Next Article in Journal
Identification of Potential Inhibitors from Pyriproxyfen with Insecticidal Activity by Virtual Screening
Next Article in Special Issue
Modulators of Transient Receptor Potential (TRP) Channels as Therapeutic Options in Lung Disease
Previous Article in Journal
[177Lu]Lu-PSMA-617 Salivary Gland Uptake Characterized by Quantitative In Vitro Autoradiography
Previous Article in Special Issue
TRPM8 Channels and Dry Eye
Open AccessArticle

TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO2-Drive to Breathe

1
Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinarian Sciences, UNESP at Jaboticabal, Rod. Prof. Paulo Donato Castellane s/n, Jaboticabal SP 14870-000, Brazil
2
Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-090, Brazil
3
Thermoregulation and Systemic Inflammation Laboratory (FeverLab), Trauma Research, St. Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
*
Author to whom correspondence should be addressed.
Pharmaceuticals 2019, 12(1), 19; https://doi.org/10.3390/ph12010019
Received: 25 October 2018 / Revised: 27 November 2018 / Accepted: 7 December 2018 / Published: 24 January 2019
Receptors of the transient receptor potential (TRP) channels superfamily are expressed in many tissues and have different physiological functions. However, there are few studies investigating the role of these channels in cardiorespiratory control in mammals. We assessed the role of central and peripheral TRPV1 receptors in the cardiorespiratory responses to hypoxia (10% O2) and hypercapnia (7% CO2) by measuring pulmonary ventilation ( V ˙ E ), heart rate (HR), mean arterial pressure (MAP) and body temperature (Tb) of male Wistar rats before and after intraperitoneal (AMG9810 [2.85 µg/kg, 1 mL/kg]) or intracebroventricular (AMG9810 [2.85 µg/kg, 1 µL] or AMG7905 [28.5 μg/kg, 1 µL]) injections of TRPV1 antagonists. Central or peripheral injection of TRPV1 antagonists did not change cardiorespiratory parameters or Tb during room air and hypercapnic conditions. However, the hypoxic ventilatory response was exaggerated by both central and peripheral injection of AMG9810. In addition, the peripheral antagonist blunted the drop in Tb induced by hypoxia. Therefore, the current data provide evidence that TRPV1 channels exert an inhibitory modulation on the hypoxic drive to breathe and stimulate the Tb reduction during hypoxia. View Full-Text
Keywords: ventilation; hypercapnia; channels; chemosensitivity; hypothermia; blood pressure ventilation; hypercapnia; channels; chemosensitivity; hypothermia; blood pressure
Show Figures

Figure 1

MDPI and ACS Style

Patrone, L.G.A.; Duarte, J.B.; Bícego, K.C.; Steiner, A.A.; Romanovsky, A.A.; Gargaglioni, L.H. TRPV1 Inhibits the Ventilatory Response to Hypoxia in Adult Rats, but Not the CO2-Drive to Breathe. Pharmaceuticals 2019, 12, 19.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop