Power-Efficient Recycling Folded Cascode Operational Transconductance Amplifier Based on Nested Local Feedback and Adaptive Biasing
Abstract
1. Introduction
2. Methodology of ERFC OTA
2.1. Limitations of Conventional RFC OTAs
2.2. Concept of ERFC OTA
3. Circuit Implementation
3.1. The ABNLF Technique
3.2. Transistor-Level Implementation
3.3. Small-Signal Analysis
3.4. Noise Analysis
3.5. Large-Signal Response
4. Post-Layout Simulations and Comparisons
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Li, S.; Guo, W.; Wen, G.; Sun, N. A 0.029-mm2 17-fJ/Conversion-Step Third-Order CT ΔΣ ADC with a Single OTA and Second-Order Noise-Shaping SAR Quantizer. IEEE J. Solid-State Circuits 2019, 54, 428–440. [Google Scholar] [CrossRef]
- Kulej, T.; Khateb, F.; Kumngern, M. 0.5 V Multiple-Input Fully Differential Operational Transconductance Amplifier and Its Application to a Fifth-Order Chebyshev Low-Pass Filter for Bio-Signal Processing. Sensors 2024, 24, 3013. [Google Scholar] [CrossRef] [PubMed]
- Răducan, C.; Grăjdeanu, A.-T.; Plesa, C.-S.; Neag, M.; Negoiţă, A.; Ţopa, M.D. LDO with Improved Common Gate Class-AB OTA Handles any Load Capacitors and Provides Fast Response to Load Transients. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3740–3752. [Google Scholar] [CrossRef]
- Chen, J.; Sanchez-Sinencio, E.; Silva-Martinez, J. Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 499–510. [Google Scholar] [CrossRef]
- Zhang, X.; El-Masry, E.I. A Novel CMOS OTA Based on Body-Driven MOSFETs and its Applications in OTA-C Filters. IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 1204–1212. [Google Scholar] [CrossRef]
- Chen, X.; Wang, K.; Liao, H.; Ma, S.; Ma, K. A Power-Efficient Linearized Open-Loop OTA Utilizing Reconfigurable Tail-Resistor Pair. IEEE Trans. Circuits Syst. I Regul. Pap. 2023, 70, 2824–2828. [Google Scholar] [CrossRef]
- Akbari, M.; Hussein, S.M.; Hashim, Y.; Khateb, F.; Kulej, T.; Tang, K.-T. Implementation of a Multipath Fully Differential OTA in 0.18-μm CMOS Process. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 31, 147–151. [Google Scholar] [CrossRef]
- Anisheh, S.M.; Abbasizadeh, H.; Shamsi, H.; Dadkhah, C.; Lee, K.-Y. 98-dB Gain Class-AB OTA with 100 pF Load Capacitor in 180-nm Digital CMOS Process. IEEE Access 2019, 7, 17772–17779. [Google Scholar] [CrossRef]
- Li, X.; Hou, B.; Ju, C.; Wei, Q.; Zhou, B.; Zhang, R. A Complementary Recycling Operational Transconductance Amplifier with Data-Driven Enhancement of Transconductance. Electronics 2019, 8, 1457. [Google Scholar] [CrossRef]
- Kim, J.; Song, S.; Roh, J. A High Slew-Rate Enhancement Class-AB Operational Transconductance Amplifier (OTA) for Switched-Capacitor (SC) Applications. IEEE Access 2020, 8, 226167–226175. [Google Scholar] [CrossRef]
- Lv, X.; Zhao, X.; Wang, Y.; Wen, B. An improved non-linear current recycling folded cascode OTA with cascode self-biasing. AEU—Int. J. Electron. Commun. 2019, 101, 182–191. [Google Scholar] [CrossRef]
- Garde, M.P.; Lopez-Martin, A.; Carvajal, R.G.; Ramírez-Angulo, J. Super Class-AB Recycling Folded Cascode OTA. IEEE J. Solid-State Circuits 2018, 53, 2614–2623. [Google Scholar] [CrossRef]
- Assaad, R.S.; Silva-Martinez, J. The Recycling Folded Cascode: A General Enhancement of the Folded Cascode Amplifier. IEEE J. Solid-State Circuits 2009, 44, 2535–2542. [Google Scholar] [CrossRef]
- Assaad, R.; Silva-Martinez, J. Enhancing general performance of folded cascode amplifier by recycling current. Electron. Lett 2007, 43, 1243–1244. [Google Scholar] [CrossRef]
- Li, Y.L.; Han, K.F.; Tan, X.; Yan, N.; Min, H. Transconductance enhancement method for operational transconductance amplifiers. Electron. Lett 2010, 46, 1321–1323. [Google Scholar] [CrossRef]
- Ahmed, M.; Shah, I.; Tang, F.; Bermak, A. An improved recycling folded cascode amplifier with gain boosting and phase margin enhancement. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 2473–2476. [Google Scholar]
- Zhao, X.; Fang, H.; Xu, J. A transconductance enhanced recycling structure for folded cascode amplifier. Analog Integr. Circuits Signal Process 2012, 72, 259–263. [Google Scholar] [CrossRef]
- Dabas, A.; Kumari, S.; Gupta, M.; Yadav, R. Design and Analysis of Class AB RFC OTA with Improved Performance. In Proceedings of the 2022 8th International Conference on Signal Processing and Communication (ICSC), Noida, India, 1–3 December 2022; pp. 582–586. [Google Scholar]
- Yan, Z.; Mak, P.-I.; Martins, R.P. Double recycling technique for folded-cascode OTA. Analog Integr. Circuits Signal Process 2012, 71, 137–141. [Google Scholar] [CrossRef]
- Yavari, M.; Moosazadeh, T. A single-stage operational amplifier with enhanced transconductance and slew rate for switched-capacitor circuits. Analog Integr. Circuits Signal Process 2014, 79, 589–598. [Google Scholar] [CrossRef]
- Ramirez-Angulo, J.; Holmes, M. Simple technique using local CMFB to enhance slew rate and bandwidth of one-stage CMOS op-amps. Electron. Lett 2002, 38, 1409–1411. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Dong, L. Super current recycling folded cascode amplifier with ultra-high current efficiency. Integration 2018, 62, 322–328. [Google Scholar] [CrossRef]
- Algueta-Miguel, J.M.; Lopez-Martin, A.; Garde, M.P.; De La Cruz, C.A.; Ramirez-Angulo, J. ±0.5 V 15 μW Recycling Folded Cascode Amplifier with 34767 MHz·pF/mA FOM. IEEE Solid-State Circuits Lett. 2018, 1, 170–1731. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Yu, S.S.; Zhao, X.; Trinh, H.; Shi, P. A Robust Local Positive Feedback Based Performance Enhancement Strategy for Non-Recycling Folded Cascode OTA. IEEE Trans. Circuits Syst. I Regul. Pap 2020, 67, 2897–2908. [Google Scholar] [CrossRef]
ERFC OTA | RFC OTA | ||||
---|---|---|---|---|---|
24 m/0.6 m | 48 m/0.3 m | 24 m/0.6 m | |||
18 m/0.3 m | 24 m/0.3 m | 18 m/0.3 m | |||
12 m/0.3 m | 30 m/0.3 m | 90 m/0.3 m | |||
90 m/0.3 m | 1 m/20 m | 24 m/0.3 m | |||
60 m/0.3 m | 3 m/1 m | 60 m/0.3 m | |||
24 m/0.3 m | 52 k | 48 m/0.3 m |
Parameter | Traditional RFC OTA | Proposed ERFC OTA |
---|---|---|
Supply current (A) | 8 | 10.4 |
(pF) | 70 | 70 |
GBW (MHz) | 0.23 | 1.37 |
DC gain (dB) | 68.37 | 84.18 |
Phase margin (∘) | 89.15 | 67.05 |
Average slew rate (V/s) | 0.16 | 19.32 |
1% setting time (s) | 2.945 | 0.473 |
Input noise (nV/) | 37.77 | 31.86 |
(MHz pF/A) | 2.01 | 9.22 |
(V/s) pF/A) | 1.40 | 130.04 |
Parameter | Corner | VDD | Temp | ||||||
---|---|---|---|---|---|---|---|---|---|
FF | SS | SF | FS | TT | −10% | +10% | −40° | +125° | |
GBW (MHz) | 1.71 | 1.10 | 1.41 | 1.33 | 1.37 | 1.14 | 1.63 | 1.22 | 1.47 |
PM (∘) | 63.29 | 69.03 | 65.95 | 67.45 | 66.86 | 72.32 | 60.95 | 70.42 | 57.87 |
Gain (dB) | 83.87 | 84.02 | 84.87 | 83.55 | 84.18 | 82.56 | 85.7 | 84.45 | 82.48 |
SRav (V/s) | 18.74 | 18.015 | 17.81 | 19.79 | 19.175 | 18.42 | 19.435 | 15.68 | 18.005 |
STav (ns) | 391.3 | 539.3 | 468.25 | 479.5 | 471.95 | 359.65 | 429.2 | 388.15 | 626.85 |
Parameter | [7] | [8] | [11] | [12] | [24] | This Work |
---|---|---|---|---|---|---|
Supply voltage (V) | 1.8 | 1.8 | 1 | 2 | 0.8 | 1.8 |
Technology (nm) | 180 | 180 | 180 | 500 | 180 | 180 |
Supply current (A) | 344 | 800 | 50 | 50 | 45 | 10.4 |
Load (pF) | 10 | 5.6 | 20 | 70 | 130 | 70 |
DC gain (dB) | 72.7 | 60.9 | 92.3 | 72.7 | 102.7 | 84.18 |
GBW (MHz) | 173.3 | 134.2 | 6.51 | 3.4 | 1.12 | 1.37 |
Phase margin (∘) | 55 | 70.6 | 75.81 | 75.1 | 67.85 | 67.05 |
Slew rate (V/s) | 139.4 | 94.1 | 15.19 | 19.25 | 1.033 | 19.32 |
1% Settling time (ns) | 9.2 | 10.2 | 79.5 | 110 | 555 | 473 |
Offset voltage (mV) | 7.3 | 7.6 | N/A | N/A | 3.72 | 3.3 |
Noise 1 MHz (nV/) | 48 | N/A | N/A | 23 | 68.8 | 31.9 |
(MHz·pF/A) | 5.03 | 0.94 | 2.604 | 4.76 | 3.326 | 9.22 |
((V/s)·pF/A) | 4.07 | 0.66 | 6.07 | 26.95 | 2.98 | 130.04 |
Measured/simulated | Meas. | Sim. | Sim. | Meas. | Meas. | Sim. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Cai, P.; Li, J.; Xie, J.; Luo, Z. Power-Efficient Recycling Folded Cascode Operational Transconductance Amplifier Based on Nested Local Feedback and Adaptive Biasing. Sensors 2025, 25, 2523. https://doi.org/10.3390/s25082523
Wu C, Cai P, Li J, Xie J, Luo Z. Power-Efficient Recycling Folded Cascode Operational Transconductance Amplifier Based on Nested Local Feedback and Adaptive Biasing. Sensors. 2025; 25(8):2523. https://doi.org/10.3390/s25082523
Chicago/Turabian StyleWu, Chunkai, Peng Cai, Jinghu Li, Jin Xie, and Zhicong Luo. 2025. "Power-Efficient Recycling Folded Cascode Operational Transconductance Amplifier Based on Nested Local Feedback and Adaptive Biasing" Sensors 25, no. 8: 2523. https://doi.org/10.3390/s25082523
APA StyleWu, C., Cai, P., Li, J., Xie, J., & Luo, Z. (2025). Power-Efficient Recycling Folded Cascode Operational Transconductance Amplifier Based on Nested Local Feedback and Adaptive Biasing. Sensors, 25(8), 2523. https://doi.org/10.3390/s25082523