Real-Time Zero-Sequence-Voltage Estimation and Fault-Tolerant Control for an Open-Winding Five-Phase Fault-Tolerant Fractional-Slot Concentrated-Winding IPM Motor Under Inter-Turn Short-Circuit Fault
Abstract
1. Introduction
- (1)
- A ZSV-based real-time estimation scheme is developed to extract the ITSC-induced disturbance term without requiring additional sensors.
- (2)
- A fault-tolerant control strategy is formulated that compensates the disturbance using feedforward terms while preserving the original controller structure.
- (3)
- Robust fault mitigation is demonstrated under varying short-circuit turn ratios and dynamic load conditions, verifying the practical applicability of the method.
2. Architecture and Characteristics of the OW Five-Phase FTFSCW-IPM Drive System
3. Fault-Tolerant Control Strategy with ZSV-Based Real-Time Estimation
3.1. Current Reallocation FTC Strategy for Active Open-Circuit Faults
3.2. Unified FTC Strategy for Combined OC and ITSC Faults via ZSV-Based Disturbance Estimation
4. Discussion
4.1. Simulation Results
4.1.1. Simulation Validation
4.1.2. Robustness Analysis
- Influence of Stator Resistance Rs Variations
- 2.
- Influence of Inductance Ls Variations and Magnetic Saturation
- 3.
- Influence of Fault Resistance Rf Variations
- 4.
- Influence of Inverter Nonlinearities
- 5.
- Influence of Measurement Noise
4.2. Experimental Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Derivation of the Matrix-Form Control Law
References
- Liu, C.; Chau, K.T.; Wu, D.; Gao, S. Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies. Proc. IEEE 2013, 101, 2409–2427. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, C.; Wang, Z.; Dong, Y.; Nino, C.E.; Tariq, A.R.; Strangas, E.G. Thermal Analysis of Permanent Magnet Motor for the Electric Vehicle Application Considering Driving Duty Cycle. IEEE Trans. Magn. 2010, 46, 2493–2496. [Google Scholar] [CrossRef]
- Yang, Z.; Shang, F.; Brown, I.; Krishnamurthy, M. Comparative Study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications. IEEE Trans. Transp. Electrif. 2015, 1, 245–254. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, M.; Jiang, J. A Comprehensive Review of the Multiphase Motor Drive Topologies for High-Power Electric Vehicle: Current Status, Research Challenges, and Future Trends. IEEE Trans. Transp. Electrif. 2024, 11, 3631–3654. [Google Scholar] [CrossRef]
- Gonçalves, P.; Cruz, S.; Mendes, A. Fault-Tolerant Predictive Current Control of Six-Phase PMSMs with Minimal Reconfiguration Requirements. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 2084–2093. [Google Scholar] [CrossRef]
- Guo, H.; Guo, S.; Xu, J.; Tian, X. Power Switch Open-Circuit Fault Diagnosis of Six-Phase Fault Tolerant Permanent Magnet Synchronous Motor System Under Normal and Fault-Tolerant Operation Conditions Using the Average Current Park’s Vector Approach. IEEE Trans. Power Electron. 2020, 36, 2641–2660. [Google Scholar] [CrossRef]
- Suzuki, H.; Hirata, K.; Niguchi, N.; Takahara, K. Fault-Tolerant Control for a Six-Phase Two-Controllable-Rotor Motor. IEEE Trans. Magn. 2021, 59, 1–7. [Google Scholar] [CrossRef]
- Parsa, L.; Toliyat, H.A.; Goodarzi, A. Five-Phase Interior Permanent-Magnet Motors with Low Torque Pulsation. IEEE Trans. Ind. Appl. 2007, 43, 40–46. [Google Scholar] [CrossRef]
- Deng, S.; Zhang, L.; Shen, D. Investigation on Wide-Speed Operation of a New Five-Phase Fault-Tolerant Interior Permanent Magnet Motor from Perspective of Flux-Intensifying Effect. IEEE Trans. Magn. 2023, 59, 1–6. [Google Scholar] [CrossRef]
- Liu, G.; Liu, L.; Chen, Q.; Zhao, W. Torque Calculation of Five-Phase Interior Permanent Magnet Machine Using Improved Analytical Method. IEEE Trans. Energy Convers. 2018, 34, 1023–1032. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, Y.; Lorenz, R.D.; Nied, A.; Cheng, M. Design and Comparison of Three-Phase and Five-Phase FTFSCW-IPM Motor Open-End Winding Drive Systems for Electric Vehicles Applications. IEEE Trans. Veh. Technol. 2017, 67, 385–396. [Google Scholar] [CrossRef]
- Priestley, M.; Fletcher, J.E.; Tan, C. Space-Vector PWM Technique for Five-Phase Open-End Winding PMSM Drive Operating in the Overmodulation Region. IEEE Trans. Ind. Electron. 2018, 65, 6816–6827. [Google Scholar] [CrossRef]
- Levi, E.; Satiawan, I.N.W.; Bodo, N.; Jones, M. A Space-Vector Modulation Scheme for Multilevel Open-End Winding Five-Phase Drives. IEEE Trans. Energy Convers. 2011, 27, 1–10. [Google Scholar] [CrossRef]
- Fan, Y.; Zhu, W.; Zhang, X.; Zhang, L. Stator Winding Inter-Turn Short-Circuit Faults Severity Detection Controlled by OW-SVPWM Without CMV of a Five-Phase FTFSCW-IPM. IEEE Trans. Ind. Appl. 2017, 53, 194–202. [Google Scholar] [CrossRef]
- Zhao, J.; Guan, X.; Li, C.; Mou, Q.; Chen, Z. Comprehensive Evaluation of Inter-Turn Short Circuit Faults in PMSM Used for Electric Vehicles. IEEE Trans. Intell. Transp. Syst. 2020, 22, 611–621. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, L.; Zou, J.; Xu, Y.; Li, S. Analysis and Monitoring Method for Inter-Turn Short-Circuit Fault for PMSM. IEEE Trans. Magn. 2023, 59, 1–6. [Google Scholar]
- Berzoy, A.; Mohamed, A.A.; Mohammed, O. Impact of Inter-Turn Short-Circuit Location on Induction Machines Parameters Through FE Computations. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Feng, X.; Wang, B.; Wang, Z.; Hua, W.; Cheng, M. Detection and Differentiation of Winding Inter-Turn Fault and High-Resistance Fault in PM Machines. IEEE Trans. Power Electron. 2025, 40, 12440–12451. [Google Scholar] [CrossRef]
- Yang, C.; Yuan, C.; Wang, Y.; Qiu, H.; Chen, S.; Lian, Z.; Zhu, Z. Analysis of Inter-Turn-Short Fault in High-Speed Permanent Magnet Generators Considering Effect of Structure Windings. IEEE Trans. Ind. Appl. 2025, 61, 3007–3015. [Google Scholar] [CrossRef]
- He, L.; Kang, J.; Ke, D.; Wang, F. A Hybrid Model Flux Estimator for Diagnosis of Inter-Turn Short Circuit Fault in Traction Motors Considering Inverter Nonlinearity. IEEE Trans. Ind. Appl. 2025, 61, 7707–7717. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, W.; Pan, T.; Xu, D. Inter-Turn Short-Circuit Fault Diagnosis and Severity Estimation for Five-Phase PMSM. CES Trans. Electr. Mach. Syst. 2025, 9, 224–233. [Google Scholar] [CrossRef]
- Luo, P.; Yin, Z.; Zhang, Z.; Zhang, Y.; Zhang, P.; Liu, J. Diversified Diagnosis Strategy for PMSM Inter-Turn Short-Circuit Fault via Novel Sliding Mode Observer. IEEE Trans. Power Electron. 2024, 39, 4149–4159. [Google Scholar] [CrossRef]
- Cardenas-Cornejo, J.-J.; Almanza-Ojeda, D.-L.; Gonzáalez-Parada, A.; Hernandez-Ramirez, V.; Ibarra-Manzano, M.-A. Complex Signal Analysis for Inter-Turn Short-Circuits Faults on Induction Motors. IEEE Sens. J. 2025, 25, 13433–13440. [Google Scholar] [CrossRef]
- Rafiei, V.; Khoshlessan, M.; Caicedo-Narvaez, C.; Fahimi, B. Detection of Inter-Turn Short Circuit in Stator Windings of Electric Machines Using Magnetic Symmetry Index and Machine Learning Methods. IEEE Trans. Energy Convers. 2024, 40, 642–652. [Google Scholar] [CrossRef]
- Wei, D.; Liu, K.; Huang, J.; Wang, J.; Zhou, S.; Cai, H.; Chen, J. Instantaneous Phase Estimation Based Single-Signal Diagnosis for Inter-Turn Short Circuit Fault in PMSMs. IEEE Trans. Energy Convers. 2024, 40, 1350–1364. [Google Scholar] [CrossRef]
- Xiao, L.; Li, S.; Liu, C.; Zou, J. Inter-Turn Short-Circuit Fault Diagnosis Method for Dual Three-Phase PMSM Based on Voltage Demodulation. IEEE Trans. Magn. 2025, 61, 1–5. [Google Scholar] [CrossRef]
- He, L.; Kang, J.; Ke, D.; Wang, F. D-Axis High-Frequency Impedance Extraction Method for Online Diagnosis of Inter-Turn Short-Circuit Faults in Traction Motors. IEEE Trans. Power Electron. 2025, 40, 17061–17072. [Google Scholar] [CrossRef]
- Laursen, M.; Ha, D.-H.; Mahmoud, M.S.; Huynh, V.K. Robust Fault Classification in Permanent Magnet Synchronous Machines Under Dynamic and Noisy Conditions. IEEE Access. 2025, 13, 115217–115225. [Google Scholar] [CrossRef]
- Wu, X.; Geng, Y.; Li, M.; Wang, W.; Tu, M. Inter-Turn Short Circuit Diagnosis of Permanent Magnet Synchronous Motor Based on Siamese Convolutional Neural Network Under Small Fault Samples. IEEE Sens. J. 2024, 24, 26982–26993. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.; Wang, R.; Cheng, M. Advanced Fault Tolerant 3×3-Phase PM Drive with Concentric Winding for EV Application. IEEE Trans. Transp. Electrific. 2023, 9, 2754–2764. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, W.; Ehsani, M. Fault-Tolerant Control of PMSM with Inter-Turn Short-Circuit Fault. IEEE Trans. Energy Convers. 2019, 34, 2267–2275. [Google Scholar] [CrossRef]
- Chen, Q.; Han, X.; Liu, G.; Zhao, W.; Shi, H. Inter-Turn Fault Diagnosis and Control for Five-Phase PMSMs by Disturbance Observer. IEEE Trans. Ind. Electron. 2024, 71, 13901–13909. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, R.; Zhang, A. Torque Ripple Minimization for Inter-Turn Short-Circuit Fault Based on Open-Winding Five Phase FTFSCW-IPM Motor for Electric Vehicle Application. IEEE Trans. Veh. Technol. 2019, 69, 282–292. [Google Scholar] [CrossRef]




































| Parameter | Value |
|---|---|
| Stator resistance Rs | 0.5 Ω |
| Self-inductance Ls | 13.5 m H |
| External resistance R | 150 Ω/150 W |
| Mutual inductance Lm | 0.035 m H |
| Rotational inertia J | 0.006 kg·m2 |
| Flux linkage of permanent magnet | 0.089 Wb |
| Number of pole pairs p | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, R.; Ji, Q.; Zhang, S.; Li, H. Real-Time Zero-Sequence-Voltage Estimation and Fault-Tolerant Control for an Open-Winding Five-Phase Fault-Tolerant Fractional-Slot Concentrated-Winding IPM Motor Under Inter-Turn Short-Circuit Fault. Sensors 2025, 25, 7655. https://doi.org/10.3390/s25247655
Cui R, Ji Q, Zhang S, Li H. Real-Time Zero-Sequence-Voltage Estimation and Fault-Tolerant Control for an Open-Winding Five-Phase Fault-Tolerant Fractional-Slot Concentrated-Winding IPM Motor Under Inter-Turn Short-Circuit Fault. Sensors. 2025; 25(24):7655. https://doi.org/10.3390/s25247655
Chicago/Turabian StyleCui, Ronghua, Qingpeng Ji, Shitao Zhang, and Huaxin Li. 2025. "Real-Time Zero-Sequence-Voltage Estimation and Fault-Tolerant Control for an Open-Winding Five-Phase Fault-Tolerant Fractional-Slot Concentrated-Winding IPM Motor Under Inter-Turn Short-Circuit Fault" Sensors 25, no. 24: 7655. https://doi.org/10.3390/s25247655
APA StyleCui, R., Ji, Q., Zhang, S., & Li, H. (2025). Real-Time Zero-Sequence-Voltage Estimation and Fault-Tolerant Control for an Open-Winding Five-Phase Fault-Tolerant Fractional-Slot Concentrated-Winding IPM Motor Under Inter-Turn Short-Circuit Fault. Sensors, 25(24), 7655. https://doi.org/10.3390/s25247655

