Bacterial biosensing: Recent advances in phage-based bioassays and biosensors. Biosens. Bioelectron. 2018, 118, 204–216. [Google Scholar] [CrossRef]
- Singh, A.; Glass, N.; Tolba, M.; Brovko, L.; Griffiths, M.; Evoy, S. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens. Bioelectron. 2009, 24, 3645–3651. [Google Scholar] [CrossRef]
- Vonasek, E.; Lu, P.; Hsieh, Y.L.; Nitin, N. Bacteriophages immobilized on electrospun cellulose microfibers by non-specific adsorption, protein–ligand binding, and electrostatic interactions. Cellulose 2017, 24, 4581–4589. [Google Scholar] [CrossRef]
- Janczuk, M.; Richter, Ł.; Hoser, G.; Kawiak, J.; Łoś, M.; Niedziółka-Jönsson, J.; Paczesny, J.; Hołyst, R. Bacteriophage-based bioconjugates as a flow cytometry probe for fast bacteria detection. Bioconjug Chem. 2017, 28, 419–425. [Google Scholar] [CrossRef]
- Ashiani, D.; Keihan, A.H.; Rashidiani, J.; Dashtestani, F.; Eskandari, K. Oriented t4 bacteriophage immobilization for recognition of escherichia coli in capacitance method. Int. J. Electrochem. Sci. 2016, 11, 10087–10095. [Google Scholar] [CrossRef]
- Hosseinidoust, Z.; Van De Ven, T.G.M.; Tufenkji, N. Bacterial capture efficiency and antimicrobial activity of phage-functionalized model surfaces. Langmuir 2011, 27, 5472–5480. [Google Scholar] [CrossRef]
- Naidoo, R.; Singh, A.; Arya, S.K.; Beadle, B.; Glass, N.; Tanha, J.; Szymanski, C.M.; Evoy, S. Surface-Immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria. Bacteriophage 2012, 2, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Cerofolini, G.F.; Meda, L.; Bandosz, T.J. Adsorption with soft adsorbents or adsorbates. theory and practice. In Adsorption and its Applications in Industry and Environmental Protection Studies in Surface Science and Catalysis; Dabrawski, A., Ed.; Elsevier: Amsterdam, The Netherland, 1998; Volume 120, pp. 227–272. [Google Scholar] [CrossRef]
- Bennett, A.R.; Davids, F.G.C.; Vlahodimou, S.; Banks, J.G.; Betts, R.P. The use of bacteriophage-based systems for the separation and concentration of salmonella. J. Appl. Microbiol. 1997, 83, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Smietana, M.; Bock, W.J.; Mikulic, P.; Ng, A.; Chinnappan, R.; Zourob, M.; Zourob, M.; Mohr, S.; Brown, B.J.; Fielden, P.R.; et al. Detection of bacteria using bacteriophages as recognition elements immobilized on long-period fiber gratings. Sens. Actuators B Chem. 2005, 107, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Abul-Hassan, H.S.; El-Tahan k Massoud, B.; Gomaa, R. Bacteriophage Therapy of Pseudomonas Burn Wound Sepsis. Ann. MBC 1991, 3, 4. [Google Scholar]
- Kifelew, L.G.; Warner, M.S.; Morales, S.; Vaughan, L.; Woodman, R.; Fitridge, R.; Mitchell, J.G.; Speck, P. Efficacy of Phage Cocktail AB-SA01 Therapy in Diabetic Mouse Wound Infections Caused by Multidrug-Resistant Staphylococcus Aureus. BMC Microbiol. 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, S.L.; Bilek, M.M.M.; Nosworthy, N.J.; Kondyurin, A.; Dos Remedios, C.G.; McKenzie, D.R. A Comparison of covalent immobilization and physical adsorption of a cellulase enzyme mixture. Langmuir 2010, 26, 14380–14388. [Google Scholar] [CrossRef]
- Szot-Karpińska, K.; Leśniewski, A.; Jönsson-Niedziółka, M.; Marken, F.; Niedziółka-Jönsson, J. Electrodes modified with bacteriophages and carbon nanofibres for cysteine detection. Sens. Actuators B Chem. 2019, 287, 78–85. [Google Scholar] [CrossRef]
- Guntupalli, R.; Sorokulova, I.; Olsen, E.; Globa, L.; Pustovyy, O.; Vodyanoy, V. Biosensor for detection of antibiotic resistant staphylococcus bacteria. J. Vis. Exp. 2013, 75, e50474. [Google Scholar] [CrossRef] [Green Version]
- Guntupalli, R.; Sorokulova, I.; Krumnow, A.; Pustovyy, O.; Olsen, E.; Vodyanoy, V. Real-time optical detection of methicillin-resistant staphylococcus aureus using lytic phage probes. Biosens. Bioelectron. 2008, 24, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Van Voorthuizen, E.M.; Ashbolt, N.J.; Schäfer, A.I. Role of hydrophobic and electrostatic interactions for initial enteric virus retention by mf membranes. J. Memb. Sci. 2001, 194, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Farkas, K.; Varsani, A.; Pang, L. Adsorption of Rotavirus, MS2 Bacteriophage and surface-modified silica nanoparticles to hydrophobic matter. Food Environ. Virol. 2015, 7, 261–268. [Google Scholar] [CrossRef]
- Pinto, F.; Maillard, J.Y.; Denyer, S.P.; McGeechan, P. Polyhexamethylene biguanide exposure leads to viral aggregation. J. Appl. Microbiol. 2010, 108, 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, M. Microbial adhesion to hydrocarbons: Twenty-five years of doing MATH. FEMS Microbiol. Lett. 2006, 262, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Aronino, R.; Dlugy, C.; Arkhangelsky, E.; Shandalov, S.; Oron, G.; Brenner, A.; Gitis, V. Removal of viruses from surface water and secondary effluents by sand filtration. Water Res. 2009, 43, 87–96. [Google Scholar] [CrossRef]
- Bales, R.C.; Li, S.; Maguire, K.M.; Yahya, M.T.; Gerba, C.P. MS-2 and poliovirus transport in porous media: Hydrophobic effects and chemical perturbations. Water Resour. Res. 1993, 29, 957–963. [Google Scholar] [CrossRef]
- Han, J.; Jin, Y.; Willson, C.S. Virus Retention and transport in chemically heterogeneous porous media under saturated and unsaturated flow conditions. Environ. Sci. Technol. 2006, 40, 1547–1555. [Google Scholar] [CrossRef]
- Wu, S.; Lan, X.; Zhao, W.; Li, Y.; Zhang, L.; Wang, H.; Han, M.; Tao, S. Biosensors and bioelectronics controlled immobilization of acetylcholinesterase on improved hydrophobic gold nanoparticle/prussian blue modified surface for ultra-trace organophosphate pesticide detection. Biosens. Bioelectron. 2011, 27, 82–87. [Google Scholar] [CrossRef]
- Su, P.; Li, H. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys. 2009, 131, 014102. [Google Scholar] [CrossRef] [Green Version]
- Tawil, N.; Sacher, E.; Mandeville, R.; Meunier, M. Strategies for the immobilization of bacteriophages on gold surfaces monitored by surface plasmon resonance and surface morphology. J. Phys. Chem. C 2013, 117, 6689–6691. [Google Scholar] [CrossRef]
- Jabrane, T.; Dubé, M.; Mangin, P.J. Bacteriophage immobilization on paper surface: Effect of cationic pre-coat layer. In Proceedings of the Canadian PAPTAC 95th Annual Meeting, Montreal, QC, Canada, 3–4 February 2009. [Google Scholar]
- Mangin, P.J.; Jabrane, T.; Jeaidi, J.; Dubé, M. Gravure printing of enzymes and phages. Adv. Print. Media Technol. 2008, 35, 351–358. [Google Scholar]
- Cademartiri, R.; Anany, H.; Gross, I.; Bhayani, R.; Griffiths, M.; Brook, M.A. Immobilization of bacteriophages on modified silica particles. Biomaterials 2010, 31, 1904–1910. [Google Scholar] [CrossRef]
- Liana, A.E.; Marquis, C.P.; Gunawan, C.; Gooding, J.J.; Amal, R. T4 bacteriophage conjugated magnetic particles for e. coli capturing: Influence of bacteriophage loading, temperature and tryptone. Colloids Surf. B Biointerfaces 2017, 151, 47–57. [Google Scholar] [CrossRef]
- Zhou, Y.; Marar, A.; Kner, P.; Ramasamy, R.P. Charge-directed immobilization of bacteriophage on nanostructured electrode for whole-cell electrochemical biosensors. Anal. Chem. 2017, 89, 5734–5741. [Google Scholar] [CrossRef]
- Peng, B.; Liu, N.; Lin, Y.; Wang, L.; Zhang, W.; Niu, Z.; Wang, Q.; Su, Z. Self-assembly of anisotropic tobacco mosaic virus nanoparticles on gold substrate. Sci. China Chem. 2011, 54, 137–143. [Google Scholar] [CrossRef]
- Tytgat, H.L.P.; Schoofs, G.; Driesen, M.; Proost, P.; Van Damme, E.J.M.; Vanderleyden, J.; Lebeer, S. Endogenous biotin-binding proteins: An overlooked factor causing false positives in streptavidin-based protein detection. Microb. Biotechnol. 2015, 8, 164–168. [Google Scholar] [CrossRef]
- Houk, K.N.; Leach, A.G.; Kim, S.P.; Zhang, X. Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes. Angewandye Chem. 2003, 42, 4872–4897. [Google Scholar] [CrossRef]
- Gervais, L.; Gel, M.; Allain, B.; Tolba, M.; Brovko, L.; Zourob, M.; Mandeville, R.; Griffiths, M.; Evoy, S. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sens. Actuators B Chem. 2007, 125, 615–621. [Google Scholar] [CrossRef]
- Horikawa, S.; Bedi, D.; Li, S.; Shen, W.; Huang, S.; Chen, I.H.; Chai, Y.; Auad, M.L.; Bozack, M.J.; Barbaree, J.M.; et al. Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetoelastic biosensors. Biosens. Bioelectron. 2011, 26, 2361–2367. [Google Scholar] [CrossRef]
- Ong, E.; Gilkes, N.R.; Antony, R.; Warren, J.; Miller, R.C.; Kilburn, D.G. Enzyme immobilization using the cellulose-binding domain of a cellulomonas fimiexoglucanase. Bio/Technology 1989, 7, 604–607. [Google Scholar] [CrossRef] [Green Version]
- DeChancie, J.; Houk, K.N. Biotin-streptavidin binding constant. J. Am. Chem. Soc. 2007, 129, 5419–5429. [Google Scholar] [CrossRef] [Green Version]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012. [Google Scholar] [CrossRef]
- Tran, C.T.H.; Nosworthy, N.; Bilek, M.M.M.; McKenzie, D.R. Covalent immobilization of enzymes and yeast: Towards a continuous simultaneous saccharification and fermentation process for cellulosic ethanol. Biomass Bioenergy 2015, 81, 234–241. [Google Scholar] [CrossRef]
- Choi, I.; Yoo, D.S.; Chang, Y.; Kim, S.Y.; Han, J. Polycaprolactone film functionalized with bacteriophage t4 promotes antibacterial activity of food packaging toward escherichia coli. Food Chem. 2021, 346, 128883. [Google Scholar] [CrossRef]
- Lee, L.A.; Wang, Q. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomed. Nanotechnol. Biol. Med. 2006, 2, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Konarov, A.; Dong, D.; Zhang, Y.; Sutaria, S. Binding mechanism and electrochemical properties of m13 phage-sulfur composite. PLoS ONE 2013, 8, e82332. [Google Scholar] [CrossRef]
- Niyomdecha, S.; Limbut, W.; Numnuam, A.; Kanatharana, P.; Charlermroj, R.; Karoonuthaisiri, N.; Thavarungkul, P. Phage-based capacitive biosensor for salmonella detection. Talanta 2018, 188, 658–664. [Google Scholar] [CrossRef]
- Pearson, H.A.; Sahukhal, G.S.; Elasri, M.O.; Urban, M.W. Phage-bacterium war on polymeric surfaces: Can surface-anchored bacteriophages eliminate microbial infections? Biomacromolecules 2013, 14, 1257–1261. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, F.; Karumidze, N.; Kusradze, I.; Goderdzishvili, M.; Teixeira, P.; Gouveia, I.C. Immobilization of bacteriophage in wound-dressing nanostructure. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 2475–2484. [Google Scholar] [CrossRef] [Green Version]
- Bitterncourt, J.A. Fundamentals of Plasma Physics, 3rd ed.; Springer: New York, NY, USA, 2004. [Google Scholar] [CrossRef] [Green Version]
- Collaud, M.; Groening, P.; Nowak, S.; Schlapbach, L. Plasma treatment of polymers: The effect of the plasma parameters on the chemical, physical, and morphological states of the polymer surface and on the metal-polymer interface. J. Adhes. Sci. Technol. 1994, 8, 1115–1127. [Google Scholar] [CrossRef]
- Favia, P.; D’Agostino, R. Plasma treatments and plasma deposition of polymers for biomedical applications. Surf. Coatings Technol. 1998, 98, 1102–1106. [Google Scholar] [CrossRef]
- Gao, R.; Wang, Y.; Tong, J.; Zhou, P.; Yang, Z. Strategies for the Immobilization of Bacteriophages Applied in the Biosensors. In Proceedings 2015 International Conference on Computational Intelligence and Communication Networks, CICN 2015; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2016; pp. 178–182. [Google Scholar] [CrossRef]
- Bilek, M.M.; McKenzie, D.R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: Towards better biosensors and a new generation of medical implants. Biophys. Rev. 2010, 2, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Yeo, G.C.; Kondyurin, A.; Kosobrodova, E.; Weiss, A.S.; Bilek, M.M.M. A sterilizable, biocompatible, tropoelastin surface coating immobilized by energetic ion activation. J. R. Soc. Interface 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Hugh, S.; Mattey, M. Immobilisation and Stabilisation of Virus. U.S. Patent 7,482,115 B2, 27 January 2009. [Google Scholar]
- Mattey, M.; Bell, E. Treatment of Topical and Systemic Bacterial Infections. U.S. Patent 2021/0038658 A1, 11 February 2021. [Google Scholar]
- Mattey, M. Treatment of Bacterial Infections in Aquaculture. U.S. Patent 10,849,942 B2, 1 December 2020. [Google Scholar]
- Fixed Phage Ltd. Case Studies. Available online: https://www.fixed-phage.com/case-studies/ (accessed on 10 March 2021).
Encapsulation Method | Bacteriophage (Host Genus) | Formulation | Observations | Reference |
---|---|---|---|---|
Emulsification | K (Staphylococcus) | Semi-solid | Up to 10 days of activity at 20 °C | [27] |
Freeze-Drying | M13 (Escherichia) | Powder | <1 log drop in titer after 2 months at ambient temperature | [41] |
Spray-Drying | PEV2, PEV40 (Pseudomonas) | Powder | <1 log drop in titer after 1 year at 20 °C | [39] |
Liposome Entrapment | KP01K2 (Klebsiella) | Liquid | Up to 14 days of activity in vivo | [42] |
Electrospinning | Felix O1 (Salmonella) | Nanofibers | Phage activity of equivalent to 105–106 PFU/mL after fiber preparation | [43] |
Encapsulation Method | Benefits | Limitations |
---|---|---|
Emulsification | Material produced ideal for cream-type treatments Promote absorption when applied topically | Difficult to transport/store at large scale Prone to bacterial contamination Only stable when refrigerated |
Freeze-Drying | Final product easy to store/transport High stability post-production Variety of applications | Time-consuming, costly process Ice crystal formation can decrease phage viability |
Spray-Drying | Final product easy to store/transport High stability post-production Variety of applications | Energy-consuming process Temperature can decrease phage viability during process |
Liposome Entrapment | Protection of phages against in vivo conditions Extensive studies demonstrating therapeutic effect compared free phage | Encapsulation yield of phages in liposomes difficult to control Difficult to transport/store at large scaleOnly stable when refrigerated |
Electrospinning | Diverse array of materials can be produced. Easy deposition of fiber-encapsulated phage onto other substrates | Fiber-spinning process can damage phages |
Immobilization Approach | Bacteriophage (Host Genus) | Surface | Observations | Reference |
---|---|---|---|---|
Physical Adsorption | T4 (Escherichia) | Gold surface modified with cysteine and glutaraldehyde | Phage surface concentration of 18 ± 0.15 phages per um2 | [89] |
Protein-Ligand | T4 (Escherichia) | Magnetic beads, microcrystalline cellulose beads | Up to 81% improved binding efficiency compared to physical adsorption | [86] |
Electrostatic | T7 (Escherichia) | Cellulose microfibers | 15–25% phage loading efficiency on surface | [90] |
Covalent Linkage | AG10 (Escherichia) CG4 (Salmonella) | Magnetic-fluorescent beads | Phage activity equivalent to 108 PFU/mL observed in material | [91] |
Immobilization Approach | Benefits | Limitations |
---|---|---|
Physical Adsorption | Simple process Inexpensive | Undirected, inconsistent Phage not strongly bound to substrate |
Protein-Ligand | Strongly bound phage High binding efficiency Tail-up orientation | Complicated process Expensive |
Electrostatic | High binding efficiency Applicable to most tailed phages Tail-up Orientation | Electrostatically charged surface may not be desirable |
Covalent Linkage | Strongly bound phage Potentially longer shelf life | Can be a costly and complex process (in the case of linker-based immobilization) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosner, D.; Clark, J. Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization. Pharmaceuticals 2021, 14, 359. https://doi.org/10.3390/ph14040359
Rosner D, Clark J. Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization. Pharmaceuticals. 2021; 14(4):359. https://doi.org/10.3390/ph14040359
Chicago/Turabian StyleRosner, Daniel, and Jason Clark. 2021. "Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization" Pharmaceuticals 14, no. 4: 359. https://doi.org/10.3390/ph14040359
APA StyleRosner, D., & Clark, J. (2021). Formulations for Bacteriophage Therapy and the Potential Uses of Immobilization. Pharmaceuticals, 14(4), 359. https://doi.org/10.3390/ph14040359