FCP-Former: Enhancing Long-Term Multivariate Time Series Forecasting with Frequency Compensation
Abstract
1. Introduction
- This study introduces a frequency compensation layer that integrates frequency domain features into the patching mechanism of Transformer-based models. This layer applies Fast Fourier Transform (FFT) to each patch to extract spectral components, performs representation learning in the frequency domain, and then reconstructs enriched patch representations via inverse FFT. This approach effectively mitigates intra-patch information loss by capturing periodic and trend features that are often overlooked in purely time-domain patch embeddings.
- A cross-patch frequency fusion mechanism via overlapping patches is proposed. By using overlapping patch segmentation with reduced stride, the model effectively integrates spectral information across adjacent patches. This enhances long-term periodicity and trend modeling. The fusion occurs within the frequency compensation layer, enriching patch tokens with broader contextual awareness without modifying the core attention structure.
- This study conducts extensive experiments on eight widely used benchmark datasets, demonstrating the superior performance of FCP-Former compared with state-of-the-art methods, and provides ablation studies and visual analyses to validate the effectiveness of the frequency compensation mechanism.
2. Related Work
2.1. Problem Definition
2.2. Transformer-Based Time Series Forecaster
2.3. Time Series Forecasting with Time–Frequency Analysis
3. FCP-Former Principle
3.1. Model Structure
3.2. Analysis of Frequency Compensation Layer
- (1)
- Fast Fourier Transform (FFT): The Fourier Transform can decompose a signal in the time domain into a linear combination of a series of sine and cosine functions. Each sine and cosine function represents a specific frequency component of the signal. Thus, the Fourier transform can extract the frequency characteristics from time series data. For discrete signals, the Discrete Fourier Transform is used:
- (2)
- Representation Learning In The Frequency Domain: After random sampling, the selected set of frequency indices is defined as Next, this study defines two weight tensors, and , where is the number of features, is the number of patches, and is the number of selected frequency components. These tensors are initialized with random values and serve as learnable weights for frequency-domain transformations. The input patch tensor is , where B is the batch size, V is the number of features, and PL is the patch length. This study applies a Fast Fourier Transform (FFT) to the input tensor X along the PL dimension. A tensor is defined to store the frequency domain data after the Fourier transform. Through representation learning, the frequency-domain features such as periodicity and trends within the patches will be extracted and preserved.
- (3)
- Inverse Fast Fourier Transform: The processed frequency-domain data is mapped back to the time domain using the Inverse Fast Fourier Transform (IFFT). This process can be simply formulated as follows:
4. Experiments and Discussion
4.1. Experimental Setup
4.1.1. Datasets
4.1.2. Baselines and Experimental Settings
4.1.3. Metrics
4.1.4. Implementation Details
4.2. Experimental Results
4.3. Model Analysis
4.3.1. Ablation Experiments
4.3.2. Hyperparameter Sensitivity Experiments
4.3.3. Different Input Lengths Experiments
4.3.4. Capture Information Ability Experiments from Each Timestep Within the Patches
4.3.5. Robustness Experiment
4.4. Multivariate Showcases
4.5. Training Costs Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FCP-Former | Frequency Compensation Patch-wise TransFormer |
RNN | Recurrent Neural Network |
LSTM | Long Short-Term Memory |
DFT | Discrete Fourier Transform |
FFT | Fast Fourier Transform |
TSPE | Time Spent Per Epoch |
TRT | Total Running Time |
References
- Stephan, K.; Jisha, G. Enhanced Weather Prediction with Feature Engineered, Time Series Cross Validated Ridge Regression Model. In Proceedings of the Control Instrumentation System Conference (CISCON), Manipal, India, 2–3 August 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Sharma, S.; Bhatt, K.K.; Chabra, R.; Aneja, N. A Comparative Performance Model of Machine Learning Classifiers on Time Series Prediction for Weather Forecasting. In Proceedings of the 3rd International Conference on Advances in Information Communication Technology and Computing (AICTC), Bikaner, India, 20–21 December 2021; pp. 577–587. [Google Scholar] [CrossRef]
- Li, J.B.; Ma, L.; Li, Y.; Fu, Y.X.; Ma, D.C. Multivariate Short-Term Marine Meteorological Prediction Model. IEEE Trans. Geosci. Remote Sens. 2025, 63, 4202116. [Google Scholar] [CrossRef]
- Melin, P.; Monica, J.C.; Sanchez, D.; Castillo, O. Multiple Ensemble Neural Network Models with Fuzzy Response Aggregation for Predicting COVID-19 Time Series: The Case of Mexico. Healthcare 2020, 8, 181. [Google Scholar] [CrossRef]
- Sharma, R.R.; Kumar, M.; Maheshwari, S.; Ray, K.P. EVDHM-ARIMA-Based Time Series Forecasting Model and Its Application for COVID-19 Cases. IEEE Trans. Instrum. Meas. 2021, 70, 6502210. [Google Scholar] [CrossRef]
- Cui, C.S.; Xia, G.S.; Jia, C.Y.; Wen, J. A Novel Construction Method and Prediction Framework of Periodic Time Series: Application to State of Health Prediction of Lithium-Ion Batteries. Energies 2025, 18, 1438. [Google Scholar] [CrossRef]
- Shan, N.L.; Xu, X.H.; Bao, X.Q.; Xu, C.C.; Cui, F.R.; Xu, W. Health Status Prediction for Nonstationary Systems Based on Feature Decoupling of Time Series. IEEE Trans. Instrum. Meas. 2025, 74, 3526911. [Google Scholar] [CrossRef]
- Fang, Y.; Qin, Y.; Luo, H.; Zhao, F.; Zheng, K. STWave+: A Multi-Scale Efficient Spectral Graph Attention Network with Long-Term Trends for Disentangled Traffic Flow Forecasting. IEEE Trans. Knowl. Data Eng. 2024, 36, 2671–2685. [Google Scholar] [CrossRef]
- Elmazi, K.; Elmazi, D.; Musta, E.; Mehmeti, F.; Hidri, F. An Intelligent Transportation Systems-Based Machine Learning-Enhanced Traffic Prediction Model using Time Series Analysis and Regression Techniques. In Proceedings of the International Conference on INnovation in Intelligent SysTems and Applciations (INISTA), Craiova, Romania, 4–6 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Jeong, S.; Oh, C.; Jeong, J. BAT-Transformer: Prediction of Bus Arrival Time with Transformer Encoder for Smart Public Transportation System. Appl. Sci. 2024, 14, 9488. [Google Scholar] [CrossRef]
- Zhang, D.L.; Xu, Y.; Peng, Y.J.; Du, C.Y.; Wang, N.; Tang, M.C.; Lu, L.Y.; Liu, J.Q. An Interpretable Station Delay Prediction Model Based on Graph Community Neural Network and Time-Series Fuzzy Decision Tree. IEEE Trans. Fuzzy Syst. 2023, 31, 421–433. [Google Scholar] [CrossRef]
- Iftikhar, H.; Gonzales, S.M.; Zywiolek, J.; López-Gonzales, J.L. Electricity Demand Forecasting Using a Novel Time Series Ensemble Technique. IEEE Access 2024, 12, 88963–88975. [Google Scholar] [CrossRef]
- Gonzales, S.M.; Iftikhar, H.; López-Gonzales, J.L. Analysis and forecasting of electricity prices using an improved time series ensemble approach: An application to the Peruvian electricity market. AIMS Math. 2024, 9, 21952–21971. [Google Scholar] [CrossRef]
- Qiu, X.H.; Ru, Y.J.; Tan, X.Y.; Chen, J.; Chen, B.; Guo, Y. A k-nearest neighbor attentive deep autoregressive network for electricity consumption prediction. Int. J. Mach. Learn. Cybern. 2024, 15, 1201–1212. [Google Scholar] [CrossRef]
- Yu, L.; Ge, X. Time-Series Prediction of Electricity Load for Charging Piles in a Region of China Based on Broad Learning System. Mathematics 2024, 12, 2147. [Google Scholar] [CrossRef]
- Hsu, Y.; Tsai, Y.; Li, C. FinGAT: Financial Graph Attention Networks for Recommending Top-KK Profitable Stocks. IEEE Trans. Knowl. Data Eng. 2023, 35, 469–481. [Google Scholar] [CrossRef]
- Pal, S.S.; Kar, S. Fuzzy transfer learning in time series forecasting for stock market prices. Soft Comput. 2022, 26, 6941–6952. [Google Scholar] [CrossRef]
- Yin, S.; Gao, Y.W.; Nie, S.; Li, J.B. SSTP: Stock Sector Trend Prediction with Temporal-Spatial Network. Inf. Technol. Control 2023, 52, 653–664. [Google Scholar] [CrossRef]
- Jiang, M.R.; Chen, W.; Xu, H.L.; Liu, Y.X. A novel interval dual convolutional neural network method for interval-valued stock price prediction. Pattern Recognit. 2024, 145, 109920. [Google Scholar] [CrossRef]
- Shahvandi, M.K.; Mishra, S.; Soja, B. BaHaMAs: A method for uncertainty quantification in geodetic time series and its application in short-term prediction of length of day. Earth Planets Space 2024, 76, 127. [Google Scholar] [CrossRef]
- Shahvandi, M.K.; Belda, S.; Karbon, M.; Mishra, S.; Soja, B. Deep ensemble geophysics-informed neural networks for the prediction of celestial pole offsets. Geophys. J. Int. 2023, 236, 480–493. [Google Scholar] [CrossRef]
- Zhou, W.J.; Zhu, C.; Ma, J. Single-layer folded RNN for time series prediction and classification under a non-Von Neumann architecture. Digit. Signal Process. 2024, 147, 104415. [Google Scholar] [CrossRef]
- Murata, R.; Okubo, F.; Minematsu, T.; Taniguchi, Y.; Shimada, A. Recurrent Neural Network-FitNets: Improving Early Prediction of Student Performanceby Time-Series Knowledge Distillation. J. Educ. Comput. Res. 2023, 61, 639–670. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, J.; Zhang, S. Online Purchase Behavior Prediction Model Based on Recurrent Neural Network and Naive Bayes. J. Theor. Appl. Electron. Commer. Res. 2024, 19, 3461–3476. [Google Scholar] [CrossRef]
- Monti, M.; Fiorentino, J.; Milanetti, E.; Gosti, G.; Tartaglia, G.G. Prediction of Time Series Gene Expression and Structural Analysis of Gene Regulatory Networks Using Recurrent Neural Networks. Entropy 2022, 24, 141. [Google Scholar] [CrossRef] [PubMed]
- Elmi, S.; Morris, B. Res-ViT: Residual Vision Transformers for Image Recognition Tasks. In Proceedings of the 35th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Atlanta, GA, USA, 6–8 November 2023; pp. 309–316. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Chen, B.; Lan, S.; Wu, Z.; Jiang, Y.; Lim, S. AdaViT: Adaptive Vision Transformers for Efficient Image Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 12299–12308. [Google Scholar] [CrossRef]
- Nag, S.; Datta, G.; Kundu, S.; Chandrachoodan, N.; Beerel, P. ViTA: A Vision Transformer Inference Accelerator for Edge Applications. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Ye, X.; Tang, Y.; Chen, K.; Zhao, H.; Torr, P.H.S. Language-Aware Vision Transformer for Referring Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2025, 47, 5238–5255. [Google Scholar] [CrossRef]
- Lin, H.; Yang, L.; Wang, P. W-core Transformer Model for Chinese Word Segmentation. In Proceedings of the WorldCist’21—9th World Conference on Information Systems and Technologies (WorldCIST), Terceira Island, Azores, Portugal, 30 March–2 April 2021; pp. 270–280. [Google Scholar] [CrossRef]
- Nguyen, M.; Lai, V.; Ben, V.A.P.; Nguyen, T.H.; Linguist, A.C. Trankit: A Light-Weight Transformer-based Toolkit for Multilingual Natural Language Processing. In Proceedings of the 16th Conference of the European-Chapter-of-the-Association-for-Computational-Linguistics (EACL), Online, 19–23 April 2021; pp. 80–90. [Google Scholar]
- Sarkar, S.; Babar, M.F.; Hassan, M.M.; Hasan, M.; Santu, S.K.K. Processing Natural Language on Embedded Devices: How Well Do Transformer Models Perform? In Proceedings of the 15th ACM/SPEC International Conference on Performance Engineering (ICPE), New York, NY, USA, 7–11 May 2024; pp. 211–222. [Google Scholar] [CrossRef]
- Molinaro, L.; Tatano, R.; Busto, E.; Fiandrotti, A.; Basile, V.; Patti, V. DelBERTo: A Deep Lightweight Transformer for Sentiment Analysis. In Proceedings of the 21st International Conference of the Italian Association for Artificial Intelligence (AIxIA), Udine, Italy, 28 November–2 December 2022; pp. 443–456. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar] [CrossRef]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting. In Proceedings of the 39th International Conference on Machine Learning (ICML), Baltimore, MD, USA, 17–23 July 2022; pp. 27268–27286. [Google Scholar]
- Liu, B.J.; Li, Z.M.; Li, Z.L.; Chen, C. CL-Informer: Long time series prediction model based on continuous wavelet transform. PLoS ONE 2024, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, S.H.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. In Proceedings of the 35th AAAI Conference on Artificial Intelligence/33rd Conference on Innovative Applications of Artificial Intelligence/11th Symposium on Educational Advances in Artificial Intelligence (AAAI), Online, 2–9 February 2021; pp. 11106–11115. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems (NeurIPS), Online, 6–14 December 2021; pp. 22419–22430. [Google Scholar]
- Nie, Y.; Nguyen, N.; Sinthong, P.; Kalagnanam, J. A Time Series is Worth 64 Words: Long-term Forecasting with Transformers. In Proceedings of the 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. iTransformer: Inverted Transformers Are Effective for Time Series Forecasting. In Proceedings of the 12th International Conference on Learning Representations (ICLR), Vienna, Austria, 7–14 May 2024. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Dong, J.; Qin, G.; Zhang, H.; Liu, Y.; Qiu, Y.; Wang, J.; Long, M. TimeXer: Empowering Transformers for Time Series Forecasting with Exogenous Variables. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 10–15 December 2024. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J. Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting. In Proceedings of the 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Tong, H.; Kong, L.; Liu, J.; Gao, S.; Xu, Y.; Chen, Y. Segmented Frequency-Domain Correlation Prediction Model for Long-Term Time Series Forecasting Using Transformer. IET Softw. 2024, 2024, 2920167. [Google Scholar] [CrossRef]
- Yi, K.; Zhang, Q.; Fan, W.; Wang, S.; Wang, P.; He, H.; Lian, D.; An, N.; Cao, L.; Niu, Z. Frequency-domain MLPs are More Effective Learners in Time Series Forecasting. In Proceedings of the 37th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA, USA, 10–16 December 2023; pp. 76656–76679. [Google Scholar]
- Xu, Z.; Zeng, A.; Xu, Q. FITS: Modeling Time Series with 10k Parameters. In Proceedings of the 12th International Conference on Learning Representations (ICLR), Vienna, Austria, 7–14 May 2024. [Google Scholar]
- Lin, S.; Lin, W.; Wu, W.; Chen, H.; Yang, J. SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters. In Proceedings of the 41st International Conference on Machine Learning (ICML), Vienna, Austria, 21–27 July 2024. [Google Scholar]
- Han, L.; Ye, H.; Zhan, D. The Capacity and Robustness Trade-Off: Revisiting the Channel Independent Strategy for Multivariate Time Series Forecasting. IEEE Trans. Knowl. Data Eng. 2024, 36, 7129–7142. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Huang, F.; Wang, J.; Chen, J.; Xiao, Y. MICN: Multi-scale Local and Global Context Modeling for Long-term Series Forecasting. In Proceedings of the 11th International Conference on Learning Representations (ICLR), Kigali, Rwanda, 1–5 May 2023; pp. 1–11. [Google Scholar]
Type | Method | Approach | Data Domain | Train Speed | Gap |
---|---|---|---|---|---|
Patch-wise | PatchTST [39] | Patch mechanism | Time domain | Fast | Poor ability to capture internal information within the patch |
iTransformer [40] | Reverse dimension Patch mechanism | Time domain | Very fast | Poor ability to capture internal information within the patch | |
TimeXer [41] | Exogenous variables | Time domain | Fast | Only captures internal information within the patch in the time domain | |
Crossformer [42] | Cross-dimension attention | Time domain | Slow | Only captures internal information within the patch in the time domain | |
Point-wise | FEDformer [35] | Frequency-enhanced attention | Time–frequency domain | Very slow | High training overhead |
Informer [37] | Sparse self-attention | Time domain | Medium | High training overhead | |
Autoformer [38] | Seasonal self-attention mechanism | Time domain | Slow | High training overhead |
Datasets | ETTh | ETTm | Traffic | Weather | Electricity | ILI |
---|---|---|---|---|---|---|
Timesteps | 17,420 | 69,680 | 17,544 | 52,696 | 26,304 | 966 |
Features | 7 | 7 | 862 | 21 | 321 | 7 |
Partitions (train/val/test) | 12/4/4 | 12/4/4 | 7/1/2 | 7/1/2 | 7/1/2 | 6/2/2 |
Methods | FCP-Former | PatchTST | iTransformer | TimeXer | FEDformer | Crossformer | Autoformer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
ETTh1 | 96 | 0.378 | 0.395 | 0.378 | 0.395 | 0.385 | 0.404 | 0.386 | 0.399 | 0.388 | 0.425 | 0.384 | 0.408 | 0.447 | 0.451 |
192 | 0.426 | 0.421 | 0.443 | 0.435 | 0.441 | 0.438 | 0.438 | 0.432 | 0.437 | 0.450 | 0.433 | 0.435 | 0.486 | 0.475 | |
336 | 0.472 | 0.445 | 0.493 | 0.461 | 0.479 | 0.456 | 0.483 | 0.455 | 0.482 | 0.476 | 0.677 | 0.628 | 0.505 | 0.490 | |
720 | 0.471 | 0.460 | 0.527 | 0.499 | 0.489 | 0.482 | 0.491 | 0.476 | 0.502 | 0.498 | 0.670 | 0.616 | 0.517 | 0.519 | |
avg | 0.437 | 0.430 | 0.460 | 0.447 | 0.449 | 0.445 | 0.449 | 0.440 | 0.452 | 0.462 | 0.541 | 0.522 | 0.489 | 0.484 | |
ETTh2 | 96 | 0.287 | 0.339 | 0.292 | 0.343 | 0.297 | 0.347 | 0.289 | 0.342 | 0.339 | 0.383 | 0.678 | 0.634 | 0.344 | 0.385 |
192 | 0.374 | 0.394 | 0.373 | 0.399 | 0.378 | 0.398 | 0.371 | 0.394 | 0.414 | 0.427 | 1.141 | 0.745 | 0.422 | 0.433 | |
336 | 0.382 | 0.412 | 0.390 | 0.416 | 0.426 | 0.433 | 0.419 | 0.430 | 0.453 | 0.464 | 1.200 | 0.764 | 0.455 | 0.464 | |
720 | 0.417 | 0.437 | 0.422 | 0.443 | 0.430 | 0.448 | 0.416 | 0.438 | 0.480 | 0.487 | 1.384 | 0.836 | 0.465 | 0.477 | |
avg | 0.365 | 0.395 | 0.369 | 0.400 | 0.383 | 0.407 | 0.374 | 0.401 | 0.422 | 0.441 | 1.101 | 0.745 | 0.421 | 0.440 | |
ETTm1 | 96 | 0.322 | 0.360 | 0.330 | 0.367 | 0.360 | 0.387 | 0.330 | 0.367 | 0.373 | 0.419 | 0.343 | 0.381 | 0.620 | 0.528 |
192 | 0.368 | 0.386 | 0.370 | 0.387 | 0.389 | 0.405 | 0.367 | 0.387 | 0.415 | 0.440 | 0.375 | 0.403 | 0.603 | 0.519 | |
336 | 0.399 | 0.407 | 0.398 | 0.411 | 0.419 | 0.416 | 0.401 | 0.411 | 0.450 | 0.460 | 0.413 | 0.424 | 0.622 | 0.526 | |
720 | 0.467 | 0.452 | 0.461 | 0.444 | 0.493 | 0.458 | 0.467 | 0.450 | 0.509 | 0.487 | 0.530 | 0.508 | 0.565 | 0.515 | |
avg | 0.389 | 0.401 | 0.390 | 0.403 | 0.415 | 0.417 | 0.391 | 0.403 | 0.437 | 0.452 | 0.415 | 0.429 | 0.602 | 0.522 | |
ETTm2 | 96 | 0.177 | 0.257 | 0.185 | 0.264 | 0.181 | 0.265 | 0.175 | 0.258 | 0.192 | 0.282 | 0.269 | 0.351 | 0.220 | 0.303 |
192 | 0.240 | 0.298 | 0.247 | 0.307 | 0.250 | 0.310 | 0.238 | 0.300 | 0.264 | 0.324 | 0.363 | 0.419 | 0.272 | 0.330 | |
336 | 0.301 | 0.340 | 0.309 | 0.346 | 0.315 | 0.352 | 0.296 | 0.339 | 0.325 | 0.362 | 0.673 | 0.596 | 0.327 | 0.365 | |
720 | 0.401 | 0.398 | 0.422 | 0.422 | 0.411 | 0.406 | 0.405 | 0.406 | 0.421 | 0.416 | 2.652 | 1.111 | 0.421 | 0.418 | |
avg | 0.280 | 0.323 | 0.291 | 0.335 | 0.289 | 0.333 | 0.279 | 0.326 | 0.301 | 0.346 | 0.989 | 0.619 | 0.310 | 0.354 | |
Traffic | 96 | 0.490 | 0.311 | 0.492 | 0.314 | 0.427 | 0.289 | 0.466 | 0.302 | 0.575 | 0.354 | 0.528 | 0.293 | 0.647 | 0.396 |
192 | 0.486 | 0.307 | 0.482 | 0.305 | 0.456 | 0.305 | 0.485 | 0.317 | 0.647 | 0.406 | 0.544 | 0.295 | 0.666 | 0.418 | |
336 | 0.502 | 0.318 | 0.495 | 0.311 | 0.476 | 0.316 | 0.502 | 0.322 | 0.669 | 0.419 | 0.572 | 0.298 | 0.699 | 0.434 | |
720 | 0.537 | 0.335 | 0.528 | 0.330 | 0.514 | 0.341 | 0.538 | 0.340 | 0.721 | 0.444 | 0.596 | 0.311 | 0.710 | 0.440 | |
avg | 0.504 | 0.318 | 0.499 | 0.315 | 0.468 | 0.313 | 0.498 | 0.320 | 0.652 | 0.420 | 0.560 | 0.299 | 0.680 | 0.422 | |
Weather | 96 | 0.162 | 0.209 | 0.175 | 0.217 | 0.173 | 0.211 | 0.158 | 0.204 | 0.220 | 0.299 | 0.158 | 0.235 | 0.253 | 0.323 |
192 | 0.210 | 0.253 | 0.222 | 0.259 | 0.222 | 0.254 | 0.206 | 0.250 | 0.283 | 0.350 | 0.203 | 0.267 | 0.298 | 0.353 | |
336 | 0.265 | 0.293 | 0.276 | 0.298 | 0.281 | 0.298 | 0.263 | 0.292 | 0.347 | 0.399 | 0.254 | 0.309 | 0.357 | 0.394 | |
720 | 0.343 | 0.344 | 0.354 | 0.351 | 0.356 | 0.349 | 0.343 | 0.343 | 0.402 | 0.413 | 0.367 | 0.391 | 0.419 | 0.427 | |
avg | 0.245 | 0.275 | 0.257 | 0.281 | 0.258 | 0.278 | 0.242 | 0.272 | 0.313 | 0.365 | 0.246 | 0.301 | 0.332 | 0.374 | |
Electricity | 96 | 0.156 | 0.250 | 0.167 | 0.254 | 0.158 | 0.252 | 0.162 | 0.252 | 0.215 | 0.327 | 0.219 | 0.314 | 0.207 | 0.321 |
192 | 0.169 | 0.262 | 0.180 | 0.267 | 0.189 | 0.274 | 0.192 | 0.279 | 0.232 | 0.341 | 0.231 | 0.322 | 0.216 | 0.327 | |
336 | 0.188 | 0.280 | 0.198 | 0.284 | 0.208 | 0.294 | 0.208 | 0.295 | 0.254 | 0.359 | 0.246 | 0.337 | 0.271 | 0.368 | |
720 | 0.229 | 0.317 | 0.238 | 0.317 | 0.254 | 0.331 | 0.249 | 0.329 | 0.305 | 0.394 | 0.280 | 0.363 | 0.282 | 0.377 | |
avg | 0.186 | 0.277 | 0.198 | 0.282 | 0.207 | 0.291 | 0.206 | 0.293 | 0.252 | 0.356 | 0.244 | 0.334 | 0.244 | 0.348 | |
ILI | 24 | 1.689 | 0.803 | 1.650 | 0.804 | 2.357 | 1.058 | 2.333 | 1.042 | 4.077 | 1.424 | 3.370 | 1.193 | 2.802 | 1.153 |
36 | 1.573 | 0.777 | 1.714 | 0.853 | 2.236 | 1.027 | 2.192 | 0.976 | 3.865 | 1.414 | 3.533 | 1.219 | 2.734 | 1.085 | |
48 | 1.684 | 0.815 | 1.718 | 0.863 | 2.207 | 1.020 | 2.173 | 0.969 | 3.881 | 1.404 | 3.790 | 1.263 | 2.592 | 1.045 | |
60 | 1.992 | 0.905 | 1.977 | 0.934 | 2.212 | 1.036 | 2.111 | 0.961 | 3.947 | 1.409 | 4.076 | 1.327 | 2.833 | 1.127 | |
avg | 1.734 | 0.825 | 1.765 | 0.863 | 2.253 | 1.035 | 2.203 | 0.987 | 3.943 | 1.413 | 3.692 | 1.250 | 2.740 | 1.102 | |
SOTA counts | 48 | 7 | 6 | 16 | 0 | 7 | 0 |
Methods | FCP-Former | w/o FCL | |||||
---|---|---|---|---|---|---|---|
Metric | MSE | |ΔMSE%| | MAE | |ΔMAE%| | MSE | MAE | |
ETTm2 | 96 | 0.177 | 4.32% | 0.257 | 2.65% | 0.185 | 0.264 |
192 | 0.240 | 2.83% | 0.298 | 2.93% | 0.247 | 0.307 | |
336 | 0.301 | 2.58% | 0.340 | 1.73% | 0.309 | 0.346 | |
720 | 0.401 | 4.98% | 0.398 | 5.69% | 0.422 | 0.422 | |
avg | 0.280 | 3.78% | 0.323 | 3.58% | 0.291 | 0.335 | |
Weather | 96 | 0.162 | 7.43% | 0.209 | 3.69% | 0.175 | 0.217 |
192 | 0.210 | 5.71% | 0.253 | 2.32% | 0.222 | 0.259 | |
336 | 0.265 | 3.99% | 0.293 | 1.68% | 0.276 | 0.298 | |
720 | 0.343 | 3.11% | 0.344 | 1.99% | 0.354 | 0.351 | |
avg | 0.245 | 4.67% | 0.275 | 2.14% | 0.257 | 0.281 | |
Electricity | 96 | 0.157 | 5.99% | 0.251 | 1.18% | 0.167 | 0.254 |
192 | 0.169 | 6.11% | 0.262 | 1.87% | 0.180 | 0.267 | |
336 | 0.188 | 5.05% | 0.280 | 1.41% | 0.198 | 0.284 | |
720 | 0.229 | 3.78% | 0.317 | 0% | 0.238 | 0.317 | |
avg | 0.186 | 6.06% | 0.277 | 1.77% | 0.198 | 0.282 |
Methods | FCP-Former | FCP-Former-336 | FCP-Former-512 | ||||
---|---|---|---|---|---|---|---|
Metric | MSE | MAE | MSE | MSE | MSE | MAE | |
ETTh1 | 96 | 0.378 | 0.395 | 0.379 | 0.400 | 0.376 | 0.403 |
192 | 0.426 | 0.421 | 0.411 | 0.422 | 0.421 | 0.439 | |
336 | 0.472 | 0.445 | 0.482 | 0.472 | 0.438 | 0.453 | |
720 | 0.471 | 0.460 | 0.505 | 0.500 | 0.475 | 0.484 | |
avg | 0.437 | 0.430 | 0.444 | 0.448 | 0.427 | 0.445 | |
ETTh2 | 96 | 0.287 | 0.339 | 0.290 | 0.349 | 0.280 | 0.343 |
192 | 0.374 | 0.394 | 0.340 | 0.385 | 0.331 | 0.383 | |
336 | 0.382 | 0.412 | 0.353 | 0.402 | 0.361 | 0.407 | |
720 | 0.417 | 0.437 | 0.408 | 0.440 | 0.395 | 0.434 | |
avg | 0.365 | 0.395 | 0.348 | 0.394 | 0.342 | 0.392 | |
ETTm1 | 96 | 0.322 | 0.360 | 0.296 | 0.350 | 0.304 | 0.350 |
192 | 0.368 | 0.386 | 0.343 | 0.375 | 0.345 | 0.375 | |
336 | 0.399 | 0.407 | 0.382 | 0.397 | 0.376 | 0.392 | |
720 | 0.467 | 0.452 | 0.440 | 0.429 | 0.431 | 0.421 | |
avg | 0.389 | 0.401 | 0.365 | 0.388 | 0.364 | 0.385 | |
ETTm2 | 96 | 0.177 | 0.257 | 0.167 | 0.256 | 0.165 | 0.254 |
192 | 0.240 | 0.298 | 0.221 | 0.293 | 0.221 | 0.292 | |
336 | 0.301 | 0.340 | 0.279 | 0.330 | 0.276 | 0.328 | |
720 | 0.401 | 0.398 | 0.374 | 0.387 | 0.366 | 0.385 | |
avg | 0.280 | 0.323 | 0.260 | 0.317 | 0.257 | 0.315 | |
Traffic | 96 | 0.490 | 0.311 | 0.419 | 0.303 | 0.419 | 0.305 |
192 | 0.486 | 0.307 | 0.427 | 0.305 | 0.425 | 0.308 | |
336 | 0.502 | 0.318 | 0.438 | 0.307 | 0.434 | 0.313 | |
720 | 0.537 | 0.335 | 0.472 | 0.329 | 0.469 | 0.327 | |
avg | 0.504 | 0.318 | 0.439 | 0.311 | 0.437 | 0.313 | |
Weather | 96 | 0.162 | 0.209 | 0.151 | 0.203 | 0.150 | 0.208 |
192 | 0.210 | 0.253 | 0.195 | 0.246 | 0.194 | 0.248 | |
336 | 0.265 | 0.293 | 0.249 | 0.288 | 0.244 | 0.287 | |
720 | 0.343 | 0.344 | 0.329 | 0.340 | 0.315 | 0.337 | |
avg | 0.245 | 0.275 | 0.231 | 0.269 | 0.226 | 0.270 | |
Electricity | 96 | 0.157 | 0.251 | 0.137 | 0.234 | 0.136 | 0.235 |
192 | 0.169 | 0.262 | 0.156 | 0.250 | 0.158 | 0.255 | |
336 | 0.188 | 0.280 | 0.173 | 0.269 | 0.171 | 0.268 | |
720 | 0.229 | 0.317 | 0.208 | 0.298 | 0.222 | 0.316 | |
avg | 0.186 | 0.277 | 0.169 | 0.263 | 0.172 | 0.268 |
Method | FCP-Former | PatchTST | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Patch Length | 16 | 24 | 32 | 16 | 24 | 32 | ||||
Metric | MSE | MSE | |ΔMSE%| | MSE | |ΔMSE%| | MSE | MSE | |ΔMSE%| | MSE | |ΔMSE%| |
96 | 0.378 | 0.379 | 0.26% | 0.381 | 0.79% | 0.378 | 0.389 | 2.91% | 0.392 | 3.70% |
192 | 0.426 | 0.426 | 0% | 0.432 | 1.41% | 0.443 | 0.451 | 1.81% | 0.452 | 2.03% |
336 | 0.472 | 0.482 | 2.12% | 0.479 | 1.48% | 0.493 | 0.508 | 3.04% | 0.507 | 2.84% |
720 | 0.471 | 0.471 | 0% | 0.476 | 1.06% | 0.527 | 0.542 | 2.85% | 0.585 | 11.01% |
avg | 0.437 | 0.439 | 0.46% | 0.442 | 1.14% | 0.46 | 0.473 | 2.83% | 0.484 | 5.22% |
Method | FCP-Former | PatchTST | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Patch Length | 16 | 24 | 32 | 16 | 24 | 32 | ||||
Metric | MAE | MAE | |ΔMAE%| | MAE | |ΔMAE%| | MAE | MAE | |ΔMAE%| | MAE | |ΔMAE%| |
96 | 0.395 | 0.396 | 0.25% | 0.399 | 1.01% | 0.395 | 0.402 | 1.77% | 0.405 | 2.53% |
192 | 0.421 | 0.423 | 0.47% | 0.426 | 1.19% | 0.435 | 0.442 | 1.61% | 0.445 | 2.30% |
336 | 0.445 | 0.448 | 0.67% | 0.449 | 0.90% | 0.461 | 0.468 | 1.52% | 0.469 | 1.74% |
720 | 0.460 | 0.462 | 0.43% | 0.468 | 1.74% | 0.499 | 0.501 | 0.40% | 0.525 | 5.21% |
avg | 0.430 | 0.432 | 0.46% | 0.435 | 1.16% | 0.447 | 0.453 | 1.34% | 0.460 | 2.91% |
Forecast Length | 96 | 192 | 336 | 720 |
---|---|---|---|---|
Metric | MSE | MSE | MSE | MSE |
1 | 0.379 | 0.435 | 0.480 | 0.473 |
2 | 0.380 | 0.426 | 0.472 | 0.471 |
3 | 0.380 | 0.434 | 0.472 | 0.477 |
4 | 0.376 | 0.424 | 0.474 | 0.484 |
5 | 0.377 | 0.429 | 0.476 | 0.485 |
6 | 0.380 | 0.426 | 0.480 | 0.473 |
7 | 0.379 | 0.426 | 0.478 | 0.484 |
8 | 0.379 | 0.427 | 0.472 | 0.469 |
9 | 0.384 | 0.427 | 0.460 | 0.460 |
10 | 0.378 | 0.429 | 0.482 | 0.473 |
90% confidence bands | [0.377, 0.380] | [0.426, 0.429] | [0.471, 0.479] | [0.471, 0.478] |
robustness | √ | √ | √ | √ |
Methods | ETTh1 | ||||||
---|---|---|---|---|---|---|---|
Iter | MSE | MAE | GPU | Epochs | TSPE | TRT | |
FCP-Former | 22.7 | 0.371 | 0.391 | 1702 | 10 | 1.5 | 15 |
PatchTST | 19.1 | 0.378 | 0.395 | 1696 | 6 | 1.26 | 7.56 |
iTransformer | 8.5 | 0.385 | 0.404 | 770 | 7 | 0.57 | 3.99 |
TimeXer | 18.4 | 0.386 | 0.399 | 1352 | 14 | 1.23 | 17.22 |
FEDformer | 146.6 | 0.388 | 0.425 | 4798 | 12 | 9.82 | 117.84 |
Crossformer | 57 | 0.384 | 0.408 | 3936 | 6 | 3.82 | 22.92 |
Autoformer | 68.2 | 0.447 | 0.451 | 5298 | 6 | 4.57 | 27.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Yang, M.; Chen, S.; Li, H.; Xing, G.; Li, S. FCP-Former: Enhancing Long-Term Multivariate Time Series Forecasting with Frequency Compensation. Sensors 2025, 25, 5646. https://doi.org/10.3390/s25185646
Li M, Yang M, Chen S, Li H, Xing G, Li S. FCP-Former: Enhancing Long-Term Multivariate Time Series Forecasting with Frequency Compensation. Sensors. 2025; 25(18):5646. https://doi.org/10.3390/s25185646
Chicago/Turabian StyleLi, Ming, Muyu Yang, Shaolong Chen, Huangyongxiang Li, Gaosong Xing, and Shuting Li. 2025. "FCP-Former: Enhancing Long-Term Multivariate Time Series Forecasting with Frequency Compensation" Sensors 25, no. 18: 5646. https://doi.org/10.3390/s25185646
APA StyleLi, M., Yang, M., Chen, S., Li, H., Xing, G., & Li, S. (2025). FCP-Former: Enhancing Long-Term Multivariate Time Series Forecasting with Frequency Compensation. Sensors, 25(18), 5646. https://doi.org/10.3390/s25185646