Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release
Abstract
:1. Introduction
2. Results and Discussion
2.1. Adsorption Properties and Adsorption Kinetics
2.2. Drug Loading Content and Drug Loading Efficiency
2.3. In Vitro Diffusion Studies
2.4. In Vitro Skin Irritation by EPISKIN™ Model
3. Discussion
3.1. Diclofenac Imprinted Polymers and Their Adsorption Properties
3.2. Drug Loading and “Smart Bandage” Preparation
3.3. In Vitro diffusion Studies
3.4. In Vitro Skin Irritation by EPISKIN™ Model
4. Materials and Methods
4.1. Materials
4.2. Instrumentation
4.3. Synthesis of Molecularly Imprinted Polymers (MIPs)
4.4. Batch Adsorption Binding Studies
4.5. Kinetic Adsorption Binding Studies
4.6. Drug Loading Procedure
4.7. “Smart Bandage” Preparation
4.8. In Vitro Diffusion Studies
4.9. In Vitro Skin Irritation by EPISKIN™ Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scavone, C.; Bonagura, A.C.; Fiorentino, S.; Cimmaruta, D.; Cenami, R.; Torella, M.; Fossati, T.; Rossi, F. Efficacy and safety profile of diclofenac/cyclodextrin and progesterone/cyclodextrin formulations: A review of the literature data. Drugs R D 2016, 16, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.; Glassmann, D.; Marafon, P.; Pereira, P.; Gomez, R.; Coitinho, A.S. Effect of diclofenac sodium on seizures and inflammatory profile induced by kindling seizure model. Epilepsy Res. 2016, 127, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Premarathne, E.; Karunaratne, D.; Perera, A.C. Controlled release of diclofenac sodium in glycolipid incorporated micro emulsions. Int. J. Pharm. 2016, 511, 890–898. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.; Chow, J.; Ives, D.; Chiou, M.; Mackenzie, R.; Osen, E.; Nguyen, B.; Tsing, S.; Bach, C.; Freire, J. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1994, 1209, 130–139. [Google Scholar] [CrossRef]
- Parisi, O.I.; Puoci, F. Stimuli-responsive Molecularly Imprinted Polymers. In Chemoresponsive Materials; Royal Society of Chemistry: London, UK, 2015; pp. 364–383. [Google Scholar]
- Parisi, O.I.; Morelli, C.; Puoci, F.; Saturnino, C.; Caruso, A.; Sisci, D.; Trombino, G.E.; Picci, N.; Sinicropi, M.S. Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy. J. Mater. Chem. B 2014, 2, 6619–6625. [Google Scholar] [CrossRef]
- Cirillo, G.; Parisi, O.I.; Curcio, M.; Puoci, F.; Iemma, F.; Spizzirri, U.G.; Picci, N. Molecularly imprinted polymers as drug delivery systems for the sustained release of glycyrrhizic acid. J. Pharm. Pharmacol. 2010, 62, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Fayazi, M.; Taher, M.A.; Afzali, D.; Mostafavi, A. Preparation of molecularly imprinted polymer coated magnetic multi-walled carbon nanotubes for selective removal of dibenzothiophene. Mater. Sci. Semicond. Process. 2015, 40, 501–507. [Google Scholar] [CrossRef]
- Corton, E.; García-Calzón, J.; Díaz-García, M. Kinetics and binding properties of cloramphenicol imprinted polymers. J. Non-Cryst. Solids 2007, 353, 974–980. [Google Scholar] [CrossRef]
- Umpleby, R.J., II; Baxter, S.C.; Rampey, A.M.; Rushton, G.T.; Chen, Y.; Shimizu, K.D. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J. Chromatogr. B 2004, 804, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Rushton, G.T.; Karns, C.L.; Shimizu, K.D. A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Anal. Chim. Acta 2005, 528, 107–113. [Google Scholar] [CrossRef]
- Viveiros, R.; Lopes, M.I.; Heggie, W.; Casimiro, T. Green approach on the development of lock-and-key polymers for API purification. Chem. Eng. J. 2017, 308, 229–239. [Google Scholar] [CrossRef]
- Naowanat, N.; Thouchprasitchai, N.; Pongstabodee, S. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms. J. Environ. Manag. 2016, 169, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Parisi, O.I.; Morelli, C.; Scrivano, L.; Sinicropi, M.S.; Cesario, M.G.; Candamano, S.; Puoci, F.; Sisci, D. Controlled release of sunitinib in targeted cancer therapy: Smart magnetically responsive hydrogels as restricted access materials. RSC Adv. 2015, 5, 65308–65315. [Google Scholar] [CrossRef]
- Puoci, F.; Hampel, S.; Parisi, O.I.; Hassan, A.; Cirillo, G.; Picci, N. Imprinted microspheres doped with carbon nanotubes as novel electroresponsive drug-delivery systems. J. Appl. Polym. Sci. 2013, 130, 829–834. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, C.-Y.; Wang, X.-H.; Li, R.-S.; Yang, J.-R.; Huang, Y.-P.; Liu, Z.-S. Macromolecular crowding of molecular imprinting: A facile pathway to produce drug delivery devices for zero-order sustained release. Int. J. Pharm. 2015, 496, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.H. Preparation and properties of polyvinyl alcohol/tannic acid composite film for topical treatment application. Fibers Polym. 2016, 17, 1963–1968. [Google Scholar] [CrossRef]
- Lee, H.; Mensire, R.; Cohen, R.E.; Rubner, M.F. Strategies for hydrogen bonding based layer-by-layer assembly of poly (vinyl alcohol) with weak polyacids. Macromolecules 2011, 45, 347–355. [Google Scholar] [CrossRef]
- Folttmann, H.; Quadir, A. Polyvinylpyrrolidone (PVP)—One of the most widely used excipients in pharmaceuticals: An overview. Drug Deliv. Technol. 2008, 8, 22–27. [Google Scholar]
- Teodorescu, M.; Bercea, M. Poly (vinylpyrrolidone)—A versatile polymer for biomedical and beyond medical applications. Polym. Plast.Technol. Eng. 2015, 54, 923–943. [Google Scholar] [CrossRef]
- Haq, A.; Dorrani, M.; Goodyear, B.; Joshi, V.; Michniak-Kohn, B. Membrane properties for permeability testing: Skin versus synthetic membranes. Int. J. Pharm. 2018, 539, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm. 2018, 547, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Parisi, O.I.; Malivindi, R.; Amone, F.; Ruffo, M.; Malanchin, R.; Carlomagno, F.; Piangiolino, C.; Nobile, V.; Pezzi, V.; Scrivano, L. Safety and Efficacy of Dextran-Rosmarinic Acid Conjugates as Innovative Polymeric Antioxidants in Skin Whitening: What Is the Evidence? Cosmetics 2017, 4, 28. [Google Scholar] [CrossRef]
Ci (mol/L) | BOUND DC (%) | BOUND PAA (%) | α DC | α PAA | ε | ||
---|---|---|---|---|---|---|---|
MIP | NIP | MIP | NIP | ||||
0.01 | 20.0 ± 0.8 | 10.0 ± 0.5 | 7.0 ± 0.4 | 5.6 ± 0.9 | 2.00 | 1.25 | 2.86 |
0.02 | 35.0 ± 0.6 | 20.0 ± 0.6 | 16.5 ± 0.7 | 12.9 ± 0.7 | 1.75 | 1.28 | 2.12 |
0.04 | 35.0 ± 0.3 | 17.5 ± 0.9 | 12.5 ± 0.7 | 9.5 ± 0.4 | 2.00 | 1.32 | 2.80 |
0.06 | 35.0 ± 0.7 | 15.0 ± 0.4 | 11.7 ± 0.8 | 9.3 ± 0.6 | 2.33 | 1.25 | 3.00 |
0.08 | 43.8 ± 0.4 | 12.5 ± 0.5 | 10.0 ± 0.4 | 6.9 ± 0.7 | 3.50 | 1.45 | 4.38 |
0.1 | 50.0 ± 0.6 | 20.0 ± 0.3 | 17.0 ± 0.7 | 14.0 ± 0.6 | 2.50 | 1.21 | 2.94 |
0.2 | 60.0 ± 0.6 | 25.0 ± 0.7 | 23.5 ± 0.5 | 22.0 ± 0.5 | 2.40 | 1.07 | 2.55 |
0.4 | 85.0 ± 0.5 | 55.0 ± 0.5 | 47.5 ± 0.6 | 44.3 ± 0.8 | 1.55 | 1.07 | 1.79 |
0.6 | 95.0 ± 0.8 | 66.7 ± 0.6 | 63.3 ± 0.4 | 60.0 ± 0.5 | 1.43 | 1.06 | 1.50 |
0.8 | 82.5 ± 0.4 | 65.0 ± 0.5 | 62.5 ± 0.8 | 60.0 ± 0.7 | 1.27 | 1.04 | 1.32 |
1.0 | 69.6 ± 0.7 | 56.7 ± 0.5 | 54.3 ± 0.6 | 53.5 ± 0.4 | 1.23 | 1.01 | 1.28 |
POLYMER | High Affinity Sites | Low Affinity Sites | ||||
---|---|---|---|---|---|---|
Ka (M−1) | Bmax (mM/g) | R2 | Ka (M−1) | Bmax (mM/g) | R2 | |
MIP | 137.64 | 23.50 | 0.98 | 29.48 | 0.49 | 0.91 |
NIP | - | - | - | 3.05 | 2.13 | 0.84 |
POLYMER | LANGMUIR MODEL | FREUNDLICH MODEL | ||||
---|---|---|---|---|---|---|
KL (L/mol) | Qmax (mmol/g) | R2 | KF | M | R2 | |
MIP | 13.29 | 0.67 | 0.88 | 0.33 | 1.63 | 0.69 |
NIP | 5.72 | 0.71 | 0.92 | 0.09 | 1.74 | 0.92 |
POLYMER | PSEUDO-FIRST ORDER | PSEUDO-SECOND ORDER | ||||
---|---|---|---|---|---|---|
K1 | Qe | R2 | K2 | Qe | R2 | |
MIP | 0.38 | 0.02 | 0.99 | 6.30 | 0.03 | 0.90 |
NIP | 0.15 | 0.01 | 0.98 | 1.97 | 0.03 | 0.40 |
MIP BANDAGE | NIP BANDAGE | ||
---|---|---|---|
J (μg/cm2 h) | Kp × 10−3 (cm/h) | J (μg/cm2 h) | Kp × 10−3 (cm/h) |
8.0 ± 0.3 | 16.3 ± 0.6 | 7.6 ± 0.5 | 19.3 ± 0.4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, O.I.; Ruffo, M.; Scrivano, L.; Malivindi, R.; Vassallo, A.; Puoci, F. Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release. Pharmaceuticals 2018, 11, 92. https://doi.org/10.3390/ph11040092
Parisi OI, Ruffo M, Scrivano L, Malivindi R, Vassallo A, Puoci F. Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release. Pharmaceuticals. 2018; 11(4):92. https://doi.org/10.3390/ph11040092
Chicago/Turabian StyleParisi, Ortensia Ilaria, Mariarosa Ruffo, Luca Scrivano, Rocco Malivindi, Antonio Vassallo, and Francesco Puoci. 2018. "Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release" Pharmaceuticals 11, no. 4: 92. https://doi.org/10.3390/ph11040092
APA StyleParisi, O. I., Ruffo, M., Scrivano, L., Malivindi, R., Vassallo, A., & Puoci, F. (2018). Smart Bandage Based on Molecularly Imprinted Polymers (MIPs) for Diclofenac Controlled Release. Pharmaceuticals, 11(4), 92. https://doi.org/10.3390/ph11040092