Flexible Phased Antenna Arrays: A Review
Abstract
1. Introduction
1.1. Historical Background
1.2. Silicon-Based RFIC Technology and Diverse Applications
1.3. Flexibility in Phased Arrays
1.4. Problem Statement
2. Manufacturing Techniques
2.1. Additive Manufacturing
2.2. Hybrid Rigid–Flexible Designs
3. Mostly Used Materials
4. Major Challenges
4.1. Mechanical Deformation and Its Impact on Performance
4.2. Electrical Performance Limitations
4.3. Fabrication and Manufacturing Challenges
4.4. Thermal Management
4.5. Environmental and Operational Challenges
5. Performance Comparison
6. Conclusions and Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AESA | Active Electronically Scanned Array |
AM | Additive Manufacturing: Layer-by-layer fabrication of 3D objects using digital designs |
AME | Additive Manufacturing Electronics |
AP | All Polymide: High-temperature, flexible substrate made entirely of polyimide |
CP | Circular Polarization |
CNT-TFT | Carbon Nanotube Thin-Film Transistors: Transistors made of carbon nanotubes for electronics |
DC | Direct Current |
EIRP | Effective Isotropic Radiated Power |
ESA | Electronically Steerable Antenna |
ESAA | Electronically Steerable Antenna Array |
FFF | Fused Filament Fabrication: 3D printing method using melted thermoplastic filaments |
Flex Sub | Flexible Substrate |
FSK | Frequency Shift Key: Modulation scheme where data are encoded by varying frequency |
FSS | Frequency Selective Surface: Surface that selectively transmits or reflects specific frequencies |
FPA | Flexible Phased Array |
FPGA | Field Programmable Gate Array: reconfigurable integrated circuit enabling fast operations |
GaAs | Gallium Arsenide: High-speed semiconductor used in RF and microwave electronics |
IC | Integrated Circuit |
IMU | Internal Measurement Unit: Sensor module measuring orientation and motion |
IP | Inkjet-printing: Non-contact printing technique depositing functional inks for electronics |
LCP | Liquid Crystal Polymer: Thermoplastic with excellent RF and mechanical properties |
LHCP | Left-Hand Circular Polarization |
LNA | Low-Noise Amplifier |
LP | Linear Polarization |
MEMS | Micro-Electromechanical System |
PA | Phased Array |
PCB | Printed Circuit Board |
PDMS | Polydimethylsiloxane: Flexible, biocompatible silicone used in soft electronics |
PEI | Polyetherimide: High-strength, heat-resistant polymer used in aerospace and electronics |
PESA | Passive Electronically Scanned Array |
PET | Polyethylene terephthalate: Flexible and transparent polymer used in substrates |
PP | Polypropylene: Thermoplastic used for flexible and chemical-resistant packaging |
PSCU | Power Synthesis and Control Unit: Module managing power distribution in arrays |
PTFE | Polytetrafluoroethylene: Non-stick, low-loss dielectric material used in RF applications |
PV | Photovoltaic |
RFAA | Rigid–flex antenna array: Hybrid antenna combining rigid and flexible sections |
RHCP | Right-Hand Circular Polarization |
RFIC | Radio Frequency Integrated Circuit |
RFID | Radio Frequency Identification |
RX | Receiver |
SATCOM | Satellite Communication |
SLA | Stereolithography: 3D printing method using photopolymerization with a laser |
SLL | Side Lobe Level |
SmallSat | Small Satellite |
SNP | Silver Nanoparticle: Nanoscale silver particles used in conductive inks |
SPI | Serial Peripheral Interface |
TX | Transmitter |
UAV | Unmanned Aerial Vehicle |
UHF | Ultra-High Frequency |
UVO | Ultra-Violet Ozone: Surface treatment method to modify materials |
UWB | Ultra Wide Band |
VSWR | Voltage Standing Wave Ratio |
WPT | Wireless Power Transfer |
XPD | Cross-Polar Discrimination: Ratio of co-polarized to cross-polarized signal components |
References
- Chaloun, T.; Boccia, L.; Arnieri, E.; Fischer, M.; Valenta, V.; Fonseca, N.J.; Waldschmidt, C. Electronically Steerable Antennas for Future Heterogeneous Communication Networks: Review and Perspectives. IEEE J. Microwaves 2022, 2, 545–581. [Google Scholar] [CrossRef]
- Epstein, B.R.; Olsson, R.H., III; Rotman, R. Phased Array Technologies [Scanning the Issue]. Proc. IEEE 2016, 104, 482–486. [Google Scholar] [CrossRef]
- Mohr, M.C.; Monaghan, S. Circularly Polarized Phase Shifter for Use in Phased Array Antennas. IEEE Trans. Microw. Theory Tech. 1966, 14, 672–683. [Google Scholar] [CrossRef]
- Mohr, M.C.; Monaghan, S. Polarization Insensitive Phase Shifter for Use in Phased Array Antennas. In Proceedings of the G-MTT International Microwave Symposium Digest, Boston, MA, USA, 8–11 May 1967. [Google Scholar]
- Levy, D.; Noblet, A.; Bender, Y.W. A 2–18 GHz monolithic phase shifter for electronic warfare phase array applications. In Proceedings of the 10th Annual IEEE (GaAs IC) Symposium, Gallium Arsenide Integrated Circuit. Technical Digest, Nashville, TN, USA, 6–9 November 1988. [Google Scholar]
- Hodges, N.E.; Yam, M.H. A precise analog phase shifter for SHF SATCOM phased arrays. In Proceedings of the GaAs IC Symposium Technical Digest, Miami Beach, FL, USA, 4–7 October 1992. [Google Scholar]
- Smith, J.K. N-Bit L-Band Phase Shifters for Phased Arrays. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 31 May–3 June 1983. [Google Scholar]
- Pao, C.K.; Chen, J.C.; Lan, G.L.; Wang, D.C.; Wong, W.S.; Herman, M.I. V-band monolithic phase shifters. In Proceedings of the 10th Annual IEEE (GaAs IC) Symposium, Gallium Arsenide Integrated Circuit. Technical Digest, Nashville, TN, USA, 6–9 November 1988. [Google Scholar]
- Jacomb-Hood, A.W.; Windyka, J.A.; Booth, M.S.; Snow, K.H.; Adams, S.B. C-band phase and gain control MMIC. In Proceedings of the 10th Annual IEEE (GaAs IC) Symposium, Gallium Arsenide Integrated Circuit. Technical Digest, Nashville, TN, USA, 6–9 November 1988. [Google Scholar]
- Guan, X.; Hashemi, H.; Hajimiri, A. A fully integrated 24-GHz eight-element phased-array receiver in silicon. IEEE J. Solid-State Circuits 2004, 39, 2311–2320. [Google Scholar] [CrossRef]
- Hajimiri, A.; Komijani, A.; Natarajan, A.; Chunara, R.; Guan, X.; Hashemi, H. Phased array systems in silicon. IEEE Commun. Mag. 2004, 42, 122–130. [Google Scholar] [CrossRef]
- Hajimiri, A.; Hashemi, H.; Natarajan, A.; Guan, X.; Komijani, A. Integrated Phased Array Systems in Silicon. Proc. IEEE 2005, 93, 1637–1655. [Google Scholar] [CrossRef]
- Komijani, A.; Hajimiri, A. A 24 GHz, +14.5 dBm fully-integrated power amplifier in 0.18/spl mu/m CMOS. In Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571), Orlando, FL, USA, 6 October 2004. [Google Scholar]
- Kang, D.W.; Kim, J.G.; Min, B.W.; Rebeiz, G.M. Single and Four-Element Ka-Band Transmit/Receive Phased-Array Silicon RFICs With 5-bit Amplitude and Phase Control. IEEE Trans. Microw. Theory Tech. 2009, 57, 3534–3543. [Google Scholar] [CrossRef]
- Koh, K.J.; May, J.W.; Rebeiz, G.M. A Q-band (40–45 GHz) 16-element phased-array transmitter in 0.18-micro-m SiGe BiCMOS technology. In Proceedings of the 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, USA, 15–17 June 2008. [Google Scholar]
- Atesal, Y.A.; Cetinoneri, B.; Koh, K.; Rebeiz, G.M. X/Ku-band 8-element phased arrays based on single silicon chips. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010. [Google Scholar]
- Kim, S.; Gudem, P.S.; Larson, L.E. A 44-GHz 8-element phased-array SiGe HBT transmitter RFIC with an injection-locked quadrature frequency multiplier. In Proceedings of the 2010 IEEE Radio Frequency Integrated Circuits Symposium, Anaheim, CA, USA, 23–28 May 2010. [Google Scholar]
- Choi, P.; Antoniadis, D.A.; Fitzgerald, E.A. Towards Millimeter-Wave Phased Array Circuits and Systems For Small Form Factor and Power Efficient 5G Mobile Devices. In Proceedings of the 2019 IEEE International Symposium on Phased Array System and Technology (PAST), Waltham, MA, USA, 15–18 October 2019. [Google Scholar]
- Danesh, S.; Araghi, A.; Khalily, M.; Xiao, P.; Tafazolli, R. Millimeter Wave Phased Array Antenna Synthesis Using a Machine Learning Technique for Different 5G Applications. In Proceedings of the 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 20–22 October 2020. [Google Scholar]
- Saha, N.; Mahbub, I. Design, Modeling, and Simulation of a 2.4 GHz Near-field Phased-Array based Wireless Power Transfer System for Brain Neuromodulation Applications. In Proceedings of the 2022 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 19–20 April 2022. [Google Scholar]
- Lee, K.; Kim, J.; Seo, J.; Yu, H.; Cha, C. Channel-based Phase and Power Controllable Intelligent Wireless Power Transfer Architecture Using 4 by 4 Planar Array Antennas. In Proceedings of the 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bangkok, Thailand, 16–19 December 2018. [Google Scholar]
- Sadeghpour, S.; Zilonova, E.; D’Hooge, J.; Kraft, M. A Novel 6 MHz Phased Array Piezoelectric Micromachined Ultrasound Transducer (pMUT) with 128 Elements for Medical Imaging. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021. [Google Scholar]
- Kelly, P.K.; Kumar, M.; McCaskey, R.; Maddocks, E.; Rhodes, J.; Chandrasekar, V. A Novel Portable Phased Array Radar for Meteorological Remote Sensing. In Proceedings of the 2022 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, USA, 11–14 October 2022. [Google Scholar]
- Sadhu, B.; Tousi, Y.; Hallin, J.; Sahl, S.; Reynolds, S.K.; Renström, Ö.; Sjögren, K.; Haapalahti, O.; Mazor, N.; Bokinge, B.; et al. A 28-GHz 32-Element TRX Phased-Array IC With Concurrent Dual-Polarized Operation and Orthogonal Phase and Gain Control for 5G Communications. IEEE J. Solid-State Circuits 2017, 52, 3373–3391. [Google Scholar] [CrossRef]
- Jacomb-Hood, A.; Lier, E. Multibeam active phased arrays for communications satellites. IEEE Microw. Mag. 2000, 1, 40–47. [Google Scholar] [CrossRef]
- Silverstein, S.D. Application of orthogonal codes to the calibration of active phased array antennas for communication satellites. IEEE Trans. Signal Process. 1997, 45, 206–218. [Google Scholar] [CrossRef]
- Low, K.K.W.; Zihir, S.; Kanar, T.; Rebeiz, G.M. A 27-31-GHz 1024-Element Ka-Band SATCOM Phased-Array Transmitter with 49.5-dBW Peak EIRP, 1-dB AR, and ±70° Beam Scanning. IEEE Trans. Microw. Theory Tech. 2022, 70, 1757–1768. [Google Scholar] [CrossRef]
- Aljuhani, A.H.; Kanar, T.; Zihir, S.; Rebeiz, G.M. A 256-Element Ku-Band Polarization Agile SATCOM Receive Phased Array with Wide-Angle Scanning and High Polarization Purity. IEEE Trans. Microw. Theory Tech. 2021, 69, 2609–2628. [Google Scholar] [CrossRef]
- Jin, S.; Liu, D.; Cui, Z.; Mei, C.; Yang, Y.; Wu, B. A Scalable Ka-Band 256-Element Transmit Dual-Circularly-Polarized Planar Phased Array for SATCOM Application. In Proceedings of the 2022 International Symposium on Networks, Computers and Communications (ISNCC), Shenzhen, China, 19–22 July 2022. [Google Scholar]
- Gultepe, G.; Low, K.; Ma, Q.; Rebeiz, G.M. A 1024-Element K-band Commercial SATCOM User Terminal with a G/T of 10.2 dB/K and Two Simultaneous Beams. In Proceedings of the 2022 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, USA, 11–14 October 2022. [Google Scholar]
- Rebeiz, G.M.; Koh, K.J. Silicon RFICs for phased arrays. IEEE Microw. Mag. 2009, 10, 96–103. [Google Scholar] [CrossRef]
- Rebeiz, G.M.; Shin, W.; Golcuk, F.; Inac, O.; Zihir, S.; Gurbuz, O.; Edwards, J.; Kanar, T. Wafer-Scale Millimeter-Wave Phased-Array RFICs. In Proceedings of the 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, USA, 19–22 October 2014. [Google Scholar]
- Moussessian, A.; Del Castillo, L.; Huang, J.; Sadowy, G.; Hoffman, J.; Smith, P.; Hatake, T.; Derksen, C.; Lopez, B.; Caro, E. An active membrane phased array radar. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Long Beach, CA, USA, 17 June 2005. [Google Scholar]
- Kingsley, N.; Wang, G.; Papapolymerou, J. 14 GHz microstrip MEMS phase shifters on flexible, organic substrate. In Proceedings of the 2005 European Microwave Conference, Paris, France, 4–6 October 2005. [Google Scholar]
- Kingsley, N.; Ponchak, G.E.; Papapolymerou, J. Reconfigurable RF MEMS Phased Array Antenna Integrated Within a Liquid Crystal Polymer (LCP) System-on-Package. IEEE Trans. Antennas Propag. 2008, 56, 108–118. [Google Scholar] [CrossRef]
- Braaten, B.D.; Roy, S.; Nariyal, S.; Al Aziz, M.; Chamberlain, N.F.; Irfanullah, I.; Reich, M.T.; Anagnostou, D.E. A Self-Adapting Flexible (SELFLEX) Antenna Array for Changing Conformal Surface Applications. IEEE Trans. Antennas Propag. 2013, 61, 655–665. [Google Scholar] [CrossRef]
- Zhi, X.; Huang, X.; Zhang, K.; Zhang, Q.; Zhu, B.; Zhu, Z.; Ran, L. A Self-Adaptive Phased Array Conformed on a Highly Flexible Aperture. IEEE Trans. Microw. Theory Tech. 2025, 73, 1821–1836. [Google Scholar] [CrossRef]
- Subbaraman, H.; Pham, D.T.; Xu, X.; Chen, M.Y.; Hosseini, A.; Lu, X.; Chen, R.T. Inkjet-Printed Two-Dimensional Phased-Array Antenna on a Flexible Substrate. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 170–173. [Google Scholar] [CrossRef]
- Montisci, G.; Mura, G.; Muntoni, G.; Casula, G.A.; Chietera, F.P.; Aburish-Hmidat, M. A Curved Microstrip Patch Antenna Designed From Transparent Conductive Films. IEEE Access 2023, 11, 839–848. [Google Scholar] [CrossRef]
- Muntoni, G.; Mura, G.; Casula, G.A.; Chietera, F.P.; Aburish-Hmidat, M.; Montisci, G. A Transparent Curved Microstrip Patch Antenna. In Proceedings of the 2023 IEEE Conference on Antenna Measurements and Applications (CAMA), Genoa, Italy, 15–17 November 2023; pp. 698–700. [Google Scholar] [CrossRef]
- Castro, A.T.; Sharma, S.K. Inkjet-Printed Wideband Circularly Polarized Microstrip Patch Array Antenna on a PET Film Flexible Substrate Material. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 176–179. [Google Scholar] [CrossRef]
- Hu, K.; Zhou, Y.; Sitaraman, S.K.; Tentzeris, M.M. Additively manufactured flexible on-package phased array antennas for 5G/mmWave wearable and conformal digital twin and massive MIMO applications. Sci. Rep. 2023, 13, 12515. [Google Scholar] [CrossRef]
- Hu, K.; Soto–Valle, G.; Cui, Y.; Tentzeris, M.M. Flexible and Scalable Additively Manufactured Tile-Based Phased Arrays for Satellite Communication and 50 mm Wave Applications. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium—IMS 2022, Denver, CO, USA, 19–24 June 2022. [Google Scholar]
- Hester, J.G.; Tentzeris, M.M. Inkjet-Printed Flexible mm-Wave Van-Atta Reflectarrays: A Solution for Ultralong-Range Dense Multitag and Multisensing Chipless RFID Implementations for IoT Smart Skins. IEEE Trans. Microw. Theory Tech. 2016, 64, 4763–4773. [Google Scholar] [CrossRef]
- Li, M.; Yang, Y.; Iacopi, F.; Nulman, J.; Chappel-Ram, S. 3D-Printed Low-Profile Single-Substrate Multi-Metal Layer Antennas and Array with Bandwidth Enhancement. IEEE Access 2020, 8, 217370–217379. [Google Scholar] [CrossRef]
- Pham, D.T.; Subbaraman, H.; Chen, M.Y.; Xu, X.; Chen, R.T. Light Weight and Conformal 2-Bit, 1 × 4 Phased-Array Antenna with CNT-TFT-Based Phase Shifter on a Flexible Substrate. IEEE Trans. Antennas Propag. 2011, 59, 4553–4558. [Google Scholar] [CrossRef]
- Li, W.T.; Hei, Y.Q.; Grubb, P.M.; Shi, X.W.; Chen, R.T. Inkjet Printing of Wideband Stacked Microstrip Patch Array Antenna on Ultrathin Flexible Substrates. IEEE Trans. Components Packag. Manuf. Technol. 2018, 8, 1695–1701. [Google Scholar] [CrossRef]
- Hu, K.; Tentzeris, M.M. Additively Manufactured Ultra-Wideband Cavity-Backed Stacked Patch Antenna for 5G mmWave Conformal Phased Array Systems. In Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC-URSI Radio Science Meeting (AP-S/INC-USNC-URSI), Firenze, Italy, 14–19 July 2024. [Google Scholar]
- Chen, X.; Li, K. Ultrathin and Flexible Ultrawideband Antenna Array Based on Integrated Impedance Matching Line. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 960–964. [Google Scholar] [CrossRef]
- Gal-Katziri, M.; Fikes, A.; Hajimiri, A. Flexible active antenna arrays. npj Flex. Electron. 2022, 6, 85. [Google Scholar] [CrossRef]
- Hashemi, M.R.M.; Fikes, A.C.; Gal-Katziri, M.; Abiri, B.; Bohn, F.; Safaripour, A.; Kelzenberg, M.D.; Warmann, E.L.; Espinet, P.; Vaidya, N.; et al. A flexible phased array system with low areal mass density. Nat. Electron. 2019, 2, 195–205. [Google Scholar] [CrossRef]
- Joshi, M.; Hu, K.; Lynch, C.A.; Cui, Y.; Soto-Valle, G.; Tentzeris, M.M. Computer Vision Enabled Calibration of Additively Manufactured Conformal Phased Arrays Utilizing 3-D Depth Sensing Camera. IEEE Trans. Microw. Theory Tech. 2024, 72, 6728–6738. [Google Scholar] [CrossRef]
- Moulder, W.F.; Das, R.N.; Maccabe, A.C.; Bowen, L.A.; Thompson, E.M.; Bell, P.J. Rigid-Flexible Antenna Array (RFAA) for Lightweight Deployable Apertures. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020. [Google Scholar]
- Gan, T.H.; Liu, A.; Tan, P.K.; Lu, J. A Flexible Ku-Band Checkerboard Phased Array Antenna. In Proceedings of the 2024 International Applied Computational Electromagnetics Society Symposium (ACES), Orlando, FL, USA, 19–22 May 2024. [Google Scholar]
- Wang, X.; You, D.; Fu, X.; Lee, H.; Li, Z.; Awaji, D.; Pang, J.; Shirane, A.; Sakamoto, H.; Okada, K. A Flexible Implementation of Ka-Band Active Phased Array for Satellite Communication. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium—IMS 2022, Denver, CO, USA, 19–24 June 2022. [Google Scholar]
- You, D.; Xi, F.; Herdian, H.; Wang, X.; Narukiyo, Y.; Fadila, A.A.; Lee, H.; Ide, M.; Kato, S.; Li, Z.; et al. A Ka-Band 64-Element Deployable Active Phased-Array TX on a Flexible Hetero Segmented Liquid Crystal Polymer for Small Satellites. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 903–906. [Google Scholar] [CrossRef]
- Kataria, C.Y.; Cantley, L.E.; Fenn, A.J.; Terranova, D.F.; Yegnanarayanan, S.S.; Zhang, B. Design of a Flexible Thermally-Drawn Photonics Receive Linear Dipole Phased Array Antenna at UHF. In Proceedings of the 2022 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, USA, 11–14 October 2022. [Google Scholar]
- Kakaraparty, K.; Mahbub, I. A 24 GHz Flexible 10 × 10 Phased Array Antenna for 3D Beam Steering Based V2V Applications. In Proceedings of the 2022 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, MA, USA, 11–14 October 2022. [Google Scholar]
- Ayaz, M.; Ullah, I.; Iftikhar, A.; Abbas, S.M.; Braaten, B.D.; Khattak, S.; Alathbah, M. A Flexible Conformal Phased Array With Embedded Magnetic Particles Based Composite Right/Left Handed Metamaterial Phase Shifters. IEEE Access 2024, 12, 129147–129159. [Google Scholar] [CrossRef]
- Ayaz, M.; Ullah, I. A Singly Curved Conformal Phased Array with Integrated Particles-Based CRLH Phase Shifters. Electron. J. 2023, 27, 43–49. [Google Scholar] [CrossRef]
- Baudh, R.K.; Sahu, S.; Parihar, M.S.; Kumar, V.D. A Semi-flexible Conformal Beam Scanning Broadband Wearable Antenna Array for Radar Application. In Proceedings of the 2023 IEEE 7th Conference on Information and Communication Technology (CICT), Jabalpur, India, 15–17 December 2023. [Google Scholar]
- Rutan-Bedard, S.I.; Winkler, C.; Kugler, K.; Webb, K.M.; Roy, S. A Frequency Shift Key Radar Approach for the Reconstruction of Flexible Phased Array Geometry. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022. [Google Scholar]
- Hu, K.; Callis, T.W.; Tentzeris, M.M. Additively Manufactured Flexible On-Package Phased Antenna Arrays With Integrated Microfluidic Cooling Channels for 5G/mmWave System-on-Package Designs. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 899–902. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, Y.; Tu, Z.; Zhang, C.; Chen, K.; Luo, J. A novel Conformal T/R Module Based on Low Loss Flexible Printed Circuit Board. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, Hainan, China, 15–19 December 2021. [Google Scholar]
- You, D.; Wang, X.; Herdian, H.; Fu, X.; Lee, H.; Ide, M.; Da Gomez, C.; Li, Z.; Mayeda, J.; Awaji, D.; et al. A Ka-Band Deployable Active Phased Array Transmitter Fabricated on 4-Layer Liquid Crystal Polymer Substrate for Small-Satellite Mount. IEEE Access 2023, 11, 69522–69535. [Google Scholar] [CrossRef]
- Mizrahi, O.S.; Fikes, A.; Hajimiri, A. Flexible Phased Array Sheets: A Techno-Economic Analysis. arXiv 2023, arXiv:2302.03562. [Google Scholar] [CrossRef]
- You, D.; Awaji, D.; Shirane, A.; Sakamoto, H.; Okada, K. A Flexible Element Antenna for Ka-Band Active Phased Array SATCOM Transceiver. In Proceedings of the 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 8–11 December 2020. [Google Scholar]
- Nan, X.; Kang, T.; Zhang, Z.; Wang, X.; Zhang, J.; Lei, Y.; Gao, L.; Cui, J.; Xu, H. Flexible Symmetric-Defection Antenna with Bending and Thermal Insensitivity for Miniaturized UAV. Micromachines 2024, 15, 159. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, O.S.; Fikes, A.; Hajimiri, A. Flexible Phased Array Shape Reconstruction. In Proceedings of the 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 7–25 June 2021. [Google Scholar]
- Fikes, A.C.; Safaripour, A.; Bohn, F.; Abiri, B.; Hajimiri, A. Flexible, Conformal Phased Arrays with Dynamic Array Shape Self-Calibration. In Proceedings of the 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2–7 June 2019. [Google Scholar]
- Elmobarak, H.A.; Himdi, M.; Castel, X.; Rahim, S.K.A.; Geok, T.K. Flexible Patch Antenna Array Operating at Microwaves Based on Thin Composite Material. IEEE Access 2022, 10, 115663–115672. [Google Scholar] [CrossRef]
- Gan, T.H.; Liu, A.; Tan, P.K.; Lu, J. A Bendable Wideband Dual-Polarization Conformal Phased-Array Antenna. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 1952–1956. [Google Scholar] [CrossRef]
- Ding, C.; Gao, X.; Tang, W.; Liu, H.; Zhu, C.; Bu, X.; An, J. A Balloon Conformal Array Antenna of Broadened Bandwidth, High Gain, and Steerable Directional Beam Fed by a Flexible Phase Shifting Network. IEEE Trans. Antennas Propag. 2023, 71, 8525–8536. [Google Scholar] [CrossRef]
- Soh, P.J.; Van den Bergh, B.; Xu, H.; Aliakbarian, H.; Farsi, S.; Samal, P.; Vandenbosch, G.A.; Schreurs, D.M.P.; Nauwelaers, B.K. A smart wearable textile array system for biomedical telemetry applications. IEEE Trans. Microw. Theory Tech. 2013, 61, 2253–2261. [Google Scholar] [CrossRef]
Materials Used | Mechanical Properties | Electromagnetic Properties | Reason for Use |
---|---|---|---|
Chromium | Durable, Thin | Highly Conductive | Conductivity |
Rogers® RT5880 | Semi-flexible, Lightweight | Dielectric constant = 2.2, Loss tangent = 0.0009 | Low loss, flexibility |
DuPont Pyralux® | Flexible, Lightweight | Dielectric constant = 3.4, Loss tangent = 0.003 | Flexible, thin, low profile |
Copper | Durable | Conductive, Low resistivity | Conductivity, reliability, compatible with PCB standard manufacturing |
LCP | Foldable, Lightweight, Deployable | Dielectric constant = 3.0–3.3, Loss tangent = 0.0049 | Low loss, flexible |
Rogers® 4003C | Rigid, Lightweight | Dielectric constant = 3.38–3.55, Loss tangent = 0.0027 | Low loss |
Rogers® 3003 | Semi-Flexible, Durable, Lightweight, Thermally-conductive | Dielectric Constant = 3.00, Loss tangent = 0.0013 | Low dielectric loss and flexible |
SNP ink | Flexible, Printable | Conductive, low resistivity | Printability, thermal stability |
Taconic® FastFilm™ | Durable, Lightweight | Dielectric constant = 3.55, Loss tangent = 0.0027 | Low loss, flexibility |
Rogers® 3003 | Semi-Flexible, Durable, Lightweight, Thermally conductive | Dielectric Constant = 3.00, Loss tangent = 0.0013 | Low dielectric loss and flexibility |
Kapton® HN Polyimide | Lightweight, Flexible, Durable, Thermostable | Dielectric constant = 3.4, Loss tangent = 0.002–0.005 | Thermal stability |
SNP ink | Flexible, Printable | Conductive, low resistivity | Printability, thermal stability |
Taconic® FastFilm™ | Durable, Lightweight | Dielectric constant = 3.55, Loss tangent = 0.0027 | Low loss, flexibility |
PP | Lightweight, Robust | Dielectric constant = 2.2–2.34, Loss tangent = 0.0002–0.001 | Low loss, robustness |
PET | Flexible for small thickness, Durable | Dielectric constant = 3.0–3.4, Loss tangent = 0.02 | Cost-effectiveness |
PDMS | Flexible, Conformable | Dielectric constant = 2.65, Loss tangent = 0.031 | Flexibility and thermal stability |
PEI fiber | Flexible, Durable | Dielectric constant = 3.0, Loss tangent = 0.0012 | Thermal stability |
Paper | Design | Phase Compensation | Advantages | Disadvantages |
---|---|---|---|---|
[69] | Folded dipoles on copper ground | Spiral Match algorithm, Semi-Definite Relaxation | No additional sensors, Modular | 1D bending, Inaccuracy in non-uniform bends |
[70] | Flexible substrate with copper PCB | Mutual coupling used to infer relative phase center (differential phase measurement) | No need for external sensors, Operates under bending, High mechanical flexibility | Variations in antenna/feed network not accounted for |
[36] | Microstrip patch array printed on a flexible substrate | Phase compensation based on the data of sensor deformation detection | Low complexity, Pattern recovery under deformation | Limited to predefined geometrical shapes |
[62] | Probe-fed patch antennas mounted on an AM acrylonitrile butadiene styrene (ABS) frame | A phase-based distance measurement, FSK-based measurement using phase differences at two frequencies | Sensor-free approach, Applicable to arbitrary deformations | Reduced accuracy at close spacing |
[71] | Patch array built on thin flexible composite laminate made of E-glass fiber and a highly conductive mesh-style fabric | Phase shifters are implemented as extended microstrip line lengths, introducing phase delays | High mechanical flexibility, Low ohmic and dielectric losses | Only suitable for fixed deformations |
[53] | Rigid–flex flexible membrane for RF and DC routing, with rigid tiles as substrates for antenna and components | No phase compensation but element-level electronic beam steering | Ultra-lightweight, Highly flexible, Active component integration | No active beam steering demonstrated |
[54] | Rigid–flex checkerboard structure combining rigid PCBs and flexible substrate | No dynamic phase compensation | Flexible in 2D, Dual polarization | Lacks real-time phase control |
[59] | Patch array with integrated magnetic particles based Composite Right/Left-Handed (CRLH) metamaterial phase shifters | Phase control is achieved by tuning the permeability (per-element phase tuning) | Real-time tunability, Conformal flexibility | Complex fabrication, Magnetic field source required |
[64] | Double-layer flexible PCB | Integrated digital phase shifters | Low loss under bending, Integrated active electronics | No dynamic phase calibration, Assembly complexity |
NO. | Freq. (GHz) | Size | BW (GHz) | Gain (dB) | Steering | Insertion Loss (dB) | Beam Width | Flexibility | Flex Curve | Bending | Pol. | Thermal Perf. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[33] | 1.26 | 2 × 4 | 0.08 | Rx 17, Tx 30 | – | – | – | Flexible sub. | – | Good | – | – |
[34] | 14 | – | 4 | – | – | 0.59 (1–bit) | – | Flexible Sub. LCP | – | Curling addressed | – | LCP Properties |
[35] | 14 | 2 × 2 | ≈0.7 | 7.75 | 4.57 | – | Flexible Sub | – | Minimal impact | – | Max 150 °C | |
[36] | 2.45 | 1 × 4 | ≈0.02 | 5.9 (flat) | ≈– | 2–3 | Broad, Narrow | Flexible Sub | – wedge, 10 cylinder | Autonomous correction | – | – |
[37] | 2.25 | 1 × 8 | 100 | – | ≈ | Flex Sub | – | CP | – | |||
[38] | 5 | 4 × 4 | – | 14.6 | 8.17 | – | Flexible Sub AM | – | Demonstrated | – | – | |
[43] | 19 | 2 × 2 tile | – | 16 | – | – | Flexible Sub AM | – | Retain perf. | – | Stable C | |
[61] | 10 | 1 × 4 | 1.3 | 12.4 | – | Varies | Semi Flex | 20 | Phase compensation | – | – | |
[41] | 7.7–8.3 | 4 × 4 | 0.6 | 16.9 | – | Varies | – | Flex Sub AM | ≥ | Gain reduction | RHCP | – |
[42] | 24–40 | – | Wide Band | Max | – | Broad | Flex Sub AM | 3 | Minimal shift | Circular | Microfluidic Cooling | |
[63] | 24–40 | – | Wide Band | Max | – | Broad | Flex Sub AM | 3 | Stable for 10,000 bending cycles | Circular | Microfluidic Cooling | |
[44] | 30 | 5 × 1 patches | 0.6 | 12.5 | 1.17 | – | Flex Sub AM | 3 | Minimal RCS variation | LP (Dual) | Robust | |
[45] | Sub-6 | 2 × 2 array | 0.47 | 7.7 | – | – | – | Flex Sub 3D | – | – | CP | – |
[46] | 4.99 | 1 × 4 | – | – | , | – | – | Flex Sub | 24 | – | – | |
[47] | 4.79–5.04 | 1 × 4 | 0.25 | 4.5 | – | , HPBW | Flex Sub AM | 5 , 25 | Stable | CP | Moderate Heating | |
[48] | 22.3–42.5 | 2 × 4 | 13 | – | – | – | Flex Sub | – | Effective | – | Temp. stable | |
[49] | 2–18 | 6 × 6 | 15 | – | – | – | – | Flex Sub | 20 | – | – | – |
[50] | 10 | 30 × 30 cm2 sheet, 256 elements | UWB | ≈60.5 EIRP | azimuth, elevation | – | 2D Scan | Flex Sub | 23 | Effective | LP | Temp. stable |
[51] | 9.4–10.4 | 4 × 4 tile | 1.0 | ≈37.1 EIRP | without GLs | – | – | Flex Sub | 3 | Stable | LP (Dual) | Space Compatible |
[52] | 19.5 | 2 × 1 and 4 × 1 | – | to | – | – | Flex Sub | up to | – | – | – | |
[53] | 9.4–10.4 | 16 × 16 | 0.8 | 15.2 | – | Consistent | Rigid Flex | 50 roll–unroll cycles | LP | Space Compatible | ||
[54] | 10.7–12.75 | 8 × 4 (checkerboard) | 2.05 | 16.3 | – | Consistent | Rigid Flex | 5 | Measured on cylinder | LP (Dual) | – | |
[55] | 28 | 32 elements | EIRP | – | at edges | Flex Sub | Deployable | – | LP | – | ||
[56] | 26.25 | 8 × 8 | 46.7 | to | – | Flex Sub | Foldable | bent | – | – | ||
[57] | 0.42–0.45 | Linear Array | Broad UHF | ≈5 | Flex Sub | – | – | Dual polarized | Minimal Deformation | |||
[58] | 24 | 10 × 10 | 0.67 | 29.4 | (), () | – | Broadside, | Flex Sub AM | Stable | LP | Consistent | |
[59] | 2.45 | 1 × 4 | 0.5 | 9.52 | ≈1 | Broadside, | MP CRLH Phase Shifter | 30 , 10 | Minimum variation | LP | Minimum Deformation | |
[60] | 5.8 | 1 × 4 | 5–6 | 7.38 (), 6.72 (), 6.2 () | to | Adjusted | MP CRLH Phase Shifter | , | Minimum variation | LP | – | |
[62] | 2.5 | – | 0.03 | – | – | – | – | Flex Sub AM | – | 12% wavelength deviation | LP | – |
[64] | 8–12 | – | – | TX 15.32–21.92, RX 14.87–20.57 | – | 2.5 to | – | Flex Sub PCB | PCB 4 , TX/RX | Stable | LP | – |
[65] | 28 | 8 × 4 | 1.0 | 19.5 () | – | – | Origami, Flex Sub | – | – | LP | – | |
[66] | 10 | 16 × 16 | – | – | – | – | – | Flex PCB | – | – | LP | Space Compatible |
[67] | 28 | 16 × 16 | 1.0 | ≈3 (element), 58.16 EIRP | – | – | – | Flex Sub | – | – | LP | – |
[68] | 2.44 | Single Antenna | 0.33 | 1.6 | – | – | Omni directional | Flex Sub | 2 to 7 | Shift | LP | Insensitive (20–C) |
[69] | 2.5 | 8 elements | – | – | – | – | – | Flex Sub | – to | error | LP | – |
[70] | 10 | 8 elements | 0.48 | – | – | – | Flex Sub | ±12 | Stable | LP | – | |
[71] | 5.8 | 4 × 1 | 5 | (flat), (bent) | – | – | – | Flex Sub | 5 | – | – | – |
[72] | 10.7–12.75 | 8 × 4 | 2.05 | – | – | Flex Sub | 5 | Stable | Dual Pol. | – | ||
[73] | 2.4 | 1 × 4 subarrays | 0.074 | ≈15 | azimuth | – (–) | Balloon Shaped | 50 | loss ≈ | LP | – | |
[74] | 2.45 | – | 240 to 270 | , | – | – | Flex Sub | – | – | LHCP | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usmani, W.U.; Chietera, F.P.; Mescia, L. Flexible Phased Antenna Arrays: A Review. Sensors 2025, 25, 4690. https://doi.org/10.3390/s25154690
Usmani WU, Chietera FP, Mescia L. Flexible Phased Antenna Arrays: A Review. Sensors. 2025; 25(15):4690. https://doi.org/10.3390/s25154690
Chicago/Turabian StyleUsmani, Waleef Ullah, Francesco Paolo Chietera, and Luciano Mescia. 2025. "Flexible Phased Antenna Arrays: A Review" Sensors 25, no. 15: 4690. https://doi.org/10.3390/s25154690
APA StyleUsmani, W. U., Chietera, F. P., & Mescia, L. (2025). Flexible Phased Antenna Arrays: A Review. Sensors, 25(15), 4690. https://doi.org/10.3390/s25154690