Design of a W-Band Low-Voltage TWT Utilizing a Spoof Surface Plasmon Polariton Slow-Wave Structure and Dual-Sheet Beam
Abstract
1. Introduction
2. High-Frequency Characteristics
2.1. Structure of SSPP-Based SWS
2.2. The Dispersion Characteristics
2.3. Transmission Characteristics Analysis
3. Analysis of Beam-Wave Interaction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, J.; Dong, B.; Liu, Y.; Ping, D.; Tao, L.; He, S. FL-Based NN in 30.4-km MMW Transmission Using Full-Photonic Conversion and TWT Amplifier. IEEE Photonics Technol. Lett. 2025, 37, 777–780. [Google Scholar] [CrossRef]
- Wei, Y.; Yu, J.; Zhao, X.; Yang, X.; Wang, M.; Li, W. Demonstration of a Photonics-Aided 4600-m Wireless Transmission System in the Sub-THz Band. J. Lightw. Technol. 2024, 42, 8564–8576. [Google Scholar] [CrossRef]
- Paoloni, C.; Gamzina, D.; Letizia, R.; Zheng, Y.; Luhmann, N.C. Millimeter Wave Traveling Wave Tubes for the 21st Century. J. Electromagn. Waves Appl. 2021, 35, 567–603. [Google Scholar] [CrossRef]
- Anilkumar, P.; Wang, S.; Gong, Y. Challenges in the Design and Development of Slow-Wave Structure for THz Traveling-Wave Tube: A Tutorial Review. Electronics 2025, 14, 2624. [Google Scholar] [CrossRef]
- Jameel, A.; Wang, Z.; Latif, J.; Nadeem, M.K.; Shah, S.A.; Ali, B.; Gong, Y. Analytical Modeling, Simulation and Cold Testing of a Radial SWS for THz Applications. IEEE Trans. Terahertz Sci. Technol. 2025, 15, 903–913. [Google Scholar] [CrossRef]
- Armstrong, C.M.; Snively, E.C.; Shumail, M.; Nantista, C.; Li, Z.; Tantawi, S.; Loo, B.W.; Temkin, R.J.; Griffin, R.G.; Feng, J.; et al. Frontiers in the Application of RF Vacuum Electronics. IEEE Trans. Electron. Devices 2023, 70, 2643–2655. [Google Scholar] [CrossRef]
- André, F.; Racamier, J.-C.; Zimmermann, R.; Le, Q.T.; Krozer, V.; Ulisse, G. Technology, Assembly, and Test of a W-Band Traveling Wave Tube for New 5G High-Capacity Networks. IEEE Trans. Electron. Devices 2020, 67, 2919–2924. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, J.; Zhang, X.; Du, Y.; Gao, C.; Mu, H. Four-Port Folded Waveguide Slow Wave Structure for W-Band 1-kW Pulsed Traveling Wave Tube. IEEE Electron. Device Lett. 2025, 46, 100–102. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, J.; Cai, J.; Du, Y.; Dong, R.; Wu, X. Power Enhancement in W-Band Pulsed Folded Waveguide TWT. IEEE Trans. Electron. Devices 2021, 68, 2504–2508. [Google Scholar] [CrossRef]
- Dai, Z.; Wang, J.; Wan, Y.; Li, X.; Zheng, J.; Fang, Y.; Fang, Y.; Li, H.; Luo, Y. Achieving Ultra-Wide Band Operation of the High-Power Sheet Beam TWT by Using Novel Double-Ridge Staggered Vane Structure. IEEE Electron. Device Lett. 2024, 45, 2205–2208. [Google Scholar] [CrossRef]
- Abozied, A.Z.; Gates, J.; Letizia, R. Half-Height Pin Gap Waveguide-Based Slow-Wave Structure for Millimeter Wave Traveling-Wave Tubes. IEEE Trans. Electron. Devices 2023, 70, 3295–3301. [Google Scholar] [CrossRef]
- Duan, J.; Lu, Z.; Gao, P.; Wang, Z.; Wang, Z.; Wang, S.; Gong, H.; Gong, Y. Helical Groove Loaded Staggered Double Grating Slow-Wave Structure for W-Band Traveling Wave Tubes. IEEE Trans. Plasma Sci. 2025, 53, 1414–1421. [Google Scholar] [CrossRef]
- Duan, J.; Lu, Z.; Zhu, J.; Wang, Z.; Wang, S.; Gong, H. A Modified Fold Waveguide Slow Wave Structure for W-Band Dual-Beam TWT. IEEE Trans. Electron. Devices 2023, 70, 2786–2791. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, J.; Zheng, Y.; Li, H.; Gong, Y. Investigation of a Low-Loss Transmission Structure for W-Band TWT. IEEE Trans. Electron. Devices 2025, 72, 2611–2617. [Google Scholar] [CrossRef]
- Gong, H.; Duan, J.; Xiang, G.; Qiu, L.; Lu, Z.; Wei, Y. Study on Over-Mode Groove-Guide Slow Wave Structure for W-Band Bidirectional Traveling Wave Tube. J. Electromagn. Waves Appl. 2025, 39, 450–460. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, X.; Lai, H.; Du, H.; Duan, Z.; Lu, Z.; Wang, Z.; Gong, Y.; Gong, H. A 200 W 92–98 GHz Continuous Wave Traveling Wave Tube. IEEE Electron. Device Lett. 2025, 46, 856–859. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Lei, W.; Song, R.; Hu, P.; Ma, G.; Wei, Y. Analysis of W-Band Traveling-Wave Tube Based upon Slotted Sine Waveguide Slow Wave Structure. AIP Adv. 2021, 11, 125214. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Cai, J.; Yin, P.; Yin, H.; Yue, L.; Xu, Y.; Luo, J.; Wu, G.; Zhao, G.; et al. Study on Staggered U-Shaped Groove Sine Waveguide for G-Band TWT. IEEE Trans. Microw. Theory Tech. 2025, 73, 3401–3408. [Google Scholar] [CrossRef]
- Rostuntsova, A.A.; Torgashov, R.A.; Ryskin, N.M. Dumbbell-Shaped Slot Resonator Slow Wave Structure with Metamaterial Properties for a W-Band Traveling-Wave Tube Amplifier. IEEE Trans. Plasma Sci. 2025, 53, 1134–1140. [Google Scholar] [CrossRef]
- Xiong, Y.; Tang, X.; Ma, J.; Yu, L. Miniaturized Metamaterial-Inspired Travelling Wave Tube for S Band. Electronics 2023, 12, 3062. [Google Scholar] [CrossRef]
- Jiang, S.; Tang, X.; Huang, S.; Lyu, Z.; Wang, Z.; Tang, T. Metamaterial-Inspired 0.22 THz Traveling-Wave Tubes with Double Sheet Beams. IEEE Trans. Electron. Devices 2023, 70, 1306–1311. [Google Scholar] [CrossRef]
- Thakur, A.S.; Rawat, M.; Thumm, M.; Kartikeyan, M.V. Investigation of a double-negative metamaterial-loaded helical slow-wave structure: Equivalent circuit analysis approach. IEEE Trans. Electron. Devices 2025, 72, 432–438. [Google Scholar] [CrossRef]
- Tang, X.; Tang, H.; Xu, C.; Li, X.; Duan, Z. Metamaterial-inspired slow wave structure for enhanced characteristics at low beam voltages. IEEE Electron. Device Lett. 2025; early access. [Google Scholar] [CrossRef]
- Liu, M.; Liu, C.L.; Jiang, W.; Wang, J.; Liu, X.; Wu, Q.; Liu, H. Simulation investigation of an X-band forward-wave oscillator using spiral metamaterials. IEEE Trans. Plasma Sci. 2024, 52, 5112–5116. [Google Scholar] [CrossRef]
- Gui, X.; Chang, Z.; Lu, Z.; Qiu, L.; Gao, P.; Duan, J. Terahertz Planar Amplifier with Spoof Surface Plasmon Polariton Modes Based on Meta-Composite Slot Slow Wave Structures. IEEE Trans. Plasma Sci. 2024, 52, 5478–5486. [Google Scholar] [CrossRef]
- Annaka, Y.; Matsuzaki, R.; Kato, T.; Sugawara, A. Polarization Measurement of Cherenkov Radiation from 0.1 THz Surface-Wave Oscillator with Cylindrical Corrugated Waveguide. Phys. Plasmas 2025, 32, 033302. [Google Scholar] [CrossRef]
- Dassault Systèmes. CST Studio Suite. Available online: https://www.3ds.com/zh/products-services/simulia/products/cst-studio-suite/ (accessed on 1 November 2023).
- Srivastava, V.; Carter, R.G. Determination of sever positions in coupled-cavity TWTs. IEE Proc. H Microw. Antennas Propag. 1991, 138, 1–6. [Google Scholar] [CrossRef]
- Wong, P.Y. A Contemporary Study in the Theory of Traveling-Wave Tubes. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2018. [Google Scholar]
- Kosmahl, H.G. Traveling Wave Tube Amplifier with Reduced Sever. U.S. Patent 6,356,023, 12 March 2002. [Google Scholar]
- Yin, P.C.; Xu, J.; Yang, R.C.; Luo, J.J.; Zhang, J.; Jia, D.D.; Fan, W.Y.; Ouyang, Y.; Yue, L.N.; Cai, J.C.; et al. Sheet electron optical system for a 1.03-THz traveling-wave tube. IEEE Electron. Device Lett. 2022, 43, 1343–1346. [Google Scholar] [CrossRef]
- Xiang, G.; Lu, Z.; Gao, P.; Duan, J.; Zheng, Y.; Wang, Z.; Wang, S.; Gong, H.; Gong, Y. High-order mode suppression in traveling wave tube based on conformally loaded metasurface filter. IEEE Electron. Device Lett. 2024, 45, 2189–2192. [Google Scholar] [CrossRef]
- Duan, J.; Lu, Z.; Gao, P.; Wang, Z.; Guo, J.; Dong, Y. Quadruple folded groove-guide slow wave structure with power synthesis circuit for terahertz TWT. IEEE Electron. Device Lett. 2025, 46, 302–305. [Google Scholar] [CrossRef]
Parameters | Dimension (mm) | Parameters | Dimension (mm) |
---|---|---|---|
L1 | 1.31 | L2 | 2.80 |
p | 0.57 | w1 | 0.12 |
w2 | 0.44 | w3 | 0.23 |
w4 | 0.10 | a | 1.31 |
b | 2.15 | t | 0.20 |
Reference | Type | f (GHz) | U (kV) | Pout (W) | Gani (dB) | Efficiency |
---|---|---|---|---|---|---|
[8] | FWG | 91–98 | 21.5 | >600 # | >29 # | >6.7% # |
[9] | FWG | 90–94.5 | 21.9 | >450 # | >29.3 # | >7.9% # |
[12] | SGW | 90–95 | 22.6 | >450 * | >26.5 * | >4.5% * |
[13] | FWG | 90–100 | 23.4 | >1000 | >20.1 * | >7.18% * |
[16] | FWG | 92–98 | 21.75 | >200 # | >32.5 # | >5.5% # |
[17] | SWG | 92–97 | 20.6 | >200 * | >30.2 * | >5.4% * |
[19] | MTM | 91.5–95.5 | 8.50 | <50 | >30.0 | <3.92% |
This work | SSPP | 93–96 | 11.9 | >265 | >26.7 | >4.46% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, G.; Jiang, R.; Shi, J. Design of a W-Band Low-Voltage TWT Utilizing a Spoof Surface Plasmon Polariton Slow-Wave Structure and Dual-Sheet Beam. Sensors 2025, 25, 5641. https://doi.org/10.3390/s25185641
Wu G, Jiang R, Shi J. Design of a W-Band Low-Voltage TWT Utilizing a Spoof Surface Plasmon Polariton Slow-Wave Structure and Dual-Sheet Beam. Sensors. 2025; 25(18):5641. https://doi.org/10.3390/s25185641
Chicago/Turabian StyleWu, Gangxiong, Ruirui Jiang, and Jin Shi. 2025. "Design of a W-Band Low-Voltage TWT Utilizing a Spoof Surface Plasmon Polariton Slow-Wave Structure and Dual-Sheet Beam" Sensors 25, no. 18: 5641. https://doi.org/10.3390/s25185641
APA StyleWu, G., Jiang, R., & Shi, J. (2025). Design of a W-Band Low-Voltage TWT Utilizing a Spoof Surface Plasmon Polariton Slow-Wave Structure and Dual-Sheet Beam. Sensors, 25(18), 5641. https://doi.org/10.3390/s25185641