Photopolymerization 3D-Printed Dual-Modal Flexible Sensor for Glucose and pH Monitoring
Abstract
1. Introduction
2. Experimental Methods
2.1. Materials and Reagents
2.2. Preparation of Ionic Gel Substrate Materials
2.2.1. Polyurethane Acrylate (PUA) Synthesis
2.2.2. Ionic Gel Synthesis
2.3. Sensor Model Printing
2.4. Prepare Glucose Sensors and pH Sensors
2.4.1. Preparation of Working Electrodes for Glucose Sensors
2.4.2. Preparation of Working Electrodes for pH Sensors
2.4.3. Preparation of Working Electrodes for Composite pH and Glucose Detection Sensors
2.4.4. Preparation of Sensor Reference Electrodes
2.5. Material Characterization
2.6. Performance Testing
2.6.1. Mechanical Property Test
2.6.2. Ionic Conductivity Test
2.6.3. Finite Element Analysis of Stress–Strain Distribution
2.6.4. Sensing Performance Experiments
3. Results and Discussion
3.1. Glucose/pH Dual-Modal Composite Sensor
3.2. Ionic Gel Material Properties
3.3. Microneedle Array DLP Printing and Mechanical Simulation
3.4. Sensing Performance Test Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Ban, S.; Yi, H.; Park, J.; Huang, Y.; Yu, K.J.; Yeo, W.H. Advances in Photonic Materials and Integrated Devices for Smart and Digital Healthcare: Bridging the Gap Between Materials and Systems. Adv. Mater. 2025, 2416899. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Zheng, Z.; Liu, J.; Xiao, H.; Huangfu, G.; Guo, Y. Superflexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 2021, 13, 117. [Google Scholar] [CrossRef]
- Qu, J.; Cui, G.; Li, Z.; Fang, S.; Zhang, X.; Liu, A.; Han, M.; Liu, H.; Wang, X.; Wang, X. Advanced flexible sensing technologies for soft robots. Adv. Funct. Mater. 2024, 34, 2401311. [Google Scholar] [CrossRef]
- Zhou, W.; Du, Y.; Chen, Y.; Zhang, C.; Ning, X.; Xie, H.; Wu, T.; Hu, J.; Qu, J. Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage. Nano-Micro Lett. 2025, 17, 68. [Google Scholar] [CrossRef]
- Fan, S.; Meng, L.; Dan, L.; Zheng, W.; Wang, X. Polymer microelectromechanical system-integrated flexible sensors for wearable technologies. IEEE Sens. J. 2018, 19, 443–450. [Google Scholar] [CrossRef]
- Yi, Y.; Liao, H.; Liu, E.; Ye, Y.; Cai, Z.; Li, X.; Li, C. Review of Flexible Biomedical Sensors: Design, Application, and Challenge. IEEE Sens. J. 2023, 24, 2321–2328. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, B.; Li, H.; Li, M.; Song, Y.; Wang, R.; Wng, T.; Zhang, H. Flexible wearable sensors in medical monitoring. Biosensors 2022, 12, 1069. [Google Scholar] [CrossRef]
- Khan, S.; Ali, S.; Bermak, A. Recent developments in printing flexible and wearable sensing electronics for healthcare applications. Sensors 2019, 19, 1230. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xu, K.; Zhao, P.; Ji, L.; Hua, C.; Jia, X.; Wu, X.; Diao, L.; Zhong, W.; Lyu, G.; et al. Microgels sense wounds’ temperature, pH and glucose. Biomaterials 2025, 314, 122813. [Google Scholar] [CrossRef] [PubMed]
- Rishpon, J.; Gottesfeld, S.; Campbell, C.; Davey, J.; Zawodzinski, T.A., Jr. Amperometric glucose sensors based on glucose oxidase immobilized in Nafion. Electroanalysis 1994, 6, 17–21. [Google Scholar] [CrossRef]
- Li, Y.; Mao, Y.; Xiao, C.; Xu, X.; Li, X. Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv. 2020, 10, 21–28. [Google Scholar] [CrossRef]
- Tang, Y.; Gan, S.; Zhong, L.; Sun, Z.; Xu, L.; Liao, C.; Lin, K.; Cui, X.; He, D.; Ma, Y.; et al. Lattice proton intercalation to regulate WO3-based solid-contact wearable pH sensor for sweat analysis. Adv. Funct. Mater. 2022, 32, 2107653. [Google Scholar] [CrossRef]
- Sharifuzzaman, M.; Do Shin, Y.; Yoo, J.; Reza, M.S.; Park, J.Y. An oxygen-insensitive and minimally invasive polymeric microneedle sensor for continuous and wide-range transdermal glucose monitoring. Talanta 2023, 263, 124747. [Google Scholar] [CrossRef] [PubMed]
- Ming, T.; Lan, T.; Yu, M.; Duan, X.; Cheng, S.; Wang, H.; Deng, J.; Kong, D.; Yang, S.; Shen, Z. A novel electrochemical microneedle sensor for highly sensitive real time monitoring of glucose. Microchem. J. 2024, 207, 112021. [Google Scholar] [CrossRef]
- Oh, S.Y.; Hong, S.Y.; Jeong, Y.R.; Yun, J.; Park, H.; Jin, S.W.; Lee, G.; Oh, J.H.; Lee, H.; Lee, S.-S.; et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces 2018, 10, 13729–13740. [Google Scholar] [CrossRef]
- Li, Y.; Luo, S.; Gui, Y.; Wang, X.; Tian, Z.; Yu, H. Difunctional Hydrogel Optical Fiber Fluorescence Sensor for Continuous and Simultaneous Monitoring of Glucose and pH. Biosensors 2023, 13, 287. [Google Scholar] [CrossRef]
- Adib, M.R.; Barrett, C.; O’Sullivan, S.; Flynn, A.; McFadden, M.; Kennedy, E.; O’Riordan, A. In situ pH-Controlled electrochemical sensors for glucose and pH detection in calf saliva. Biosens. Bioelectron. 2025, 275, 117234. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Huang, Y.; Song, D.; Wu, H.; Cao, F.; Lei, Y. Dual functional rhodium oxide nanocorals enabled sensor for both non-enzymatic glucose and solid-state pH sensing. Biosens. Bioelectron. 2018, 112, 136–142. [Google Scholar] [CrossRef]
- He, Y.; Xu, X.; Xiao, S.; Wu, J.; Zhou, P.; Chen, L.; Liu, H. Research progress and application of multimodal flexible sensors for electronic skin. ACS Sens. 2024, 9, 2275–2293. [Google Scholar] [CrossRef]
- Gong, X.; Huang, K.; Wu, Y.H.; Zhang, X.S. Recent progress on screen-printed flexible sensors for human health monitoring. Sens. Actuators A Phys. 2022, 345, 113821. [Google Scholar] [CrossRef]
- Chai, J.; Wang, X.; Li, X.; Wu, G.; Zhao, Y.; Nan, X.; Xue, C.; Gao, L.; Zheng, G. A dual-mode pressure and temperature sensor. Micromachines 2024, 15, 179. [Google Scholar] [CrossRef]
- Cui, X.; Xi, Y.; Tu, S.; Zhu, Y. An overview of flexible sensors from ionic liquid-based gels. TrAC Trends Anal. Chem. 2024, 174, 117662. [Google Scholar] [CrossRef]
- Petrová, E.; Chvíla, S.; Štěpánek, F.; Zbytovská, J.; Lamprou, D.A. Imiquimod nanocrystal-loaded dissolving microneedles prepared by DLP printing. Drug Deliv. Transl. Res. 2025, 15, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Dervisevic, M.; Alba, M.; Yan, L.; Senel, M.; Gengenbach, T.R.; Prieto-Simon, B.; Voelcker, N.H. Transdermal electrochemical monitoring of glucose via high-density silicon microneedle array patch. Adv. Funct. Mater. 2022, 32, 2009850. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Liang, Y.; Yang, J.; Lin, Y.; Li, Y. Microneedle-Based Electrochemical Array Patch for Ultra-Antifouling and Ultra-Anti-Interference Monitoring of Subcutaneous Oxygen. Anal. Chem. 2024, 97, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.T.; Shen, Y.K.; Fan, F.Y.; Lin, Y.; Kang, S.C. Optimal design and fabrication of a microneedle arrays patch. J. Manuf. Process. 2020, 54, 274–285. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Jiang, X.; Li, L.; Wu, S.; Yuan, X.; Cheng, H.; Jiang, X.; Gou, M. 3D-printed microneedle arrays for drug delivery. J. Control. Release 2022, 350, 933–948. [Google Scholar] [CrossRef]
- Tariq, N.; Ashraf, M.W.; Tayyaba, S. A review on solid microneedles for biomedical applications. J. Pharm. Innov. 2022, 17, 1464–1483. [Google Scholar] [CrossRef]
- Mano, N. Engineering glucose oxidase for bioelectrochemical applications. Bioelectrochemistry 2019, 128, 218–240. [Google Scholar] [CrossRef]
- Beygisangchin, M.; Abdul Rashid, S.; Shafie, S.; Sadrolhosseini, A.R.; Lim, H.N. Preparations, properties, and applications of polyaniline and polyaniline thin films—A review. Polymers 2021, 13, 2003. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, R.; Tao, X.; He, Y.; Li, X.; Tian, F.; Huang, W. Mechanically robust and highly conductive ionogels for soft ionotronics. Adv. Funct. Mater. 2023, 33, 2208083. [Google Scholar] [CrossRef]
- Alavarse, A.C.; Frachini, E.C.G.; da Silva, R.L.C.G.; Lima, V.H.; Shavandi, A.; Petri, D.F.S. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review. Int. J. Biol. Macromol. 2022, 202, 558–596. [Google Scholar] [CrossRef]
- Elkhoury, K.; Zuazola, J.; Vijayavenkataraman, S. Bioprinting the future using light: A review on photocrosslinking reactions, photoreactive groups, and photoinitiators. SLAS Technol. 2023, 28, 142–151. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Xu, F.; Wu, Z.; Tan, C.; Liao, Y.; Wang, Z.; Chen, K.; Pan, A. Fourier Ptychographic Microscopy 10 Years on: A Review. Cells 2024, 13, 324. [Google Scholar] [CrossRef] [PubMed]
- Dubey, M.K.; Zehra, A.; Aamir, M.; Meena, M.; Ahirwal, L.; Singh, S.; Shukla, S.; Upadhyay, R.S.; Bueno-Mari, R.; Bajpai, V.K. Improvement strategies, cost effective production, and potential applications of fungal glucose oxidase (GOD): Current updates. Front. Microbiol. 2017, 8, 1032. [Google Scholar] [CrossRef]
- Shu, W.; Heimark, H.; Bertollo, N.; Tobin, D.J.; O’Cearbhaill, E.D.; Annaidh, A.N. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Acta Biomater. 2021, 135, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liang, Y.; Yan, X.; Tang, G.; Xu, F.; Li, Z. Based on Finite Element Simulation: Optimization of Microneedle Structure and Mechanical Performance Analysis. J. Phys. Conf. Ser. 2024, 2890, 012059. [Google Scholar] [CrossRef]
- Mancha Sánchez, E.; Gómez-Blanco, J.C.; López Nieto, E.; Casado, J.G.; Macías-García, A.; Díaz Díez, M.A.; Carrasco-Amador, J.P.; Martín, D.T.; Sánchez-Margallo, F.M.; Pagador, J.B. Hydrogels for bioprinting: A systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front. Bioeng. Biotechnol. 2020, 8, 776. [Google Scholar] [CrossRef]
- Longo, G.S.; Szleifer, I. Adsorption and protonation of peptides and proteins in pH responsive gels. J. Phys. D: Appl. Phys. 2016, 49, 323001. [Google Scholar] [CrossRef]
- Martins, A.J.; Velásquez, R.J.; Gaillac, D.B.; Santos, V.N.; Tami, D.C.; Souza, R.N.; Osorio, F.C.; Fogli, G.A.; Soares, B.S.; do Rego, C.G.; et al. A comprehensive review of non-invasive optical and microwave biosensors for glucose monitoring. Biosens. Bioelectron. 2024, 271, 117081. [Google Scholar] [CrossRef]
- Ahmad, R.; Lee, B.I. Facile fabrication of palm trunk–like ZnO hierarchical nanostructure–based biosensor for wide-range glucose detection. Chem. Eng. J. 2024, 492, 152432. [Google Scholar] [CrossRef]
- Iversen, M.; Monisha, M.; Agarwala, S. Flexible, wearable and fully-printed smart patch for pH and hydration sensing in wounds. Int. J. Bioprinting 2021, 8, 447. [Google Scholar] [CrossRef] [PubMed]
- Lan, Q.; Bassi, A.S.; Zhu, J.X.J.; Margaritis, A. A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents. Chem. Eng. J. 2021, 81, 179–186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Li, Y.; Yang, Z.; Li, Q.; Pang, B.; Feng, Y.; Fu, J.; Ma, G.; Long, Y. Photopolymerization 3D-Printed Dual-Modal Flexible Sensor for Glucose and pH Monitoring. Sensors 2025, 25, 5358. https://doi.org/10.3390/s25175358
Lin S, Li Y, Yang Z, Li Q, Pang B, Feng Y, Fu J, Ma G, Long Y. Photopolymerization 3D-Printed Dual-Modal Flexible Sensor for Glucose and pH Monitoring. Sensors. 2025; 25(17):5358. https://doi.org/10.3390/s25175358
Chicago/Turabian StyleLin, Shao, Yu Li, Zhenyao Yang, Qiuzheng Li, Bohua Pang, Yin Feng, Jianglin Fu, Guangmeng Ma, and Yu Long. 2025. "Photopolymerization 3D-Printed Dual-Modal Flexible Sensor for Glucose and pH Monitoring" Sensors 25, no. 17: 5358. https://doi.org/10.3390/s25175358
APA StyleLin, S., Li, Y., Yang, Z., Li, Q., Pang, B., Feng, Y., Fu, J., Ma, G., & Long, Y. (2025). Photopolymerization 3D-Printed Dual-Modal Flexible Sensor for Glucose and pH Monitoring. Sensors, 25(17), 5358. https://doi.org/10.3390/s25175358